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Announcements

o P4 due tonight!
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o One node per random variable
o Directed Acyclic Graph
o One CPT per node: P(node | Parents(node) )

Bayes net

𝐴

𝐵

𝐶

𝐷

Bayesian Networks

𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴  𝑃(𝐵) 𝑃 𝐶 𝐴, 𝐵  𝑃 𝐷 𝐶  

Encode joint distributions as product of conditional 
distributions on each variable

𝑃 𝑋1, … , 𝑋𝑁 = ෑ

𝑖

𝑃 𝑋𝑖  𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) 



o One node per random variable
o Directed-Acyclic-Graph
o One CPT per node: P(node | Parents(node) )

Bayes net

𝐴

𝐵

𝐶

𝐷

Any distribution can be a Bayes net

𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴, 𝐵  𝑃 𝐷 𝐴, 𝐵, 𝐶

Encode joint distributions as product of conditional 
distributions on each variable

𝑃 𝑋1, … , 𝑋𝑁 = ෑ

𝑖

𝑃 𝑋𝑖  𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) 



Joint distribution from Bayes nets
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𝐴

𝐵

𝐶

𝐷

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴, 𝐵  𝑃 𝐷 𝐴, 𝐵, 𝐶

𝐴

𝐵

𝐶

𝐷

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴, 𝐵  𝑃 𝐷 𝐶  

If these encode the same distribution then 
𝑃 𝐷 𝐴, 𝐵, 𝐶  = 𝑃 𝐷 𝐶  



The power of conditional independencies

o For a Bayes net 𝑃 𝑋1, … , 𝑋𝑁 = ς𝑖 𝑃 𝑋𝑖  𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) 

o When |𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑋𝑖 | is small, the conditional probability 
tables are much smaller

oMakes them easier to estimate from data
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Example: Liver Disorders

https://demo.bayesfusion.com/bayesbox.html

https://demo.bayesfusion.com/bayesbox.html


o Two variables X and Y are independent if
                    x,y       P(x, y) = P(x) P(y)

o This says that their joint distribution factors into a product of two 
simpler distributions

o Combine with product rule P(x,y) = P(x|y)P(y) we obtain another 
form:

                x,y P(x | y) = P(x)   or     x,y P(y | x) = P(y)
  
o Example: two dice rolls R1 and R2
P(R1=5, R2=5) = P(R1=5) P(R2=5)  =  1/6 x 1/6  =  1/36

P(R2=5 | R1=5)   =   P(R2=5)

Independence



Example: Independence

o n fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5

P(X1,X2,...,Xn) 

P(Xn) P(X1) P(X2) 

2n 
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Poll 1

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

𝑃 𝑇, 𝑊

𝑃(𝑇)

𝑃(𝑊)

o Are T and W independent?
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Conditional Independence

o Absolute (unconditional) independence very rare

o Conditional independence is our most basic and robust form of 
structural knowledge about uncertain environments.

o X is conditionally independent of Y given Z
      if and only if: 
                x,y,z       P(x | y, z) = P(x | z)

      or, equivalently, if and only if
                x,y,z       P(x, y | z) = P(x | z) P(y | z)
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Conditional independence

o X and Y are independent if 

o P(X, Y) = P(X) P(Y), or

o P(X | Y) = P(X)

o X and Y are conditionally independent given Z if 

o P(X, Y | Z) = P(X | Z) P(Y | Z), or

o P(X | Y, Z) = P(X | Z)
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Conditional independence

o P(Toothache, Cavity, (p)Robe)

o If I have a cavity, the probability that the probe catches in it doesn't 
depend on whether I have a toothache:
o P(+r | +toothache, +cavity) = P(+r | +cavity)

o The same independence holds if I don’t have a cavity:
o P(+r | +toothache, -cavity) = P(+r| -cavity)

o Probe is conditionally independent of Toothache given Cavity:
o P(R | T, C) = P(R | C)
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Conditional independence

Equivalent statements:
▪ P(Toothache | Probe , Cavity) = P(Toothache | Cavity)

▪ P(Toothache, Probe | Cavity) = P(Toothache | Cavity) P(Probe | Cavity)

▪ One can be derived from the other easily
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Independence Rules

▪ Independence

       If A and B are independent, then:

▪ Conditional independence

       If A and B are conditionally

       independent given C, then:

𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝑃(𝐵) 
𝑃 𝐴 ∣ 𝐵 = 𝑃 𝐴  
𝑃 𝐵 ∣ 𝐴 = 𝑃 𝐵  

𝑃 𝐴, 𝐵 ∣ 𝐶 = 𝑃 𝐴 ∣ 𝐶 𝑃(𝐵 ∣ 𝐶) 
𝑃 𝐴 ∣ 𝐵, 𝐶 = 𝑃 𝐴 ∣ 𝐶  
𝑃 𝐵 ∣ 𝐴, 𝐶 = 𝑃 𝐵 ∣ 𝐶  
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Conditional Independence and Bayes Nets

o Fire, Smoke, Alarm

▪ Causal story to create Bayes net

▪ From Bayes Net: P(S, F, A) = P(F) P(S | F) P(A | S)

▪ Joint distribution: P(S, F, A) = P(F) P(S | F) P(A | S, F)
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Conditional Independence and Bayes Nets

o What about this domain:

o Traffic
oUmbrella
o Raining
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Conditional Independence and the Chain Rule

o Chain rule:
  P(x1, x2,…, xn) = 

i
 P(xi | x1,…, xi-1)

o Trivial decomposition:

o   P(Rain, Traffic, Umbrella) =

o With assumption of conditional independence:

o   P(Rain, Traffic, Umbrella) =

o Bayes nets / graphical models help us express             
conditional independence assumptions
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Poll 2

Choose the true statement(s):

(A) If X and Y are conditionally independent given Z, then X 
and Y are independent 

(B) If X and Y are independent, then X and Y are also 
conditionally independent given Z

(C) Neither is true
19



o Let’s build a causal Bayes net!

o Variables
o T: Traffic

o R: It rains

o L: Low pressure

o D: Roof drips

o H: Hockey game

o C: Cavity

Example: Traffic II

20



Example: alarm network

o Variables

o B: Burglary

o A: Alarm goes off

o M: Mary calls

o J: John calls

o E: Earthquake!
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o Joint distribution factorization example

o Generic chain rule
o 𝑃 𝑋1 … 𝑋𝑛 = ς𝑖 𝑃 𝑋𝑖  𝑋1 … 𝑋𝑖−1) 

𝑃 𝐵, 𝐸, 𝐴, 𝐽, 𝑀 = 𝑃 𝐵  𝑃 𝐸 𝐵  𝑃 𝐴 𝐵, 𝐸  𝑃 𝐽 𝐵, 𝐸, 𝐴  𝑃(𝑀|𝐵, 𝐸, 𝐴, 𝐽)

𝑃 𝐵, 𝐸, 𝐴, 𝐽, 𝑀 = 𝑃 𝐵  𝑃 𝐸  𝑃 𝐴 𝐵, 𝐸  𝑃 𝐽 𝐴  𝑃(𝑀|𝐴)

o Bayes nets
o 𝑃 𝑋1 … 𝑋𝑛 = ς𝑖 𝑃 𝑋𝑖  𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) 

Burglary Earthquake

Alarm

John 
calls

Mary 
calls

Analyzing the structure of the alarm network
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Example: Alarm Network

Burglary Earthquake

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99 23



Common Effect

o Chain rule:
  P(x1, x2,…, xn) = 

i
 P(xi | x1,…, xi-1)

o Trivial decomposition:
  P(Rain, Hockey, Traffic) = P(Rain) P(Hockey | Rain) P(Traffic | Rain, Hockey)

o With assumption of conditional independence:

o   P(Rain, Hockey, Traffic) =

o Bayes nets / graphical models help us express             
conditional independence assumptions



Common Effect

o Chain rule:
  P(x1, x2,…, xn) = 

i
 P(xi | x1,…, xi-1)

o Trivial decomposition:
  P(Rain, Hockey, Traffic) = P(Rain) P(Hockey | Rain) P(Traffic | Rain, Hockey)

o With assumption of conditional independence:
 P(Rain, Hockey, Traffic) = P(Rain) P(Hockey) P(Traffic | Rain, Hockey)

o Bayes nets / graphical models help us express             
conditional independence assumptions

𝑅 𝐻

𝑇



o Important local relationships within a Bayes net

Conditional Independence Semantics

𝑅

𝑇 𝑈
𝑆 𝐹 𝐴

𝑅 𝐻

𝑇

Causal Chain Common Cause Common Effect



Poll 3: Conditional independence from Bayes Nets

o Match the product of CPTs to the Bayes net.

o I.

o II.

o III.

𝐴

𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐵

𝐶

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐵 𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴 𝑃 𝐴  𝑃 𝐵  𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐵 𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴𝑃 𝐴  𝑃 𝐵  𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐵𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐵 𝑃 𝐴|𝐵, 𝐶  𝑃 𝐵  𝑃(𝐶) 27



o For the following Bayes nets, write the joint 𝑃(𝐴, 𝐵, 𝐶)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)

Conditional Independence Semantics

𝐴

𝐵 𝐶
𝐴 𝐵 𝐶

𝐴 𝐵

𝐶
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o For the following Bayes nets, we write the joint 𝑃(𝐴, 𝐵, 𝐶)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)

Conditional Independence Semantics

𝐴

𝐵 𝐶
𝐴 𝐵 𝐶

𝐴 𝐵

𝐶

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐵

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐵)
C is independent from A given B

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐴)
C is independent from B given A

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴  𝑃 𝐵  𝑃 𝐶 𝐴, 𝐵

Assumption:
𝑃 𝐵 𝐴 = 𝑃(𝐵)
A is independent from B given { }
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Causal Chains

o This configuration is a “causal chain”

X: Low pressure   Y: Rain              Z: Traffic

Guaranteed X independent of Z ?
No!

▪ One example set of CPTs for which X is 
not independent of Z is sufficient to 
show this independence is not 
guaranteed

▪ Low pressure always causes rain
▪ Rain always causes traffic
▪ High pressure always causes no rain
▪ No rain always causes no traffic

▪ Then:
     P( +z | +x ) = 1 
 P( +z | -x ) = 0
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Causal Chains

o This configuration is a “causal chain” ▪ Guaranteed X independent of Z given Y?

▪ Evidence along the chain “blocks” the 
influence from the beginning to the 
end

Yes!

X: Low pressure          Y: Rain                          Z: Traffic
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Common Cause

o This configuration is a “common cause” ▪ Guaranteed X independent of Z ?  No!

▪ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

▪ Example:

▪ Project due always causes both forums 
busy and lab full; 
not project due always causes both 
forums not busy and lab not full

▪ Then:
         P( +x | +z ) = 1
 P( +x | -z ) = 0

Y: Project 
due

X: Forums 
busy

Z: Lab full
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Common Cause

o This configuration is a “common cause” ▪ Guaranteed X and Z independent given 
Y?

▪ Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy

Z: Lab full

33



Common Effect

o Last configuration: two causes of 
one effect (v-structures)

Z: Alarm

▪ Are X and Y independent?

▪ Yes: burglary and earthquake cause alarm, but 
they are not correlated

▪ Still need to prove they must be (try it!)

▪ Are X and Y independent given Z?

▪ No: observing alarm puts the burglary and the 
earthquake in competition as explanation.

▪ This is backwards from the other cases

▪ Observing an effect activates influence between 

possible causes.  Explaining away effect.

X: Burglary Y: Earthquake

34



Bayes Net Independence
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Answering Independence Questions

▪ Is A independent from E?

▪ Is A independent from E given C?

▪ Is A independent from C given E?

𝐴 𝐵 𝐶 𝐷 𝐸

𝐴 𝐵 𝐶 𝐷 𝐸

𝐴 𝐵 𝐶 𝐷 𝐸



Summary from before
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𝐴 𝐵 𝐶

𝐴

𝐵 𝐶

𝐴 𝐵

𝐶

Causal chain Common cause Common effect 
(v-structure)



Given a Bayes net, which conditional 
independences hold?

o Question: Given a Bayes net, are X and Y conditionally 
independent given some “evidence” variables (E, F, G…)?

o Influence is generally exerted via edges in Bayes net 

o Idea: trace undirected paths from X to Y and see if X and Y 
exert influence on each other via any path

oNo active paths => conditional independence

38



Active and inactive paths

o A path is active if each consecutive triple of nodes on the 
path is active

o If we get inactivity (independence) at any point, the influence of X 
on Y is blocked

o Shaded nodes are evidence (or “given” nodes)

o Causal chain

o Knowing about intermediate node gives independence
39

Active Inactive



Active and inactive paths

o A path is active if each consecutive triple of nodes on the 
path is active

o If we get inactivity (independence) at any point, the influence of X 
on Y is blocked

o Shaded nodes are evidence (or “given” nodes)

o Common cause

o Children are dependent, but become independent when conditioned 
on parent 40

Active Inactive



Active and inactive paths

o A path is active if each consecutive triple of nodes on the 
path is active

o If we get inactivity (independence) at any point, the influence of X 
on Y is blocked

o Shaded nodes are evidence (or “given” nodes)

o Common effect

o Parents were independent, but become dependent if the child is 
known (explaining away effect) 41

Active Inactive



Active and inactive paths

o A path is active if each consecutive triple of nodes on the 
path is active

o If we get inactivity (independence) at any point, the influence of X 
on Y is blocked

o Shaded nodes are evidence (or “given” nodes)

o Common effect

o Explaining away effect also holds if:
some descendant of child is observed! 42

Active Inactive



Summary

o Question: Are X and Y conditionally independent given 
evidence variables {Z}?

o Consider all (undirected) paths from X to Y

o A path is active if each consecutive triple is active:
o Causal chain A → B → C where B is unobserved (either direction)
o Common cause A  B → C where B is unobserved
o Common effect (aka v-structure) A → B  C where B or one of its descendants 

is observed

o No active paths => independence 

43



Important note

o We look at all paths along undirected edges

o But when going down a path and looking at triplets, we 
need to look at the direction of the edges

o Common cause and common effect induce opposite 
phenomena: observing parent causes independence, 
observing child causes dependence 

44



Bayes Ball

o Question: Are X and Y conditionally independent 
given evidence variables {Z}?

 

Thomas Bayes

Shachter, Ross D. "Bayes-Ball: Rational Pastime (for Determining Irrelevance and Requisite 
Information in Belief Networks and Influence Diagrams)." Proceedings of the Fourteenth 
Conference on Uncertainty in Artificial Intelligence. 1998.

Active Paths Inactive Paths

45
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Bayes Ball

o Question: Are X and Y conditionally independent given 
evidence variables {Z}?

1. Shade in Z

2. Drop a ball at X

3. The ball can pass through any active path and is 
blocked by any inactive path (ball can move either 
direction on an edge)

4. If the ball can reach Y, then X and Y are NOT 
conditionally independent given Z

 

Active Paths Inactive Paths



Question

o Is 𝑋1 independent from 𝑋6 given 𝑋2?

48



Question

o Is 𝑋1 independent from 𝑋6 given 𝑋2?

o No, the Bayes ball can travel through 𝑋3 and 𝑋5.

49



Poll 4

o Is 𝑋2 independent from 𝑋3 given 𝑋1 and 𝑋6?
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What if?

o Is 𝑋2 independent from 𝑋3 given 𝑋1 and 𝑋6?

51



Conditional independence semantics

o Every variable is conditionally independent of its non-descendants given its 
parents

X

P2
P1

C2C1

ZW

P3

A

GC2

GP3
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Markov blanket

o Markov blanket of X - subset of variables such that all other 
variables are independent of X conditioned on the blanket
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Markov blanket

o A variable’s Markov blanket consists of parents, children, children’s other parents

o Every variable is conditionally independent of all other variables given its Markov 
blanket

X

P2
P1

C2C1

ZW

P3

A

GC2

GP3

B
C
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Markov blanket
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Summary – things to know

o Answer queries from joint distribution (marginalization, 
conditioning)

o Independence, conditional independence implied by a 
Bayes net 

o “Bayes ball” method

o Reasoning about causal chain, common cause, common effect

56
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