Al: Representation and Problem Solving

Bayes Nets: Independence

Instructors: Tuomas Sandholm and Vincent Conitzer
Slide credits: CMU Al and http://ai.berkeley.edu



Announcements

o P4 due tonight!



Bayesian Networks

o One node per random vari CZX/L%TW/ @ Hoa)= §
o Directed Acyclie-Graph ?Hz Q\A\U P(—A)l‘;’l

o One CPT’per node: P(node | Parents(node) ) e

Bayes net

e )= 3

P(A,B,C,D) = P(A) P(B) P(C|A,B) P(D|C) O

Encode joint distributions as product of conditional
distributions on each variable

P(X{,...,Xy) = HP(Xil Parents(X;))



Any distribution can be a Bayes net

o One node per random variable

o Directed-Acyclic-Graph 4
o One CPT per node: P(node | Parents(node) ) e‘

Bayes net

P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|A,B, C) O

Encode joint distributions as product of conditional
distributions on each variable

P(X{,...,Xy) = HP(Xil Parents(X;))



Joint distribution from Bayes nets

</ o/

P(A) P(B|A) P(C|A,B) P(D|A,B, C) P(A) P(B|A) P(C|A,B) P(D|C)

[f these encode the same distribution then
P(D|AB,C)=P(D|C) 5



The power of conditional independencies

o For a Bayes net P(X4, ..., Xy) = [1; P(X;| Parents(X;))

o When |Parents(X;)| is small, the conditional probability
tables are much smaller

o Makes them easier to estimate from data



Example: Liver Disorders

£ % Toxic hepatilis
¢ Hepalic steatosis )

3 Hepatic fibrosis e S present 9%
present present 421 / absent - absent
absent 90.41 \ o s present 6.41

- absent
Functional
> Chronic hepatitis - Cirrhosis . PBC |~ nyperbiirubinemia
active 1 BN present 7.24
persistent 5.1 - |compensate present 38. " |absent 92 ;
absent &1 | aheent absent 61

https://demo.bayesfusion.com/bayesbox.html



https://demo.bayesfusion.com/bayesbox.html

Independence

o Two variables X and Y are independent if
vxy  P(x,y)=P(x) P(y)

o This says that their joint distribution factors into a product of two
simpler distributions

o Combine with product rule P(x,y) = P(x |y)P(y) we obtain another
form:

Vx,y P(x | yy=P(x) or VxyP(ylx)=P(y)

o Example: two dice rolls R, and R,
P(R,=5, R,=5) = P(R;=5) P(R,=5) = 1/6 x1/6 = 1/36

P(R,=5 | R,=5) = P(R,=5)



Example: Independence

o n fair, independent coin flips:

PX) P(X3) P(X,)
H 0.5 H 0.5 L. H 0.5
T 0.5 T 0.5 T 0.5
N 7
—

P(X, X, ..., X.)

-

21




Poll 1

o Are T and W independent?

P(T,W)

T W P
hot sun 0.4
hot rain | 0.1
cold sun 0.2
cold rain | 0.3

P(T)

T P
hot 0.5
cold 0.5
P(W)
W P
sun 0.6

rain 0.4

? (‘\\J(/ /LLV\W: RAT
?(4&& %?(Suus = B

.

10



Conditional Independence

o Absolute (unconditional) independence very rare

o Conditional independence is our most basic and robust form of
structural knowledge about uncertain environments.

o X is conditionally independent of Y given Z V
it and only if:
vx,y,z P(x |y, z)=P(x | z) ‘

or, equivalently, if and only if
vx,yz Px,ylz)=Px|2z)P(y | z)

11



Conditional independence

o X and Y are independent if
o P(X, Y) = P(X) P(Y), or
o P(X | Y) =P(X)

o X and Y are conditionally independent given Z if
oPX,Y | Z)=P(X | Z)P(Y | Z), or
oP(X 1Y, Z)=P(X | Z)

12



Conditional independence

o P(Toothache, Cavity, (p)Robe)

o If I have a cavity, the Erobability that the probe catches in it doesn't
depend on whether I have a toothache:

o P(+r | +toothache, +cavity) = P(+r | +cavity)

o The same independence holds if I don’t have a cavity: /
o P(+r | +toothache, -cavity) = P(+r| -cavity) /R iLT C v

o Probe is conditionally independent of Toothache given Cavity: RuyT K
o PRIT,C)=PR I C)

13



Conditional independence

Equivalent statements:
= P(Toothache | Probe , Cavity) = P(Toothache | Cavity) {—

» P(Toothache, Probe | Cavity) =[P(Toothache | Cavity) P(Probe | Cavity)
/P(/C’R}c :?(/E }CJ P@ég% /DCT )f/()

= One can be derived from the other easily

14



Independence Rules

= Independence

If A and B are independent, then:

= (Conditional independence

P(A,B) = P(A)P(B)

P(A | B) = P(4)

P(B | A) = P(B)

P(A,B|C)=P(A

If A and B are conditionally P(A | B,C) = P(4

independent given C, then:

P(B|A,C) = P(B

15

C)P(B | C)
C)
C)



Conditional Independence and Bayes Nets

o Fire, Smoke, Alarm

= (Causal story to create Bayes nft E

= From Bayes Net: P(S, F, A)=P(F) P(S| F) P(A | S)

= Joint distribution: P(S, F, A) = P(F) P(S | F)P(A | S, F)

16



Conditional Independence and Bayes Nets

o What about this domain:

o Traffic 1

o Umbrella B/




Conditional Independence and the Chain Rule

o Chain rule:
P(xy, xg,..p x,) = 1L P(x; | xy,000, X4)

o Trivial decomposition:

o P(Rain, Traffic, Umbrella) =

o With assumption of conditional independence: »
o P(Rain, Traffic, Umbrella) = ?(Q P (VK Q\ (T

o Bayes nets / graphical models help us express

conditional independence assumptions N



Poll 2

Choose the true statement(s):

(A) It X and Y are conditionally indepenc
and Y are independent

(B) If X and Y are independent, then X and
conditionally independent given Z

(C) Neither is true

19



Example: Trattic II

o Let’s build a causal Bayes net! . .
o Variables ifwxf ’/\{:T\;@ J
o T: Traffic i [ / /] | LI / /| iy

i I Iy | I.'I. I_' P01 m—-—- rrrrr
o R: It rains / Yoaal I d
o L: Low pressure ' ISNniagiEmy”

o D: Roof drips
o H: Hockey game
o C: Cavity

20



Example: alarm network

o Variables

o B: Burglary

L]
—
—

—

iy

o A: Alarm goes off
o M: Mary calls

o J: John calls

o E: Earthquake!

3 & 21



Analyzing the structure of the alarm network

o Joint distribution factorization example

o Generic chain rule

Burglary

P(B,E,A,J,M) = P(B) P(E|B) P(A|B,E) P(JIB,E,A) P(M|B,E,A,])

Earthquake

P(B,E, A ],M) = P(B) P(E) P(A|B,E) P(J|A) P(M|A)

o Bayes nets
o P(X; ..X,) =11; P(X;| Parents(X;))

22



Example: Alarm Network

Burglary

Earthquake

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a -j 0.1
-a +j 0.05
-a -] 0.95

A M | P(M|A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

Ny
E | P(E) wi =

+e | 0.002 =

-e | 0.998 |

B | E| A | PA|B,E)

+b | +e | +a 0.95

+b | +e | -a 0.05

+b | -e | +a 0.94

+b | -e -a 0.06

-b | +e | +a 0.29

-b | +e | -a 0.71

-b -e | +a 0.001

-b -e -a 0.999 73




Common Effect

o Chain rule:
P(X]_) XZI"'I Xn) - HI P(Xi | Xl""' Xi-l)

o Trivial decomposition:
P(Rain, Hockey, Traffic) = P(Rain) P(Hockey | I?JQ) P(Traffic | Rain, Hockey)

o With assumption of conditional independence: @ H
o P(Rain, Hockey, Traffic) =

o Bayes nets / graphical models help us express @
conditional independence assumptions



Common Effect

o Chain rule: @ @

P(x1, Xgpeees X)) = L1 POXG | X000y X14) T

o Trivial decomposition:
P(Rain, Hockey, Traffic) = P(Rain) P(Hockey | Rain) P(Traffic | Rain, Hockey)

o With assumption of conditional independence:
P(Rain, Hockey, Traffic) = P(Rain) P(Hockey) P(Traffic | Rain, Hockey)

o Bayes nets / graphical models help us express
conditional independence assumptions



Conditional Independence Semantics

o Important local relationships within a Bayes net

Causal Chain Common Cause Common Effect




Poll 3: Conditional independence from Bayes Nets

o Match the product of CPTs to the Bayes net.

(4) W &
OO (C
ol. P(4)P(B|A) P(C|B) P(A) P(B|A) P(C|A) P(A) P(B) P(C|A,B)
o II. P(A) P(B) P(C|A,B) P(A) P(B|A) P(C|B) P(A) P(B|A) P(C|A)

o II1. P(4) P(B|A) P(C|B) P(A|B,C) P(B) P(C) P(A) P(BIA) P(C|B) 2



Conditional Independence Semantics

o For the following Bayes nets, write the joint P(4, B, C)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)

(3 OO
(D—B—©) oIRG o

28



Conditional Independence Semantics

o For the following Bayes nets, we write the joint P(4, B, C)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)

P(A) P(B|A) P(C|A, B)
P(A) P(B|A) P(C|B)
Assumption:

P(C|A,B) = P(C|B)

C is independent from A given B

P(A) P(B|A) P(C|A, B) P(A) P(B|A) P(C|A, B)
P(A) P(B|A) P(C|A) P(A) P(B) P(C|A,B)
Assumption: Assumption:
P(C|A,B) = P(C|A) P(B|A) = P(B)

Cis independent from B given A A is independent from B given { }
29



Causal Chains

: : L« . » Guaranteed X independent of Z ?
o This configuration is a “causal chain No!

~~" = One example set of CPTs for which X is
L& Il / / ig! not independent of Z is sufficient to
) / / show this independence is not
guaranteed

R

SDST A 6

X: Low pressure Y: Rain Z: Traffic

= Low pressure always causes rain

= Rain always causes traffic

= High pressure always causes no rain
= No rain always causes no traffic

P(z,y,z) = P(x)P(y|lz)P(z|y) * Then:
P(+z | +x) =1
P(+z | x)=0

30



Causal Chains

o This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

Lo=a £ YAy _ P(z,y,2)
[:) i Y J P(z|lz,y) = P(ﬁy)

b@w _ P(2)P(ylz)P(z|y)

P(z)P(y|z)
X: Low pressure Y: Rain Z: Traffic — P(Z|y)

R

Yes!

= Evidence along the chain “blocks” the
inféuence from the beginning to the
en 31

P(z,y,z) = P(z)P(y|lz)P(z|y)



Common Cause

o This configuration is a “common cause” = Guaranteed X independent of Z? No!

Y- Proiect Proiect = One example set of CPTs for which X is not
dro]ec Due! independent of Z 1s sufficient to show this
ue independence’is not guaranteed.

= Example:

= Project due always causes both forums
busy and lab full;
not project due always causes both
forums not busy and lab not full

= Then:
P(+x | +z)=1
P(+x 1 -z)=0

X: Forums

Z: Lab full
busy

P(z,y,z) = P(y)P(z|y) P(z|y)

32



Common Cause

o This configuration is a “common cause” = Guaranteed X and Z independent given

Y?
Y: Project Praject P
due Due P(Z’Q’,‘,y) _ (ZC,y,Z)
P(z,y)
_ PQ)P(zy) P(z]y)
P(y)P(zly)
= P(z|y)
X: Forums .
busy Z: Lab full Yos!
P(x,y,z) = P(y)P(x|y)P(z|y) = Observing the cause blocks influence

between effects. 33



o Last configuration: two causes of

one effect (v-structures)

X: Burglary Y: Earthquake

Z: Alarm

Common Effect

= Are X and Y independent?

= Yes: burglary and earthquake cause alarm, but
they are not correlated

= Still need to prove they must be (try it!)

= Are X and Y independent given Z?

= No: observing alarm puts the burglary and the
earthquake in competition as explanation.

= This is backwards from the other cases

= Observing an effect activates influence between

possible causes. Explaining away effect.
34



Bayes Net Independence




Answering Independence Questions

" |sAindependent from E?

O—E—0—0—®

" |s Aindependent from E given C?

O—E—O0—0—®

" |s Aindependent from C given E?

O—E—0—0—®



Summary from before

Common effect

Causal chain Common cause
(v-structure)
(4) OO
P > B © ()
o N
O \5

5 @\wﬂ%f—r 7

c

37



Given a Bayes net, which conditional
independences hold?

o Question: Given a Bayes net, are X and Y conditionally
independent given some “evidence” variables (E, F, G...)?

o Influence is generally exerted via edges in Bayes net

o Idea: trace undirected paths from X to Y and see if X and Y
exert influence on each other via any path

o No active paths => conditional independence

38



Active and inactive paths

o A path is active if each consecutive triple of nodes on the
path is active

o If we get inactivity (independence) at any point, the influence of X
on Y is blocked

o Shaded nodes are evidence (or “given” nodes)
o Causal chain i —O—_ 0O

Active Inactive

o Knowing about intermediate node gives independence
39



Active and inactive paths

o A path is active if each consecutive triple of nodes on the
path is active

o If we get inactivity (independence) at any point, the influence of X
on Y is blocked

o Shaded nodes are evidence (or “given” nodes)
o Common cause

Active Inactive

o Children are dependent, but become independent when conditioned
on parent ?



Active and inactive paths

o A path is active if each consecutive triple of nodes on the
path is active

o If we get inactivity (independence) at any point, the influence of X
on Y is blocked

o Shaded nodes are evidence (or “given” nodes)

“'..‘ “'..‘ “'..‘ “'..‘

D D D D

: - . s F .

. G . G . g . g

Yeus® Yeus® Yeus® Yeus®
A t . I t .

o Parents were independent, but become dependent if the child is
known (explaining away effect) B

o Common effect



Active and inactive paths

o A path is active if each consecutive triple of nodes on the
path is active

o If we get inactivity (independence) at any point, the influence of X
on Y is blocked

o Shaded nodes are evidence (or “given’ nodes)

o Common effect \g \g

o Explaining away effect also holds if: ~ Active [nactive
some descendant of child is observed!  *



Summary

o Question: Are X and Y conditionally independent given
evidence variables {Z}?

o Consider all (undirected) paths from X to Y

o A path is active if each consecutive triple is active:

o Causal chain A — B — C where B is unobserved (either direction)
o Common cause A < B — C where B is unobserved

o Common effect (aka v-structure) A — B «— C where B or one of its descendants
is observed

o No active paths => independence

43



Important note

o We look at all paths along undirected edges

o But when going down a path and looking at triplets, we
need to look at the direction of the edges

o Common cause and common effect induce opposite
phenomena: observing parent causes independence,
observing child causes dependence

44



Bayes Ball

o Question: Are X and Y conditionally independent  Active Paths Inactive Paths

given evidence variables {Z}? :

’.
-
“

Shachter, Ross D. "Bayes-Ball: Rational Pastime (for Determining Irrelevance and Requisite
Information in Belief Networks and Influence Diagrams)." Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence. 1998. 45


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Bayes Ball

o Question: Are X and Y conditionally independent given  Active Paths Inactive Paths
evidence variables {Z}?

Shade inZ
Drop a ball at X

The ball can pass through any active path and is
blocked by any inactive path (ball can move either
direction on an edge)

4. If the ball canreach Y, then Xand Y are NOT
conditionally independent given Z

- - - -
SAnReS BAnReS SAnReS o
o . '] . ~ . ~ .
. . . . . . . .
. '. . L . '. . '.

3 - - 3 3

Yup * Yppt 4y ‘g L ey *
: : - it

.‘ .‘ .‘ .‘ “ » .‘ .‘
o . '] . ~ . ~ .
. . . . . . . .
. '. . L . '. . '.

v
Yennt Yennt Yennt Yennt
- - - -

SAnReS BAnReS SAnReS o
o . '] . ~ . ~ .
. . . . . . . .
. '. . L . '. . '.

v
Yenst ’0:.o ’n..g '.j“
: -

.‘ .‘ .‘ .‘ “ » .‘ .‘
o . '] . ~ . ~ .
. . . . . . . .
. '. . L . '. . '.

3 - - 3 3

LS d Yant LS d LS d



Question

o Is X1 independent from Xg given X,?

X4

X




Question

o Is X1 independent from Xg given X,?

o No, the Bayes ball can travel through X3 and Xs.
Xy

X

X

\,/

@

X3 X 49




Poll 4

o Is X; independent from X3 given X; and Xg?




What if?

o Is X; independent from X3 given X; and Xg?

X4




Conditional independence semantics

o Every variable is conditionally independent of its non-descendants given its

parents @
OF



Markov blanket

o Markov blanket of X - subset of variables such that all other
variables are independent of X conditioned on the blanket

53



Markov blanket

o A variable’s Markov blanket consists of parents, children, children’s other parents
o Every variable is conditionally independent of all other variables given its Markov

blanket @

54



Markov blanket

55



Summary — things to know

o Answer queries from joint distribution (marginalization,
conditioning)

o Independence, conditional independence implied by a
Bayes net

o “Bayes ball” method

o Reasoning about causal chain, common cause, common effect

56
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