
Warm-up as You Walk In

2

1

3

4

1

Assign Red, Green, or Blue
Neighbors must be different

Sudoku

1) What is your brain doing to solve these?
2) How would you solve these with search (BFS, DFS, etc.)?

1

Plan
Last Time

▪ A* search

▪ Adversarial search

▪ Minimax

▪ Evaluation functions

▪ Pruning

Today

▪ Adversarial search: Expectimax

▪ Constraint Satisfaction Problems

Expectimax
Adversarial search slides

AI: Representation and Problem Solving
Constraint Satisfaction Problems (CSPs)

Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu
4

What is Search For?

• Planning: sequences of actions
• The path to the goal is the important thing

• Paths have various costs, depths

• Heuristics give problem-specific guidance

• Identification: assignments to variables
• The goal itself is important, not the path

• All paths at the same depth (for some formulations)

Are the warm-up assignments
planning or identification problems?

5

Warm-up as You Walk In

2

1

3

4

1

Assign Red, Green, or Blue
Neighbors must be different

Sudoku

6

Constraint Satisfaction Problems

CSP is a special class of search problems
▪ Mostly identification problems
▪ Have specialized algorithms for them

Standard search problems:
▪ State is an arbitrary data structure
▪ Goal test can be any function over states

Constraint satisfaction problems (CSPs):
▪ State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
▪ Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

7

Why study CSPs?

▪ Assignment problems: e.g., who teaches what class

▪ Timetabling problems: e.g., which class is offered when and where?

▪ Hardware configuration

▪ Transportation scheduling

▪ Factory scheduling

▪ Circuit layout

▪ Fault diagnosis

▪ … lots more!

▪ Sometimes involve real-valued variables…

Many real-world problems can be formulated as CSPs

8

CSP Examples

9

Example: Map Coloring

• Variables:

• Domains:

• Constraints: adjacent regions must have different colors

• Solutions are assignments satisfying all constraints, e.g.:

Implicit:

Explicit:

10

Constraint Graphs

11

Constraint Graphs

▪ Binary CSP: each constraint relates (at most) two
variables

▪ Binary constraint graph: nodes are variables, arcs
show constraints

▪ General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

12

Varieties of CSPs and Constraints

13

Example: N-Queens

• Formulation 1:
• Variables:

• Domains:

• Constraints

14

Example: N-Queens

• Formulation 2:
• Variables:

• Domains:

• Constraints:

Implicit:

Explicit:

15

Example: Sudoku

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch
of pairwise inequality
constraints)

• Variables: Each (open) square

• Domains: {1,2,…,9}

• Constraints:

16

Varieties of CSPs

• Discrete Variables

• Finite domains

• Size d means O(dn) complete assignments

• E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

• Infinite domains (integers, strings, etc.)

• E.g., job scheduling, variables are start/end times for each job

• Linear constraints solvable, nonlinear undecidable

• Continuous variables

• E.g., start/end times for Hubble Telescope observations

• Linear constraints solvable in polynomial time

We will cover today

We will cover in a later lecture (linear programming)

17

Varieties of Constraints

• Varieties of Constraints
• Unary constraints involve a single variable (equivalent

to reducing domains), e.g.:

• Binary constraints involve pairs of variables, e.g.:

• Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

Focus of today

• Preferences (soft constraints):
• E.g., red is better than green
• Often representable by a cost for each variable assignment
• Gives constrained optimization problems

18

Solving CSPs

19

Standard Search Formulation

• Standard search formulation of CSPs

• States defined by the values assigned
so far (partial assignments)
• Initial state: the empty assignment, {}
• Successor function: assign a value to an

unassigned variable
• Goal test: the current assignment is

complete and satisfies all constraints

• We’ll start with the straightforward,
naïve approach, then improve it

→Can be any unassigned variable

20

Poll 1: Search for CSPs

Should we use BFS or DFS?

21

Depth First Search

• At each node, assign a value
from the domain to the
variable

• Check feasibility (constraints)
when the assignment is
complete

22

Demo – Naïve Search

23

https://www.cs.cmu.edu/~15281/demos/csp_backtracking

Backtracking Search

24

Backtracking Search
Backtracking search is the basic uninformed algorithm for solving CSPs
Backtracking search = DFS + two improvements

Idea 1: One variable at a time
• Variable assignments are commutative

• [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assign value to a single variable at each step

Idea 2: Check constraints as you go
• Consider only values which do not conflict previous assignments
• May need some computation to check the constraints
• “Incremental goal test”

Can solve n-queens for n  25
25

Backtracking Example

26

Backtracking Search

27

Backtracking Search

28

Backtracking Search

29

Backtracking Search

No need to check constraints for a complete assignment

30

Backtracking Search

Checks consistency at each assignment

31

Backtracking Search

▪ Backtracking = DFS + variable-ordering + fail-on-violation

▪ What are the decision points?
32

Demo – Backtracking

33

https://www.cs.cmu.edu/~15281/demos/csp_backtracking

https://www.cs.cmu.edu/~15281/demos/csp_backtracking

Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?

• In what order should its values be tried?

• Structure: Can we exploit the problem structure?

34

Filtering

35

Filtering: Keep track of domains for unassigned variables and cross off
bad options

Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and
cross off values of unassigned variables which violate the
constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

36

• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

WA
SA

NT
Q

NSW

V

T

37

• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
most two variables): nodes are variables, edges show constraints 38

• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

39

• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

FAIL – variable with no possible values
40

Demo – Backtracking with Forward Checking

41

https://www.cs.cmu.edu/~15281/demos/csp_backtracking

https://www.cs.cmu.edu/~15281/demos/csp_backtracking

• Limitations of simple forward checking: propagates information from assigned to
unassigned variables, but doesn't provide early detection for all failures
• NT and SA cannot both be blue! Why didn’t we detect this yet?

• Constraint propagation: reason from constraint to constraint

Filtering: Constraint Propagation

42

Consistency of A Single Arc

• An arc X → Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

• Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists

• Forward checking: Only enforce 𝑋 → 𝑌, ∀ 𝑋, 𝑌 ∈ 𝐸 and 𝑌 newly assigned

(Remove values from the tail!)

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
most two variables): nodes are variables, edges show constraints 43

Consistency of A Single Arc

• An arc X → Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

• Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists

• Forward checking: Only enforce 𝑋 → 𝑌, ∀ 𝑋, 𝑌 ∈ 𝐸 and 𝑌 newly assigned

44

How to Enforce Arc Consistency of Entire CSP

• A simplistic algorithm: Cycle over the pairs of variables, enforcing arc-consistency,
repeating the cycle until no domains change for a whole cycle

• AC-3 (short for Arc Consistency Algorithm #3): A more efficient algorithm ignoring
constraints that have not been modified since they were last analyzed

WA
SA

NT
Q

NSW

V

T

45

AC-3: Enforce Arc Consistency of Entire CSP

Constraint Propagation!

46

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->WA
NT->WA

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

47

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

48

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

49

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

50

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

51

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

52

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

53

AC-3: Enforce Arc Consistency of Entire CSP

Queue:

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

54

Poll 2: After assigning Q to Green,
what gets added to the Queue?

A: NSW->Q, SA->Q, NT->Q
B: Q->NSW, Q->SA, Q->NT

Queue:

WA
SA

NT
Q

NSW

V

T

55

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->Q
SA->Q
NSW->Q

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

56

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

57

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NSW->Q
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

58

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

59

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

60

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

!!!

WA
SA

NT
Q

NSW

V

T

61

• Backtrack on the assignment of Q

• Arc consistency detects failure earlier than forward checking

• Can be run as a preprocessor or after each assignment

• What’s the downside of enforcing arc consistency?

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

!!!

WA
SA

NT
Q

NSW

V

T

62

Limitations of Arc Consistency

• After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not

know it)

• Arc consistency only checks local
consistency conditions

• Arc consistency still runs inside a
backtracking search! What went

wrong here?

63

Backtracking Search with AC-3

• Where do you run AC-3?

AC-3(𝑐𝑠𝑝)

64

Demo – Backtracking with AC-3

65

Compare
• Backtracking with Forward Checking
• Backtracking with AC-3

Forward checking only check arcs
connecting variables a variable that we
just assigned.

With AC-3, we can find existing
problems, such as the arc between
these two variables with only green left.

Complexity of a single run of AC-3

Recall that the whole backtracking algorithm with AC-3 will call AC-3 many times 66

Complexity of a single run of AC-3

• An arc is added after a removal of
value at a node

• 𝑛 node in total, each has ≤ 𝑑 values
• Total times of removal: 𝑂 𝑛𝑑

67

Complexity of a single run of AC-3

• After a removal, ≤ 𝑛 arcs added
• Total times of adding arcs: 𝑂(𝑛2𝑑)

• An arc is added after a removal of
value at a node

• 𝑛 node in total, each has ≤ 𝑑 values
• Total times of removal: 𝑂 𝑛𝑑

68

Complexity of a single run of AC-3

• After a removal, ≤ 𝑛 arcs added
• Total times of adding arcs: 𝑂(𝑛2𝑑)

• An arc is added after a removal of
value at a node

• 𝑛 node in total, each has ≤ 𝑑 values
• Total times of removal: 𝑂 𝑛𝑑

• Check arc consistency per arc: 𝑂(𝑑2)

Complexity of a single run of AC-3 is at most 𝑂(𝑛2𝑑3)

(Not required) Zhang&Yap (2001) show that its complexity is 𝑂(𝑛2𝑑2)
69

Ordering

70

Ordering: Minimum Remaining Values

• Variable Ordering: Minimum remaining values (MRV):
• Choose the variable with the fewest legal left values in its domain

• Why min rather than max?

• Also called “most constrained variable”

• “Fail-fast” ordering

71

Demo – Coloring with a Complex Graph`

Compare
• Backtracking with Forward Checking
• Backtracking with AC-3
• Backtracking + Forward Checking +

Minimum Remaining Values (MRV)

72

Ordering: Least Constraining Value

• Value Ordering: Least Constraining Value
• Given a choice of variable, choose the least

constraining value

• i.e., the one that rules out the fewest values in
the remaining variables

• Note that it may take some computation to
determine this! (E.g., rerunning filtering)

73

Ordering: Least Constraining Value

• Value Ordering: Least Constraining Value
• Given a choice of variable, choose the least

constraining value
• i.e., the one that rules out the fewest values in

the remaining variables
• Note that it may take some computation to

determine this! (E.g., rerunning filtering)

• Why least rather than most?

• Combining these ordering ideas makes
 1000 queens feasible

74

Demo – Coloring with a Complex Graph

Compare
• Backtracking with Forward Checking
• Backtracking with AC-3
• Backtracking + Forward Checking + Minimum Remaining Values (MRV)
• Backtracking + AC-3 + MRV + LCV

75

Summary: CSPs

• CSPs are a special kind of search problem:
• States are partial assignments
• Goal test defined by constraints

• Basic solution: backtracking search

• Speed-ups:
• Ordering
• Filtering
• (Structure)

76

	Slide 1: Warm-up as You Walk In
	Slide 2: Plan
	Slide 3: Expectimax
	Slide 4: AI: Representation and Problem Solving
	Slide 5: What is Search For?
	Slide 6: Warm-up as You Walk In
	Slide 7: Constraint Satisfaction Problems
	Slide 8: Why study CSPs?
	Slide 9: CSP Examples
	Slide 10: Example: Map Coloring
	Slide 11: Constraint Graphs
	Slide 12: Constraint Graphs
	Slide 13: Varieties of CSPs and Constraints
	Slide 14: Example: N-Queens
	Slide 15: Example: N-Queens
	Slide 16: Example: Sudoku
	Slide 17: Varieties of CSPs
	Slide 18: Varieties of Constraints
	Slide 19: Solving CSPs
	Slide 20: Standard Search Formulation
	Slide 21: Poll 1: Search for CSPs
	Slide 22: Depth First Search
	Slide 23: Demo – Naïve Search
	Slide 24: Backtracking Search
	Slide 25: Backtracking Search
	Slide 26: Backtracking Example
	Slide 27: Backtracking Search
	Slide 28: Backtracking Search
	Slide 29: Backtracking Search
	Slide 30: Backtracking Search
	Slide 31: Backtracking Search
	Slide 32: Backtracking Search
	Slide 33: Demo – Backtracking
	Slide 34: Improving Backtracking
	Slide 35: Filtering
	Slide 36: Filtering: Forward Checking
	Slide 37: Filtering: Forward Checking
	Slide 38: Filtering: Forward Checking
	Slide 39: Filtering: Forward Checking
	Slide 40: Filtering: Forward Checking
	Slide 41: Demo – Backtracking with Forward Checking
	Slide 42: Filtering: Constraint Propagation
	Slide 43: Consistency of A Single Arc
	Slide 44: Consistency of A Single Arc
	Slide 45: How to Enforce Arc Consistency of Entire CSP
	Slide 46: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 47: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 48: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 49: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 50: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 51: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 52: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 53: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 54: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 55: Poll 2: After assigning Q to Green, what gets added to the Queue?
	Slide 56: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 57: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 58: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 59: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 60: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 61: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 62: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 63: Limitations of Arc Consistency
	Slide 64: Backtracking Search with AC-3
	Slide 65: Demo – Backtracking with AC-3
	Slide 66: Complexity of a single run of AC-3
	Slide 67: Complexity of a single run of AC-3
	Slide 68: Complexity of a single run of AC-3
	Slide 69: Complexity of a single run of AC-3
	Slide 70: Ordering
	Slide 71: Ordering: Minimum Remaining Values
	Slide 72: Demo – Coloring with a Complex Graph`
	Slide 73: Ordering: Least Constraining Value
	Slide 74: Ordering: Least Constraining Value
	Slide 75: Demo – Coloring with a Complex Graph
	Slide 76: Summary: CSPs

