

Warm-up as you walk in

Given these $N=10$ observations of the world:

What is the approximate value for $P(-c | -a, +b)$?

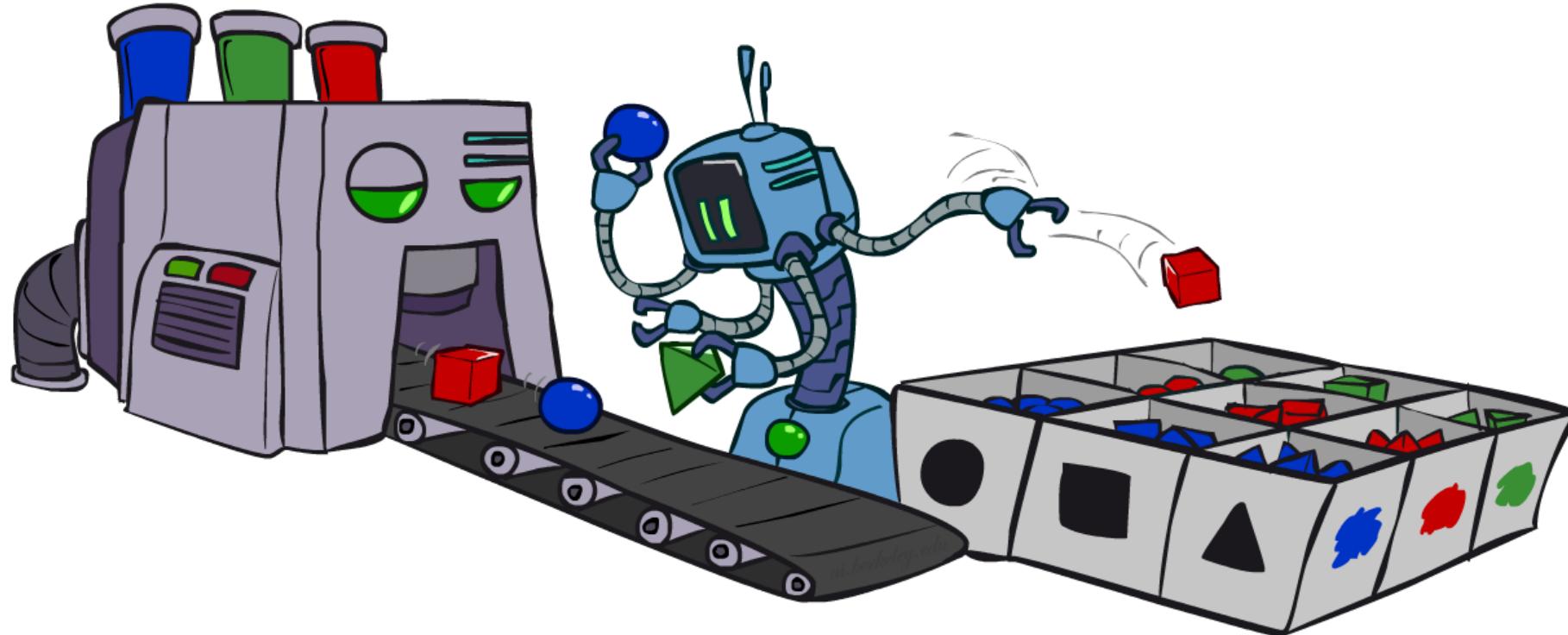
- A. 1/10
- B. 5/10
- C. 1/4
- D. 1/5
- E. I'm not sure

$-a, -b, +c$
 $+a, -b, +c$
 $-a, -b, +c$
 $-a, +b, +c$
 $+a, -b, +c$
 $-a, +b, -c$
 $-a, +b, +c$
 $-a, +b, +c$
 $+a, -b, +c$
 $-a, +b, +c$

Counts			
+a	+b	+c	0
+a	+b	-c	0
+a	-b	+c	3
+a	-b	-c	0
-a	+b	+c	4
-a	+b	-c	1
-a	-b	+c	2
-a	-b	-c	0

AI: Representation and Problem Solving

Bayes Nets Sampling



Instructors: Tuomas Sandholm and Vincent Conitzer

Slide credits: CMU AI and <http://ai.berkeley.edu>

Announcements

- HW9 due April 11 (Friday)

Bayes Nets

- ✓ Part I: Representation
- ✓ Part II: Exact inference
 - ✓ Enumeration (always exponential complexity)
 - ✓ Variable elimination (worst-case exponential complexity, often better)
 - ✓ Inference is NP-hard in general

Part III: Approximate Inference

Inference vs Sampling

Inference: answering queries given evidence $P(Q | E)$

Given the CPT, compute the joint and answer queries, or run variable elimination

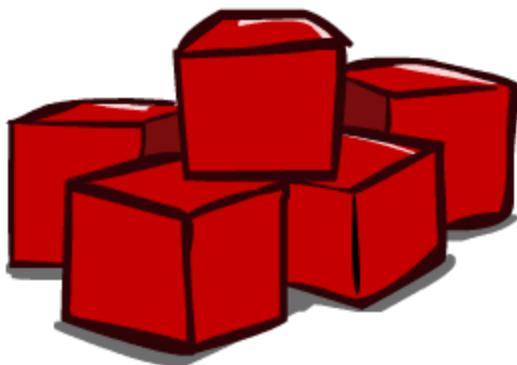
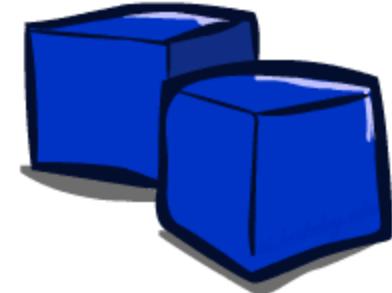
Sampling: Get samples from $P(Q|E)$ from the world characterized by the CPT

Think of sampling as repeated simulation like predicting the weather, basketball games etc.

Sampling vs inference

- Getting a sample from $P(Q|E)$ is much faster than actually computing the entire $P(Q|E)$ table
- Game plan today:
 - Talk about how to sample from $P(Q|E)$
 - How to estimate $P(Q|E)$ from samples

Approximate Inference: Sampling



Warm-up

Given these $N=10$ observations of the world:

What is the approximate value for
 $P(-c | -a, +b)$?

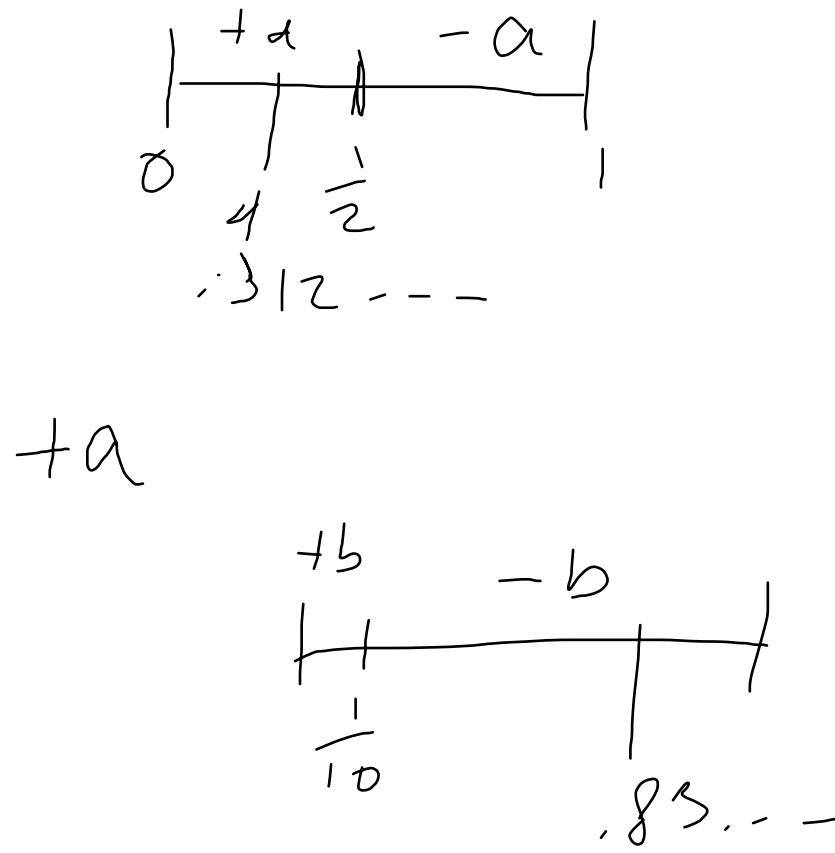
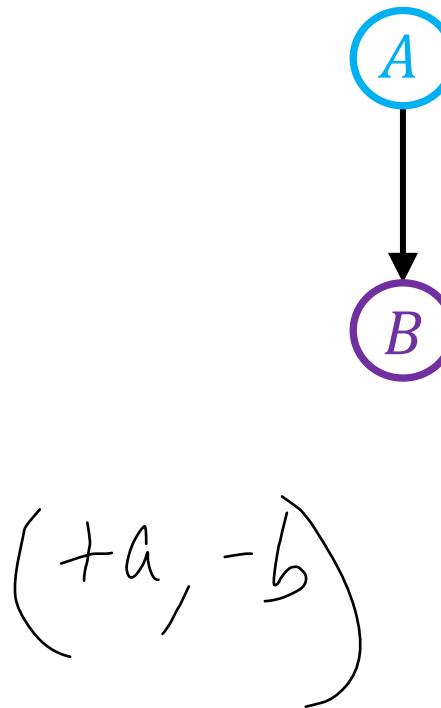
- A. $1/10$
- B. $5/10$
- C. $1/4$
- D. $1/5$**
- E. I'm not sure

$-a, -b, +c$
 $+a, -b, +c$
 $-a, -b, +c$
 $-a, +b, +c$
 $+a, -b, +c$
 $-a, +b, -c$
 $-a, +b, +c$
 $-a, +b, +c$
 $+a, -b, +c$
 $-a, +b, +c$

			Counts
+a	+b	+c	0
+a	+b	-c	0
+a	-b	+c	3
+a	-b	-c	0
-a	+b	+c	4
-a	+b	-c	1
-a	-b	+c	2
-a	-b	-c	0

Sampling

- How would you sample from a Bayes net?



$P(A)$

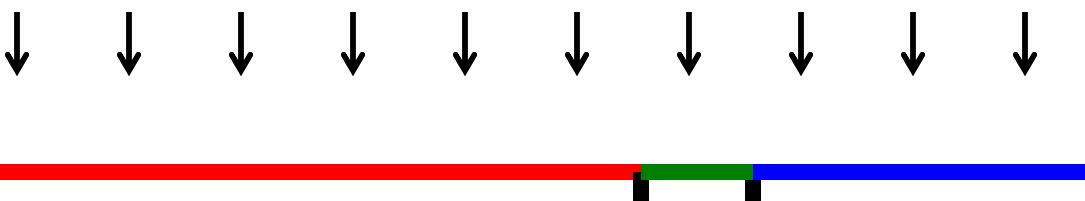
+a	1/2
-a	1/2

$P(B|A)$

+a	+b	1/10
	-b	9/10
-a	+b	1/2
	-b	1/2

Sampling

- Sampling from given distribution
 - Step 1: Get sample u from uniform distribution over $[0, 1]$
 - e.g. `random()` in python
 - Step 2: Convert this sample u into an outcome for the given distribution by having each outcome associated with a sub-interval of $[0,1]$ with sub-interval size equal to probability of the outcome

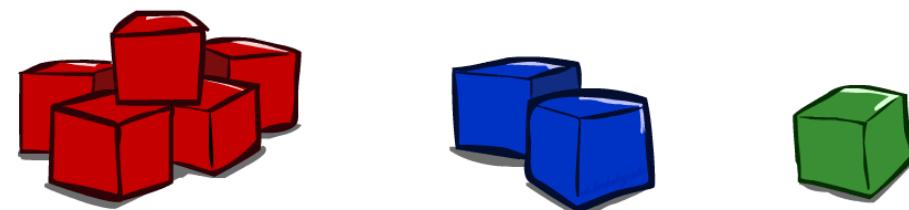


Example

C	P(C)
red	0.6
green	0.1
blue	0.3

- $0 \leq u < 0.6, \rightarrow C = \text{red}$
- $0.6 \leq u < 0.7, \rightarrow C = \text{green}$
- $0.7 \leq u < 1, \rightarrow C = \text{blue}$

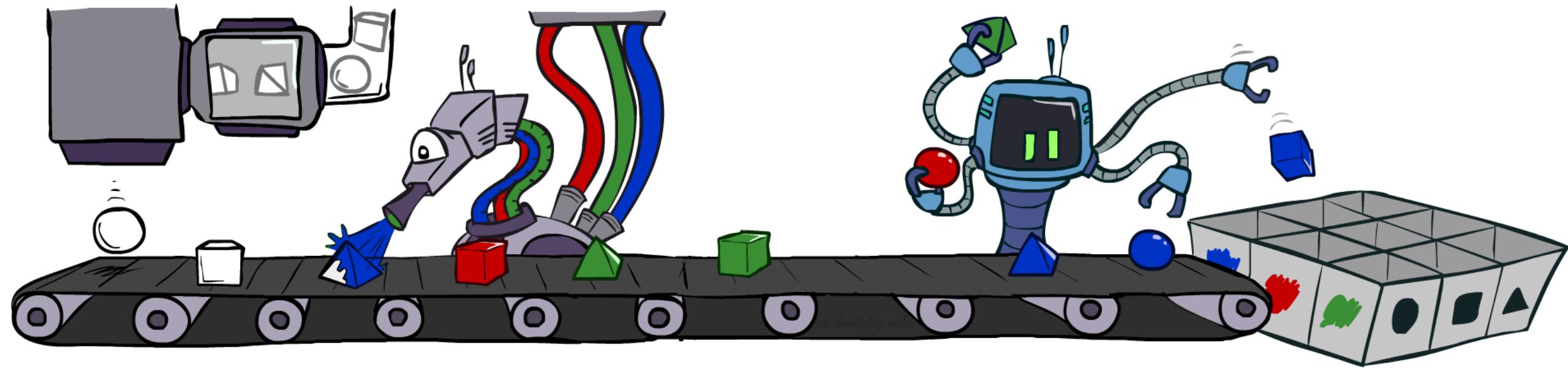
- If `random()` returns $u = 0.83$, then our sample is $C = \text{blue}$
- E.g, after sampling 8 times:



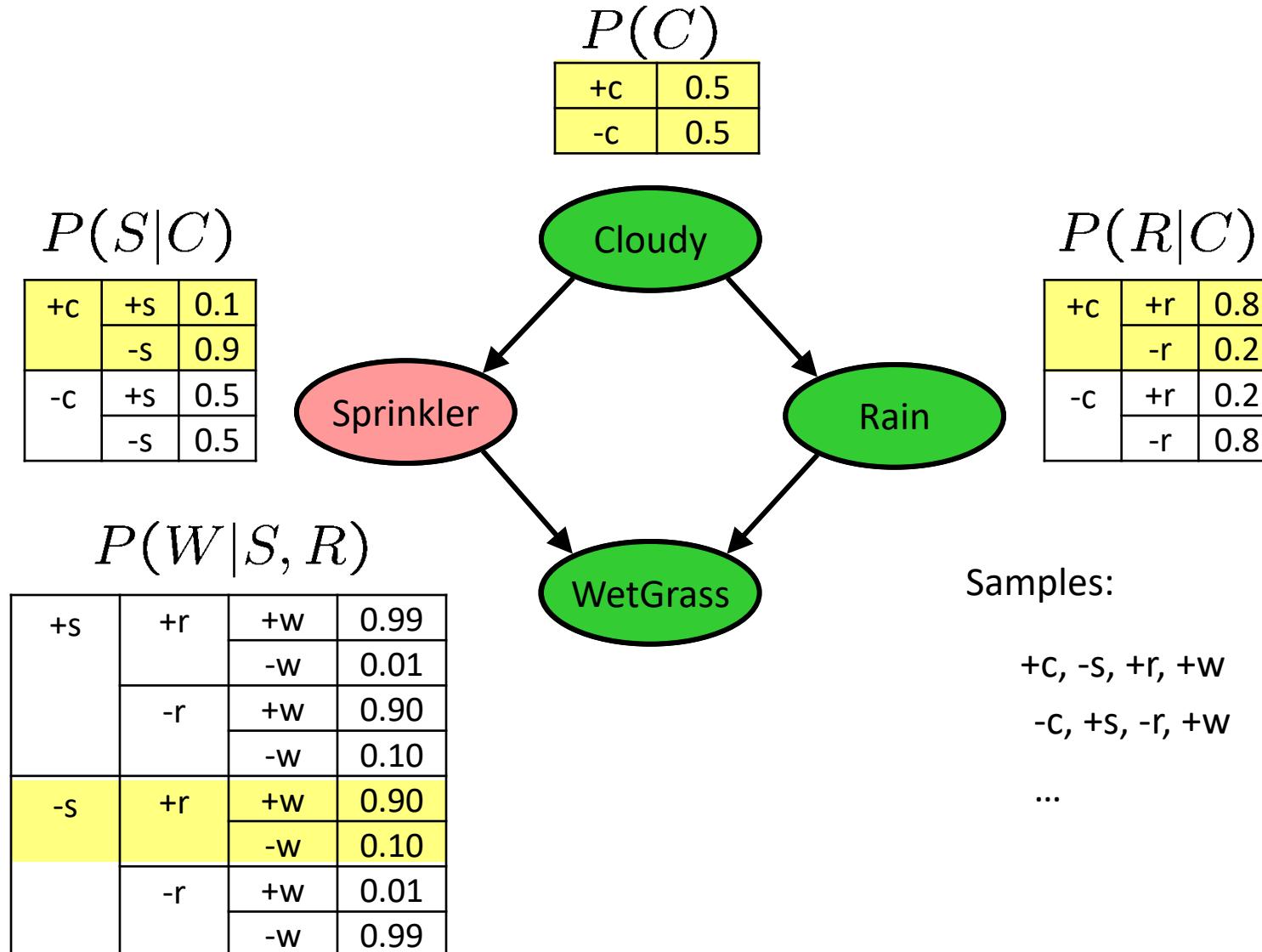
Sampling in Bayes' Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

Prior Sampling



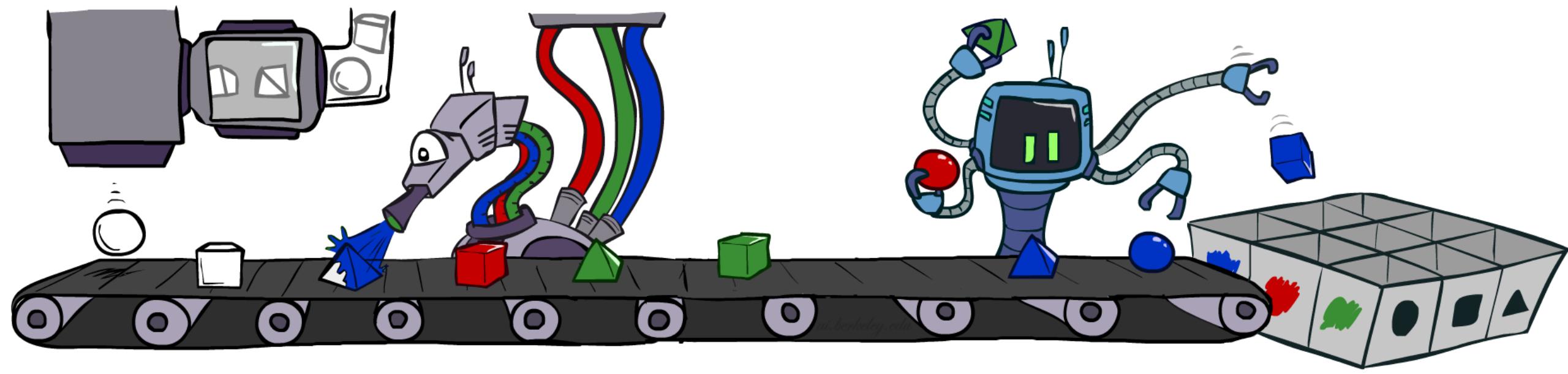
Prior Sampling



Prior Sampling

One sample

- For $i=1, 2, \dots, n$
 - Sample x_i from $P(X_i \mid \text{Parents}(X_i))$
 - Return (x_1, x_2, \dots, x_n)



Poll 1

Prior Sampling: What does the value $\frac{N(+a, -b, +c)}{N}$ approximate?

- A. $P(+a, -b, +c)$
- B. $P(+c | +a, -b)$
- C. $P(+c | -b)$
- D. $P(+c)$
- E. I don't know

Poll 2

How many $\{-a, +b, -c\}$ samples out of $N=1000$ should we expect?

- A. 1
- B. 50
- C. 125
- D. 200
- E. I have no idea

$$P(-a) \cdot P(+b | -a) \cdot P(-c | +b)$$

$$= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{5} = \frac{1}{20}$$

$$\frac{1}{20} \cdot 1000 = 50$$

$P(A)$

+a	1/2
-a	1/2

$P(B|A)$

+a	+b	1/10
-a	-b	9/10
-a	+b	1/2
-b	-b	1/2

$P(C|B)$

+b	+c	4/5
-b	-c	1/5
-b	+c	1
-c	-c	0

Probability of a sample

Given this Bayes Net & CPT,
what is $P(+a, +b, +c)$?

Algorithm: Multiply probability
of each node given parents:

- $w = 1.0$
- for $i=1, 2, \dots, n$
 - Set $w = w * P(x_i \mid \text{Parents}(X_i))$
- return w

$P(A)$

+a	1/2
-a	1/2

$P(B|A)$

+a	+b	1/10
	-b	9/10
-a	+b	1/2
	-b	1/2

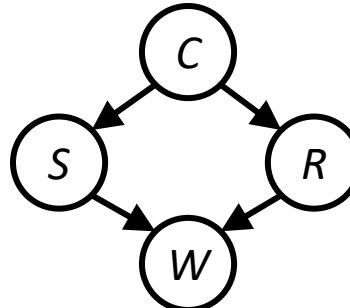
$P(C|B)$

+b	+c	4/5
	-c	1/5
-b	+c	1
	-c	0

Example

- We'll get a bunch of samples from the BN:

$+c, -s, +r, +w$
 $+c, +s, +r, +w$
 $-c, +s, +r, -w$
 $+c, -s, +r, +w$
 $-c, -s, -r, +w$

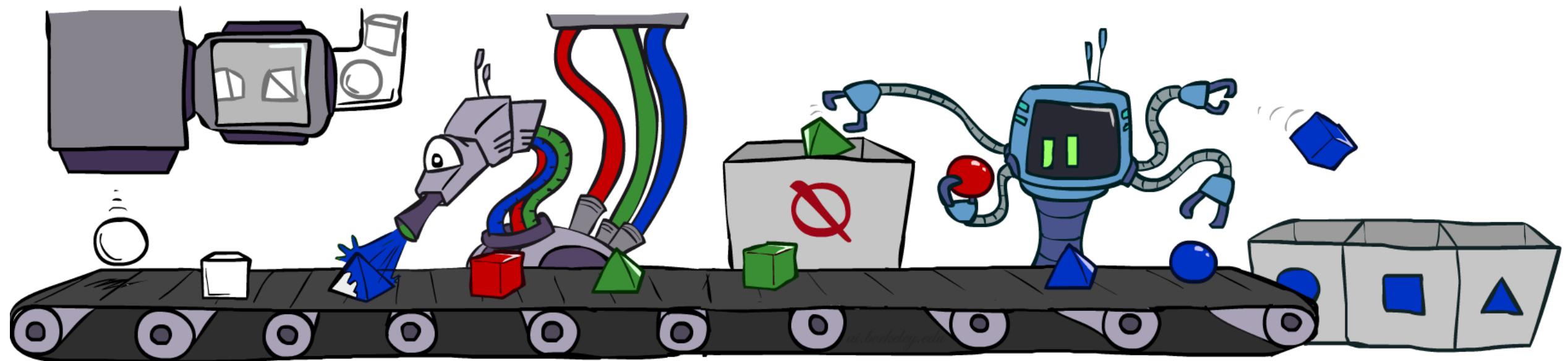


- If we want to know $P(W)$

- We have counts $\langle +w:4, -w:1 \rangle$
- Normalize to get $P(W) = \langle +w:0.8, -w:0.2 \rangle$
- This will get closer to the true distribution with more samples
- Can estimate anything else, too
- What about $P(C|+w)$? $P(C|+r, +w)$? $P(C|-r, -w)$?
- Fast: can use fewer samples if less time (what's the drawback?)

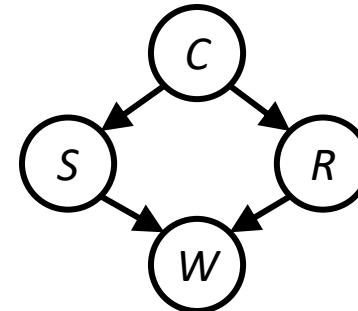
$$P(+c|+w) = \frac{P(+c, +w)}{P(+w)}$$

Rejection Sampling



Rejection Sampling

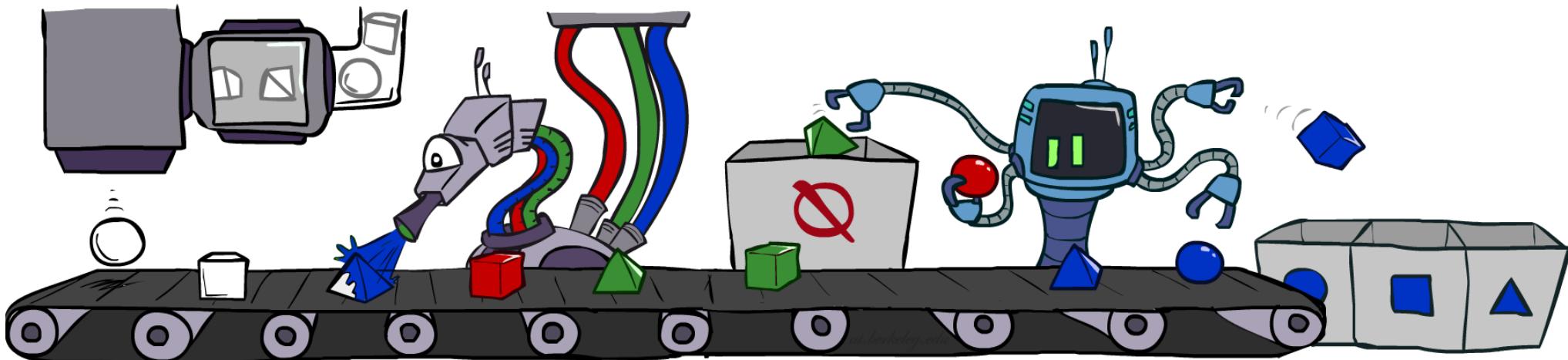
- Let's say we want $P(C)$
 - No point keeping all samples around
 - Just tally counts of C as we go
- Let's say we want $P(C \mid +s)$
 - Same thing: tally C outcomes, but ignore (reject) samples which don't have $S=+s$
 - This is called **rejection sampling**
 - It is also consistent for conditional probabilities (i.e., correct in the limit)



$+c, -s, +r, +w$
 $+c, +s, +r, +w$
 $-c, +s, +r, -w$
 $+c, -s, +r, +w$
 $-c, -s, -r, +w$

Rejection Sampling

- IN: evidence instantiation
- For $i=1, 2, \dots, n$
 - Sample x_i from $P(X_i \mid \text{Parents}(X_i))$
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle
 - Return (x_1, x_2, \dots, x_n)



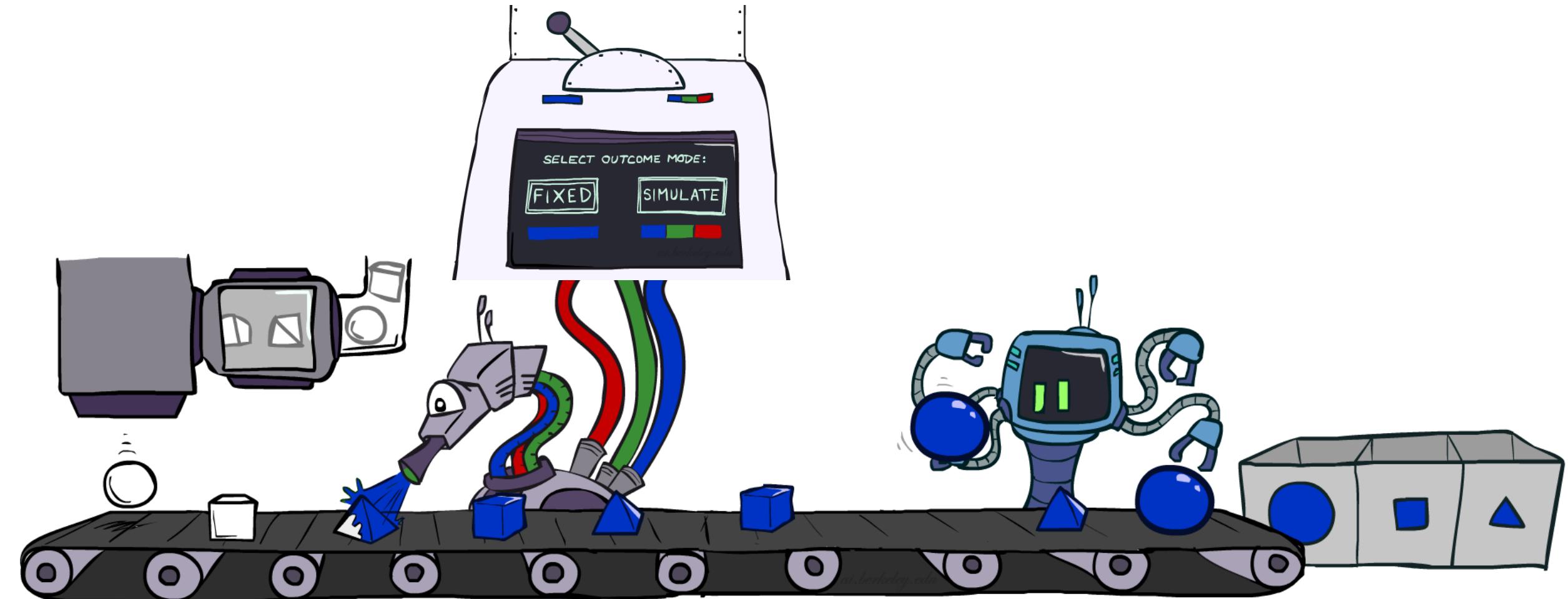
Poll 3

What queries can we (approximately) answer with rejection sampling samples (evidence: $+c$)?

- A. $P(+a, -b, +c)$
- B. $P(+a, -b | +c)$
- C. Both
- D. Neither
- E. I have no idea

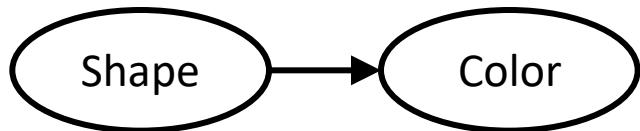
Counts $N(A, B, C)$			
+a	+b	+c	4
+a	+b	-c	
+a	-b	+c	3
+a	-b	-c	
-a	+b	+c	2
-a	+b	-c	
-a	-b	+c	1
-a	-b	-c	

Likelihood Weighting

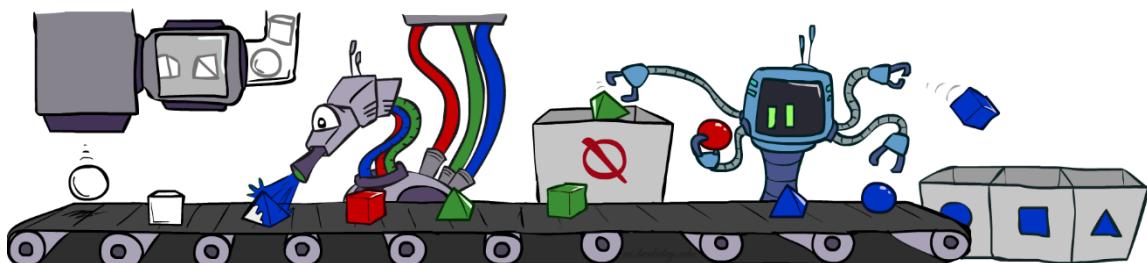


Likelihood Weighting

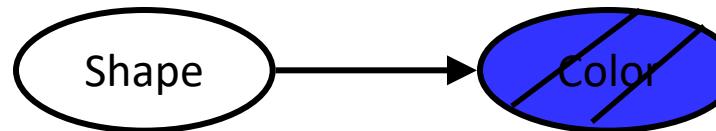
- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider $P(\text{Shape} \mid \text{blue})$



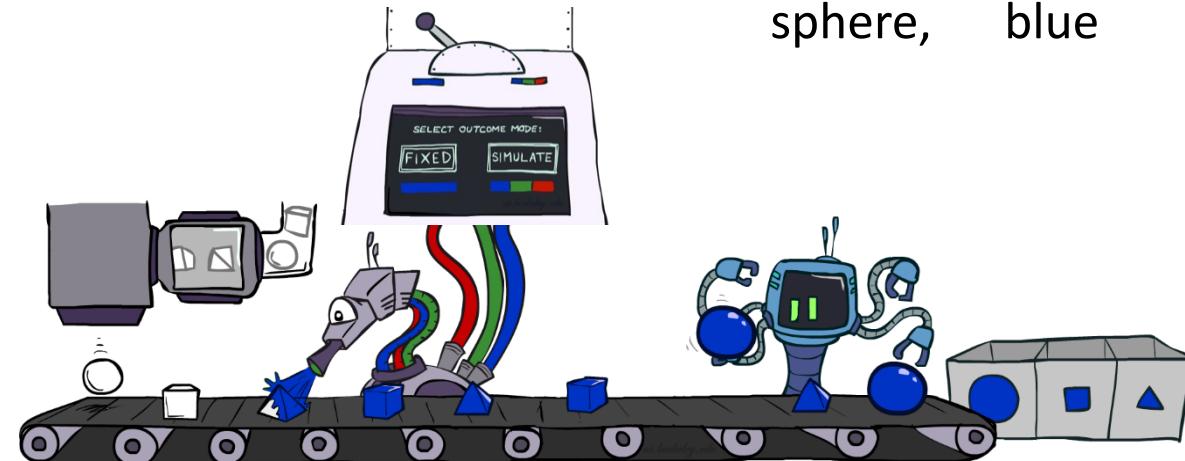
pyramid, green
pyramid, red
sphere, blue
cube, red
sphere, green



- Idea: fix evidence variables and sample the rest
 - Problem: sample distribution not consistent!
 - Solution: weight by probability of evidence given parents

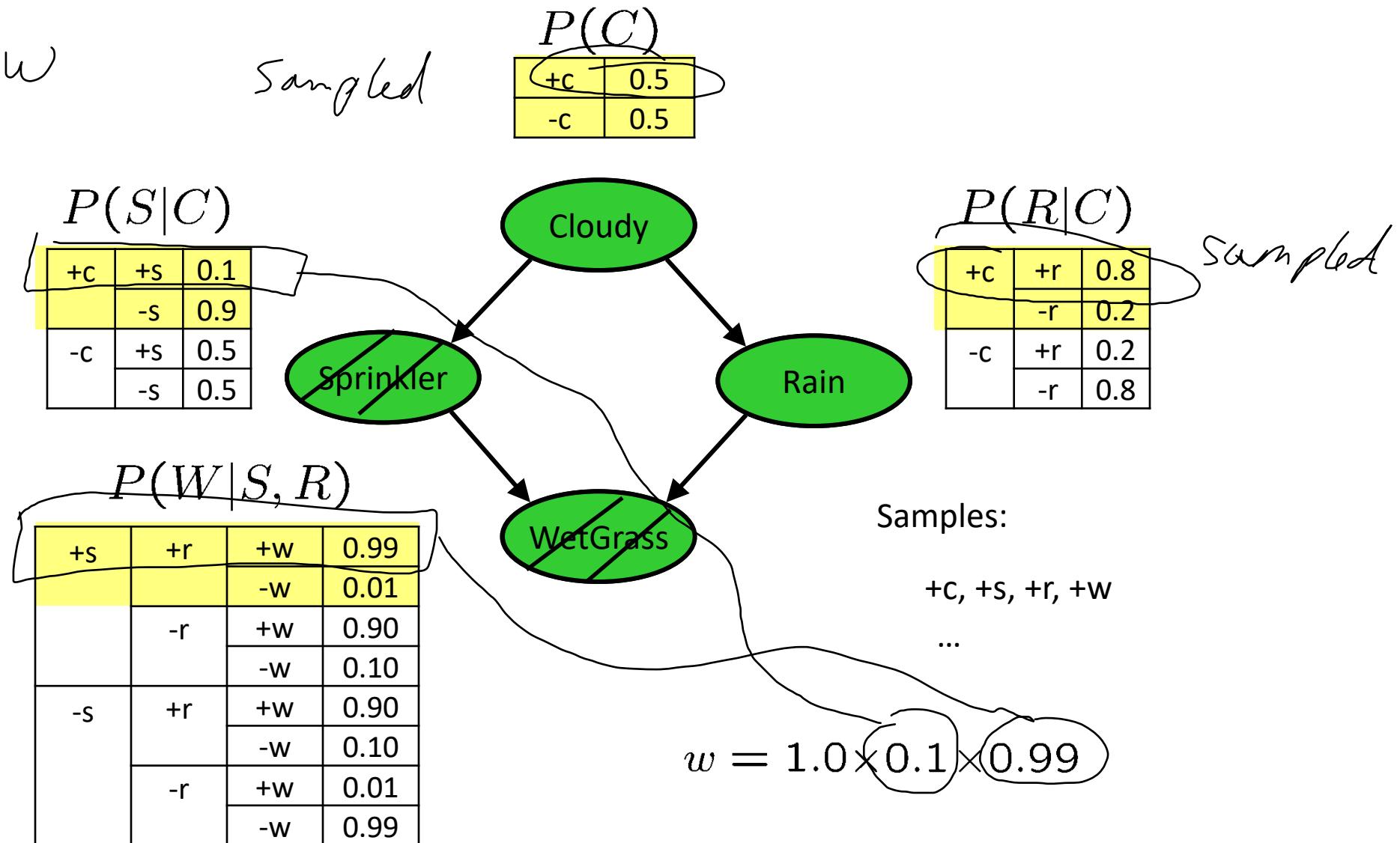


pyramid, blue
pyramid, blue
sphere, blue
cube, blue
sphere, blue



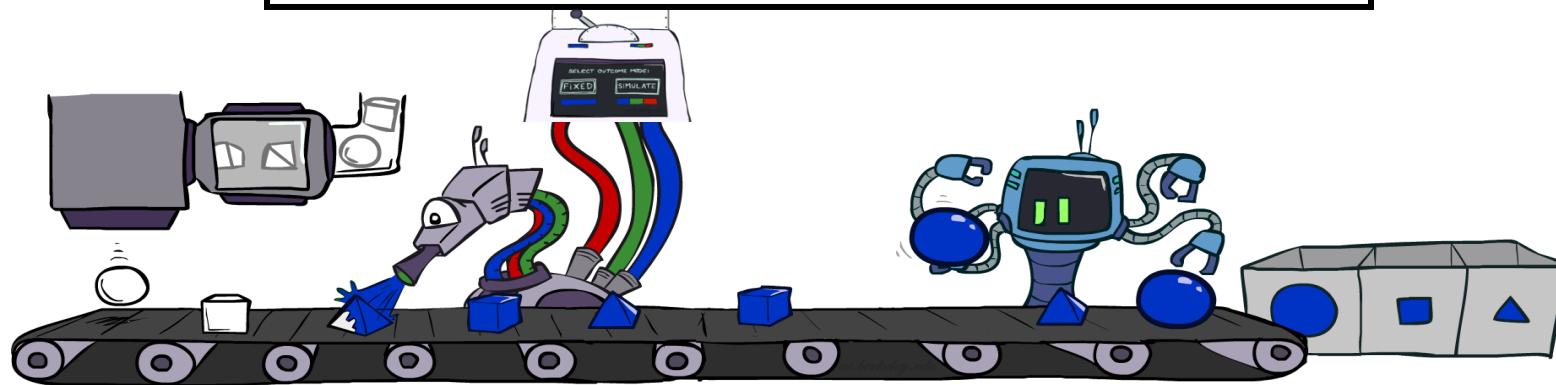
Likelihood Weighting

Given : +S, +W



Likelihood Weighting

- IN: evidence instantiation
- $w = 1.0$
- for $i=1, 2, \dots, n$
 - if X_i is an evidence variable
 - $X_i = \text{observation } x_i \text{ for } X_i$
 - Set $w = w * P(x_i | \text{Parents}(X_i))$
 - else
 - Sample x_i from $P(X_i | \text{Parents}(X_i))$
- return $(x_1, x_2, \dots, x_n), w$



Likelihood Weighting

No nodes in evidence:
Prior Sampling

Input: no evidence

for $i=1, 2, \dots, n$
▪ Sample x_i from $P(X_i \mid \text{Parents}(X_i))$
return (x_1, x_2, \dots, x_n)

Some nodes in evidence:
Likelihood Weighted Sampling

Input: evidence instantiation

$w = 1.0$
for $i=1, 2, \dots, n$
if X_i is an evidence variable
▪ $X_i =$ observation x_i for X_i
▪ Set $w = w * P(x_i \mid \text{Parents}(X_i))$
else
▪ Sample x_i from $P(X_i \mid \text{Parents}(X_i))$
return $(x_1, x_2, \dots, x_n), w$

All nodes in evidence:
Likelihood Weighted

Input: evidence instantiation

$w = 1.0$
for $i=1, 2, \dots, n$
Set $w = w * P(x_i \mid \text{Parents}(X_i))$
return w

Remember Poll 2

How many $\{-a, +b, -c\}$ samples out of $N=1000$ should we expect?

- A. 1
- B. 50
- C. 125
- D. 200
- E. I have no idea

$P(A)$

+a	1/2
-a	1/2

$P(B|A)$

+a	+b	1/10
	-b	9/10
-a	+b	1/2
	-b	1/2

$P(C|B)$

+b	+c	4/5
	-c	1/5
-b	+c	1
	-c	0

Likelihood Weighting

How many $\{-a, +b, -c\}$ samples out of $N=1000$ should we expect?

$$P(A)$$

+a	1/2
-a	1/2

$$P(B|A)$$

+a	+b	1/10
	-b	9/10
-a	+b	1/2
	-b	1/2

$$P(C|B)$$

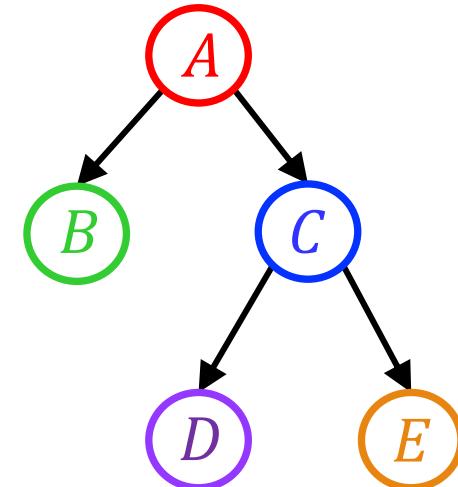
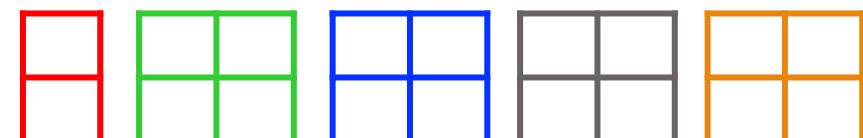
+b	+c	4/5
	-c	1/5
-b	+c	1
	-c	0

Likelihood Weighting Distribution

- Consistency of likelihood weighted sampling distribution

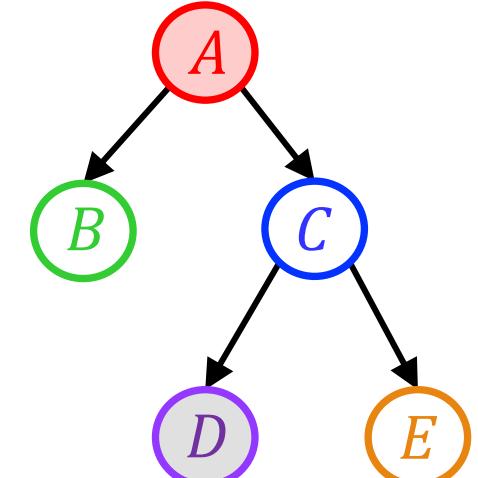
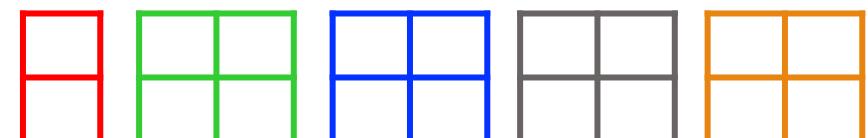
- Joint from Bayes nets

- $P(A, B, C, D, E) = P(A) P(B|A) P(C|A) P(D|C) P(E|C)$



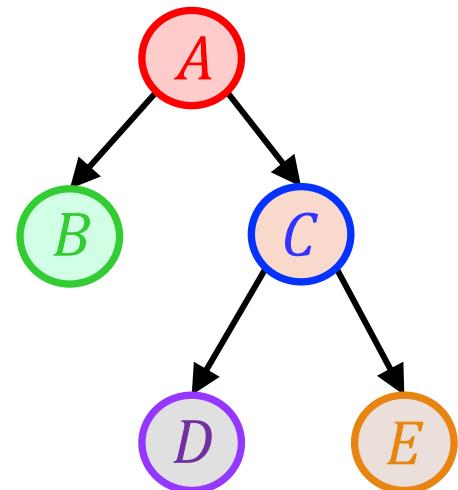
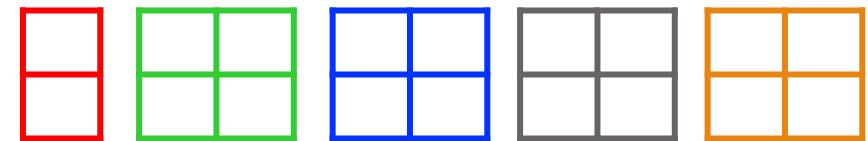
Likelihood Weighting Distribution

- Consistency of likelihood weighted sampling distribution
- Evidence: $+a, -d$
- Joint from Bayes nets
- $P(+a, B, C, -d, E) = P(+a) P(B|+a) P(C|+a) P(-d|C) P(E|C)$



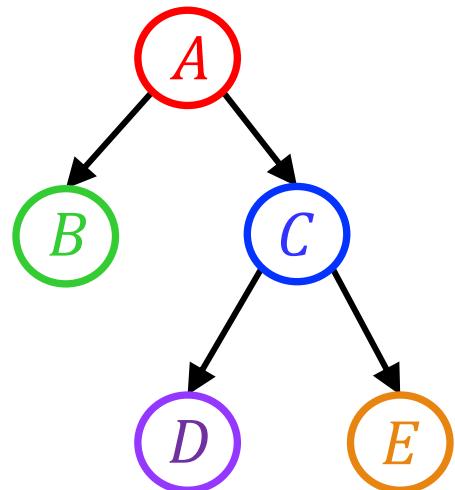
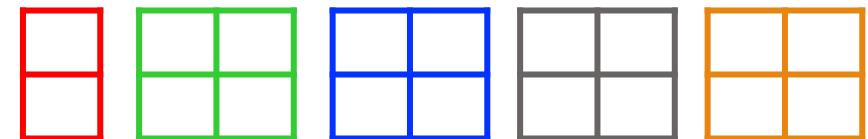
Likelihood Weighting Distribution

- Consistency of likelihood weighted sampling distribution
- Evidence: $+a$, $+b$, $-c$, $-d$, $+e$
- Joint from Bayes nets
- $P(+a, +b, -c, -d, -e) = P(+a) P(+b|+a) P(-c|+a) P(-d|-c) P(+e|-c)$



Likelihood Weighting Distribution

- Consistency of likelihood weighted sampling distribution
- Evidence: None
- Joint from Bayes nets
- $P(A, B, C, D, E) = P(A) P(B|A) P(C|A) P(D|C) P(E|C)$



Likelihood Weighting

- Sampling distribution if \mathbf{z} sampled and \mathbf{e} fixed evidence

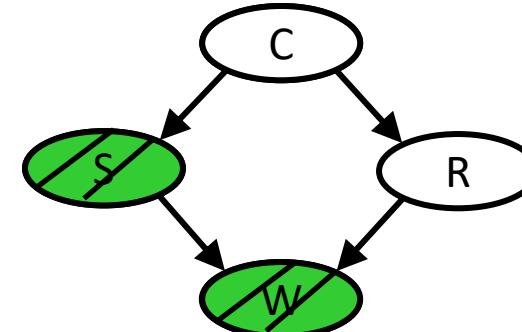
$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^l P(z_i | \text{Parents}(Z_i))$$

- Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^m P(e_i | \text{Parents}(E_i))$$

- Together, weighted sampling distribution is consistent

$$\begin{aligned} S_{WS}(\mathbf{z}, \mathbf{e}) \cdot w(\mathbf{z}, \mathbf{e}) &= \prod_{i=1}^l P(z_i | \text{Parents}(z_i)) \prod_{i=1}^m P(e_i | \text{Parents}(e_i)) \\ &= P(\mathbf{z}, \mathbf{e}) \end{aligned}$$



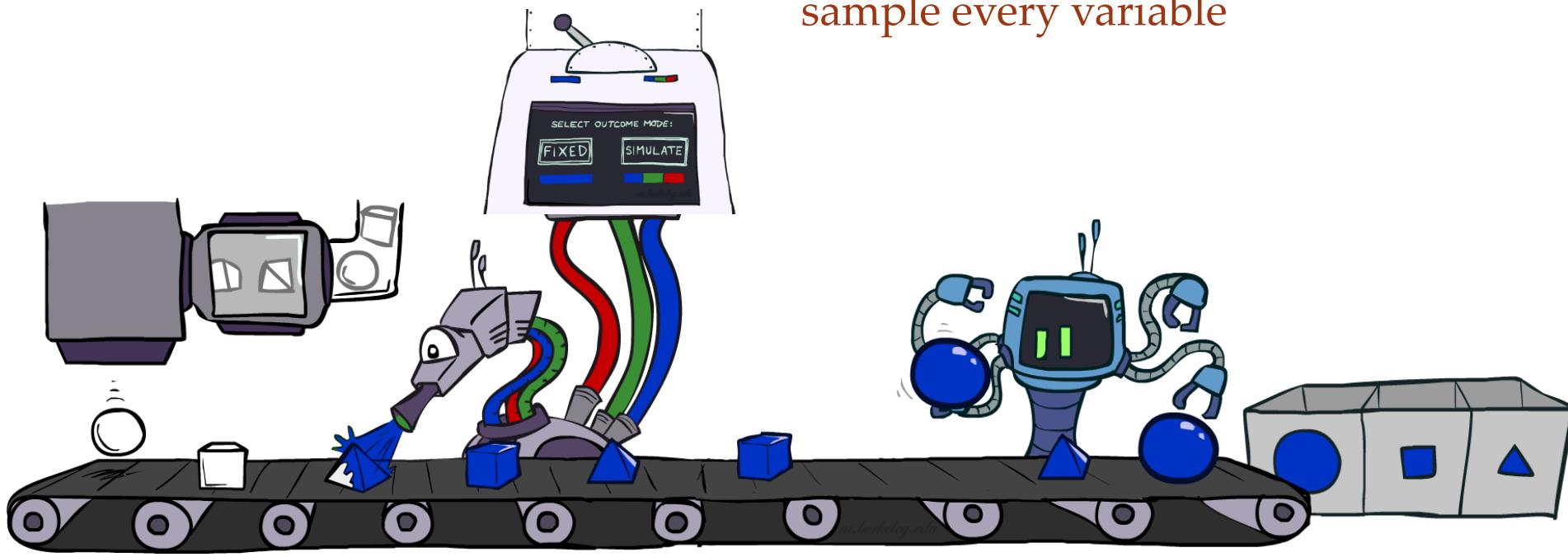
Poll 4

Given a fixed query, two identical samples from likelihood weighted sampling will have the same exact weights.

- A. True
- B. False
- C. It depends
- D. I don't know

Likelihood Weighting

- Likelihood weighting is good
 - We have taken evidence into account as we generate the sample
 - E.g. here, W 's value will get picked based on the evidence values of S, R
 - More of our samples will reflect the state of the world suggested by the evidence



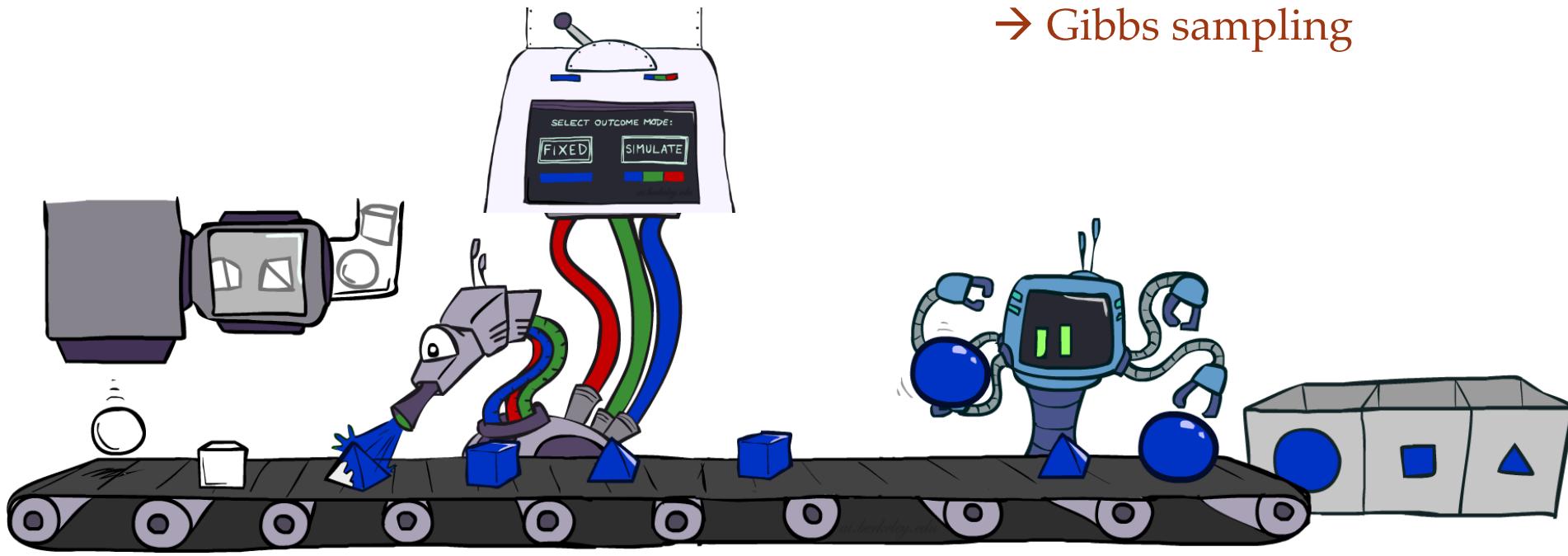
Likelihood weighting doesn't solve all our problems

- Evidence influences the choice of downstream variables, but not upstream ones (C isn't more likely to get a value matching the evidence)

We would like to consider evidence when we sample every variable

Likelihood Weighting

- Likelihood weighting is good
 - We have taken evidence into account as we generate the sample
 - E.g. here, W 's value will get picked based on the evidence values of S, R
 - More of our samples will reflect the state of the world suggested by the evidence



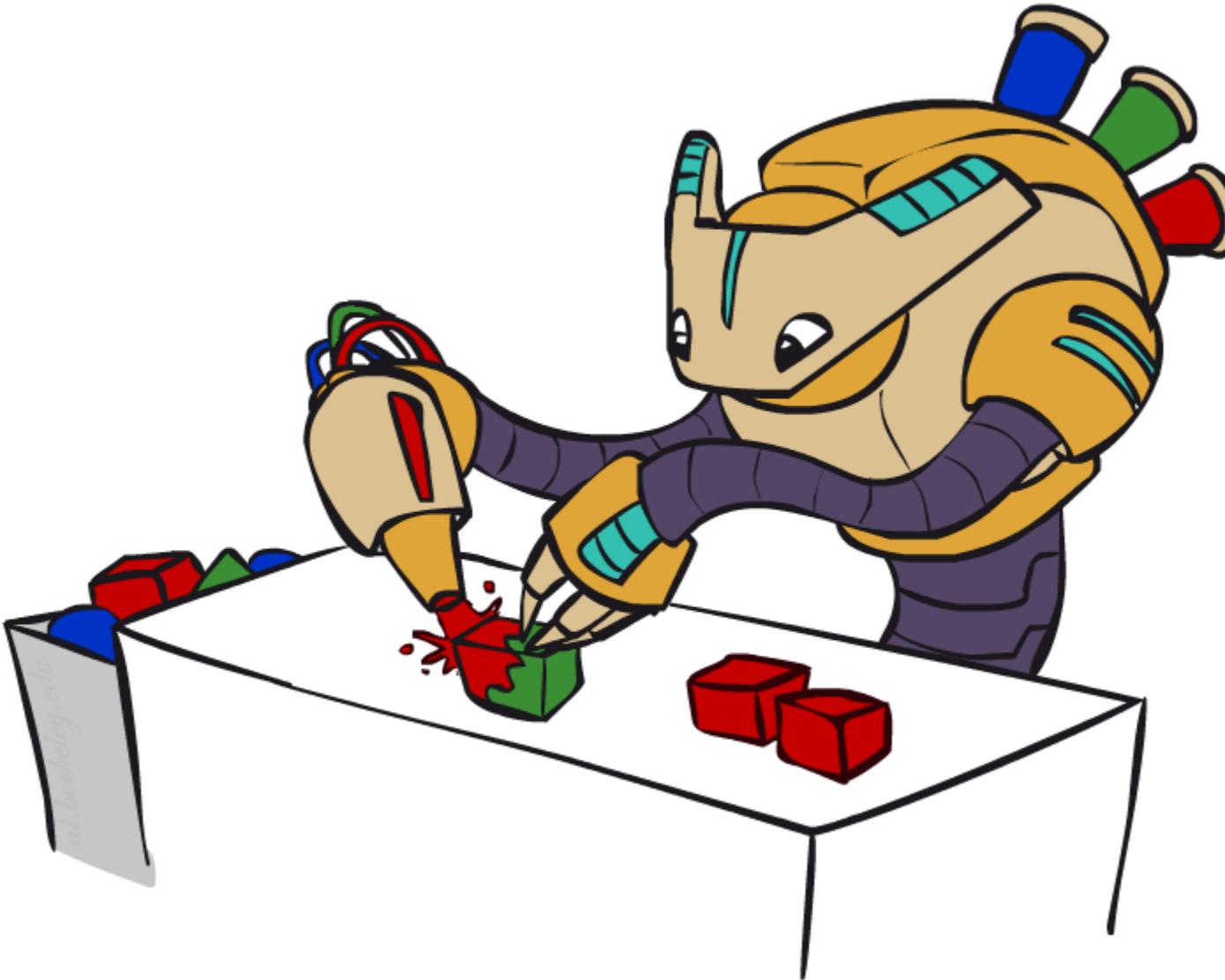
Likelihood weighting doesn't solve all our problems

- Evidence influences the choice of downstream variables, but not upstream ones (C isn't more likely to get a value matching the evidence)

We would like to consider evidence when we sample every variable

→ Gibbs sampling

Gibbs Sampling



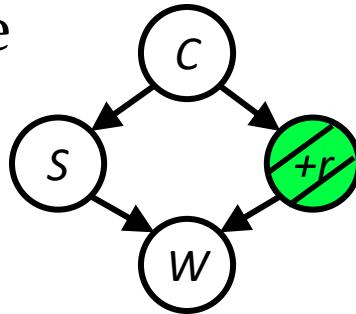
Gibbs Sampling

- *Procedure:* keep track of a full instantiation x_1, x_2, \dots, x_n .
 1. Start with an arbitrary instantiation consistent with the evidence.
 2. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.
 3. Keep repeating this for a long time.
- *When done, keep last values of variables as 1 sample.*
- *Repeat iteration for each sample.*

Gibbs Sampling Example: $P(S \mid +r)$

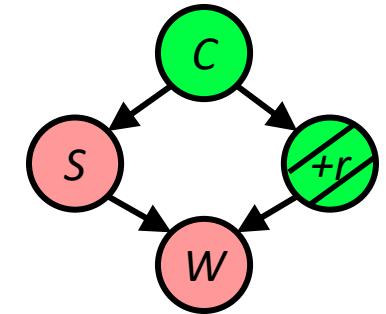
- Step 1: Fix evidence

- $R = +r$



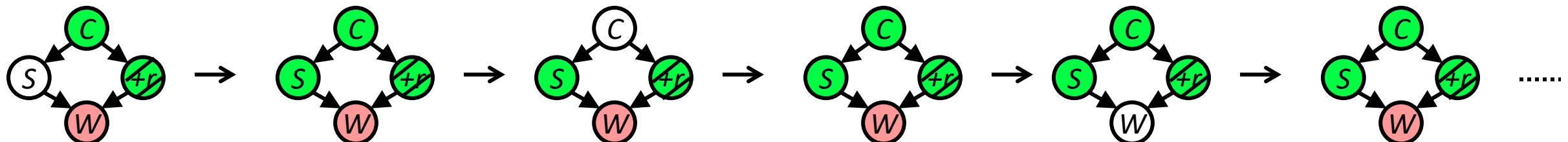
Step 2: Initialize other variables

- Randomly



- Steps 3: Repeat

- Choose a non-evidence variable X
 - Resample X from $P(X \mid \text{all other variables})$



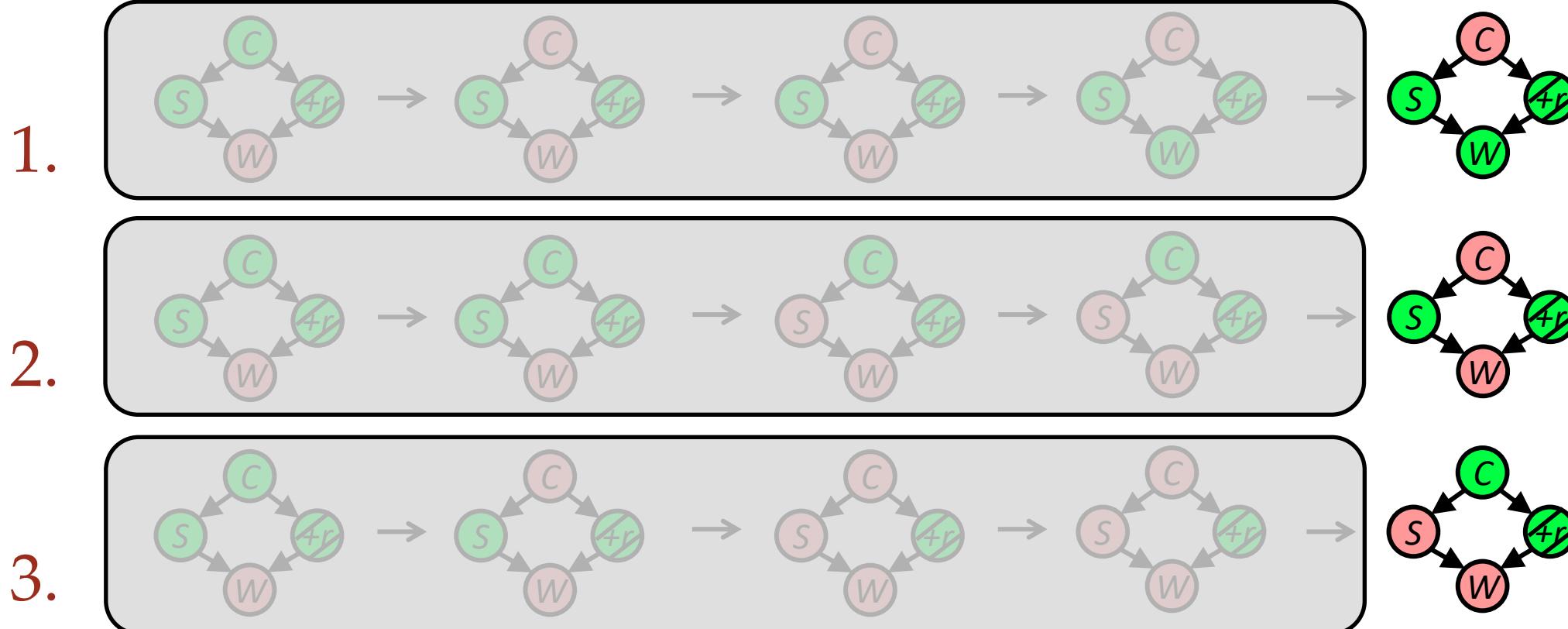
Sample from $P(S \mid +c, -w, +r)$

Sample from $P(C \mid +s, -w, +r)$

Sample from $P(W \mid +s, +c, +r)$

Gibbs Sampling Example: $P(S | +r)$

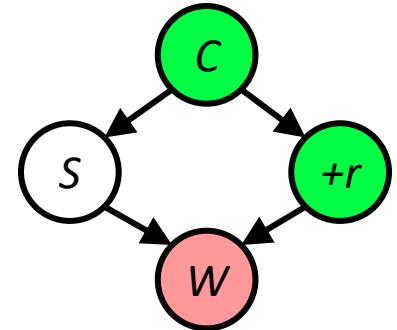
- Each iteration here is repeated 5 times.
- Keep only the last sample from each iteration:



Efficient Resampling of One Variable

- Sample from $P(S \mid +c, +r, -w)$

$$\begin{aligned} P(S \mid +c, +r, -w) &= \frac{P(S, +c, +r, -w)}{P(+c, +r, -w)} \\ &= \frac{P(S, +c, +r, -w)}{\sum_s P(s, +c, +r, -w)} \\ &= \frac{P(+c)P(S \mid +c)P(+r \mid +c)P(-w \mid S, +r)}{\sum_s P(+c)P(s \mid +c)P(+r \mid +c)P(-w \mid s, +r)} \\ &= \frac{P(+c)P(S \mid +c)P(+r \mid +c)P(-w \mid S, +r)}{P(+c)P(+r \mid +c) \sum_s P(s \mid +c)P(-w \mid s, +r)} \\ &= \frac{P(S \mid +c)P(-w \mid S, +r)}{\sum_s P(s \mid +c)P(-w \mid s, +r)} \end{aligned}$$



- Many things cancel out – only CPTs with S remain!
- More generally: only CPTs that have resampled variable need to be considered, and joined together

Gibbs Sampling

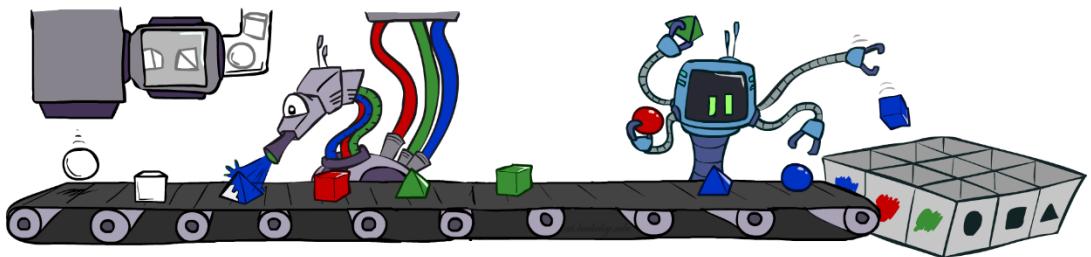
- *Property*: in the limit of repeating this infinitely many times the resulting sample is coming from the correct distribution
- *Rationale*: both upstream and downstream variables condition on evidence.
- In contrast: likelihood weighting only conditions on upstream evidence, and hence weights obtained in likelihood weighting can sometimes be very small. Sum of weights over all samples is indicative of how many “effective” samples were obtained, so want high weight.

Further Reading on Gibbs Sampling

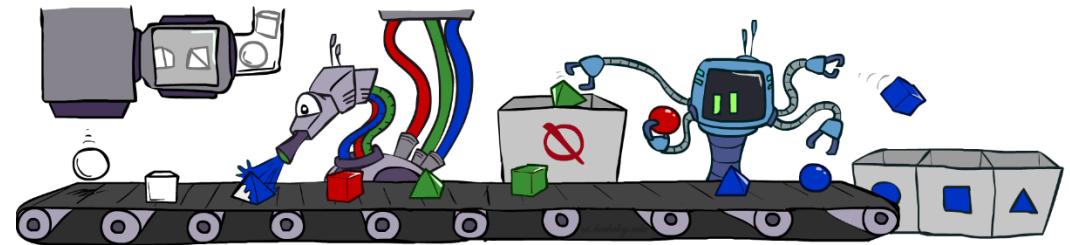
- Gibbs sampling produces sample from the query distribution $P(Q | e)$ in limit of re-sampling infinitely often
- Gibbs sampling is a special case of more general methods called Markov chain Monte Carlo (MCMC) methods
 - Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs sampling is a special case of Metropolis-Hastings)
- You may read about Monte Carlo methods – they're just sampling

Bayes' Net Sampling Summary

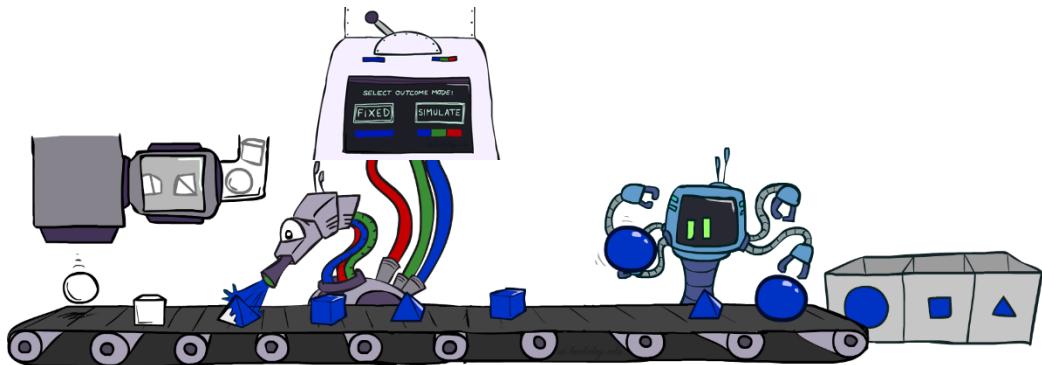
- Prior Sampling $P(Q, E)$



- Rejection Sampling $P(Q | e)$



- Likelihood Weighting $P(Q, e)$



- Gibbs Sampling $P(Q | e)$

