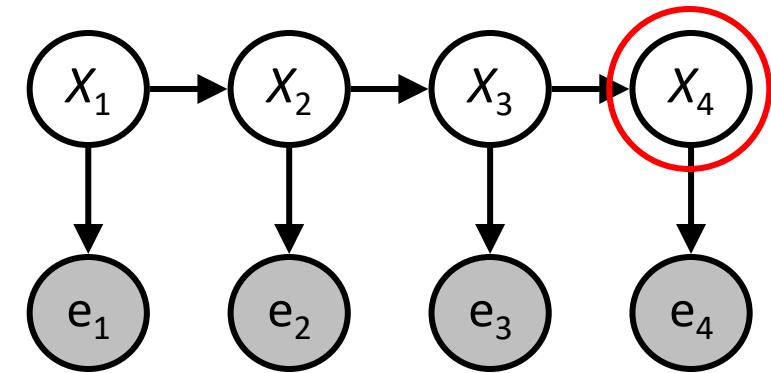


Warm-up as you walk in

- For the following Bayes net, write the query $P(X_4 \mid e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.

$$P(X_4 \mid e_1, e_2, e_3, e_4) =$$



Announcements

- HW9 due the 11th (Friday)
- TA applications (on Piazza) due the 12th (Saturday)
- Makeup final form (on Piazza) due the 14th (Monday)

AI: Representation and Problem Solving

Hidden Markov Models

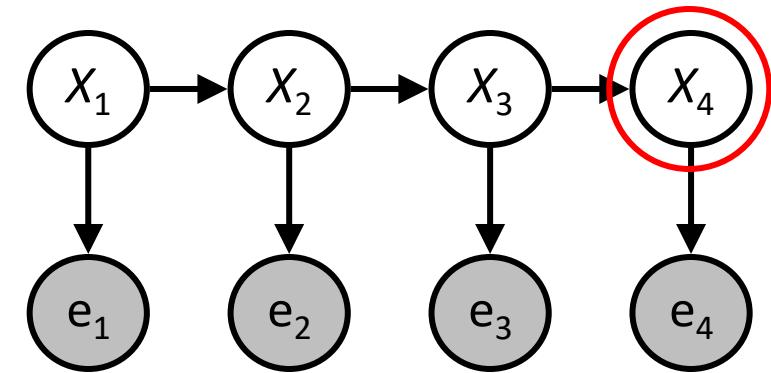
Instructors: Tuomas Sandholm and Vincent Conitzer

Slide credits: CMU AI and <http://ai.berkeley.edu>

Warm-up as you walk in

- For the following Bayes net, write the query $P(X_4 \mid e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.

$$P(X_4 \mid e_1, e_2, e_3, e_4) =$$



Reasoning over Time or Space

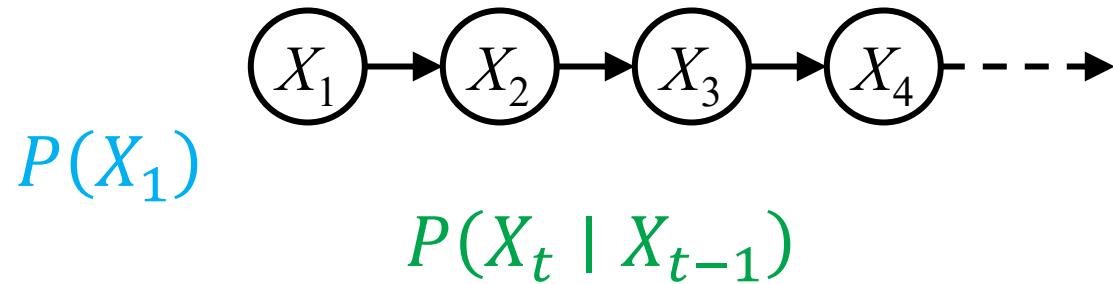
Often, we want to **reason about a sequence of observations**

- Speech recognition
- Robot localization
- User attention
- Medical monitoring

Need to introduce time (or space) into our models

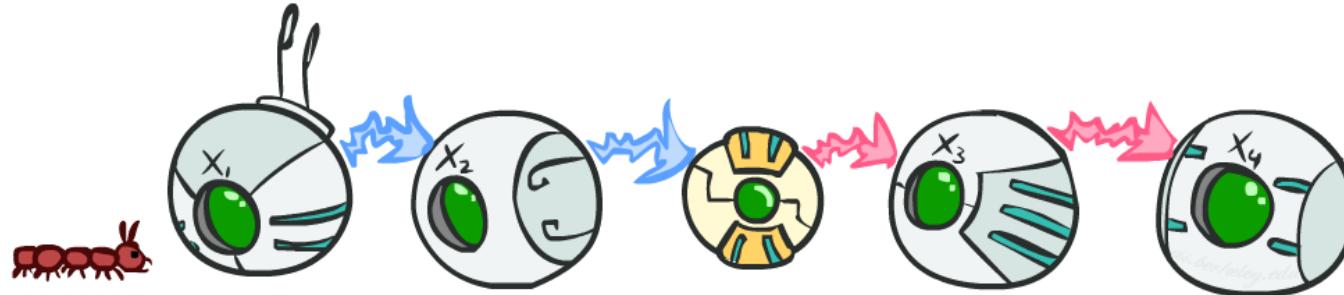
Markov Chain Models

Value of X at a given time is called the **state**



- Parameters: called **transition probabilities** or dynamics, specify how the state evolves over time (also, **initial state probabilities**)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Conditional Independence



Basic conditional independence:

- Past and future independent given the present
- Each time step only depends on the previous
- This is called the (first order) Markov property

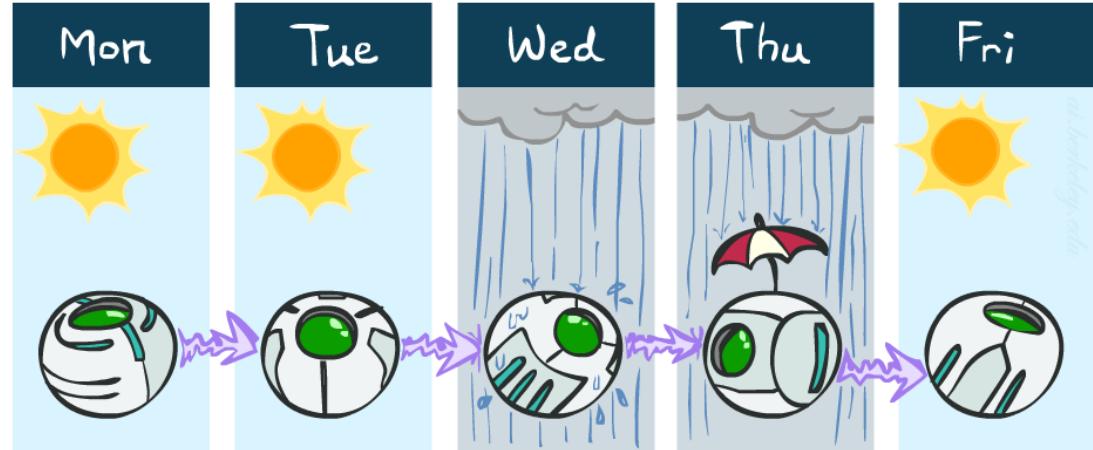
Note that the chain is just a (growable) BN

- We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Example: Markov Chain Weather

States: $X = \{\text{rain, sun}\}$

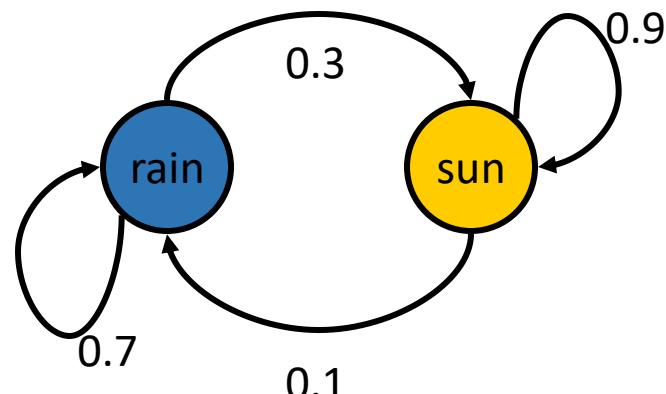
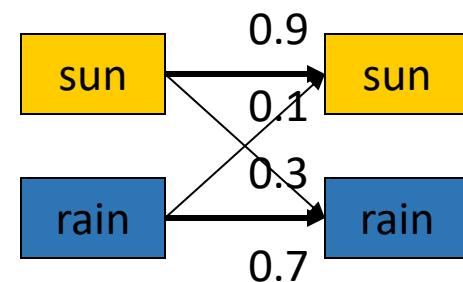
- Initial distribution: 1.0 sun



- CPT $P(X_t | X_{t-1})$:

X_{t-1}	X_t	$P(X_t X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Two new ways of representing the same CPT

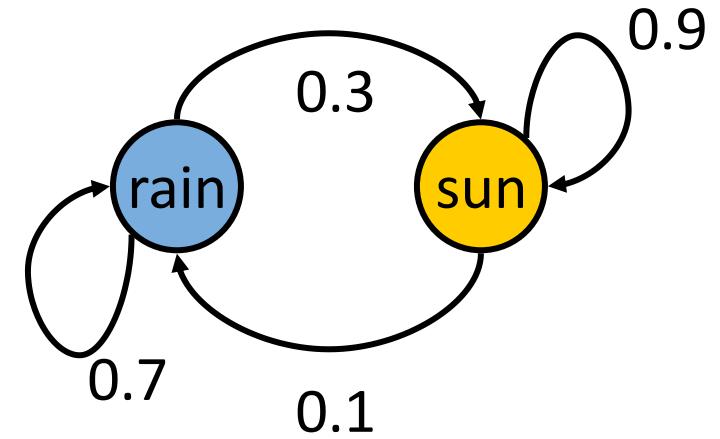


Example: Markov Chain Weather

Initial distribution: $P(X_1 = \text{sun}) = 1.0$

What is the probability distribution after one step?

$P(X_2 = \text{sun}) = ?$

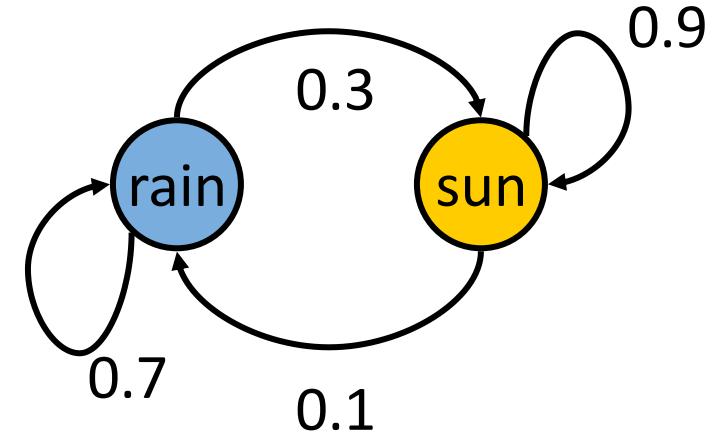


Example: Markov Chain Weather

Initial distribution: $P(X_1 = \text{sun}) = 1.0$

What is the probability distribution after one step?

$P(X_2 = \text{sun}) = ?$



$$\begin{aligned} P(X_2 = \text{sun}) &= \sum_{x_1} P(X_1 = x_1, X_2 = \text{sun}) \\ &= \sum_{x_1} P(X_2 = \text{sun} | X_1 = x_1) P(X_1 = x_1) \\ &= P(X_2 = \text{sun} | X_1 = \text{sun}) P(X_1 = \text{sun}) + \\ &\quad P(X_2 = \text{sun} | X_1 = \text{rain}) P(X_1 = \text{rain}) \\ &= 0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9 \end{aligned}$$

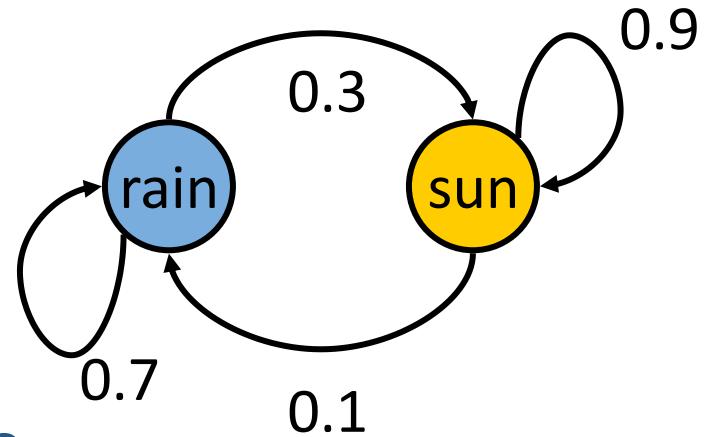
Poll 1

Initial distribution: $P(X_2 = \text{sun}) = 0.9$

What is the probability distribution after the next step?

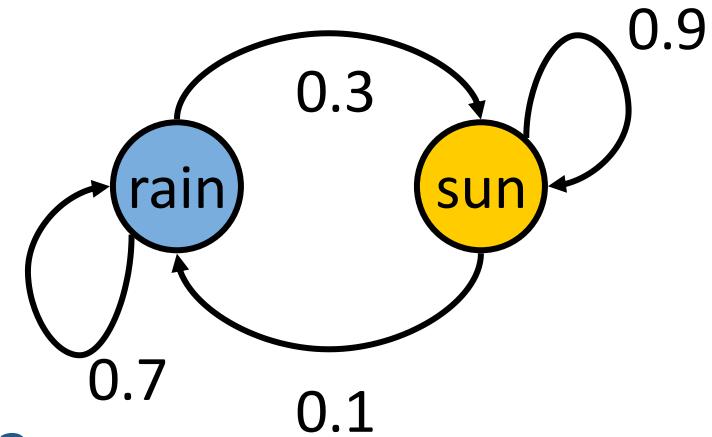
$$P(X_3 = \text{sun}) = ?$$

- A) 0.81
- B) 0.84
- C) 0.9
- D) 1.0
- E) 1.2



Poll 1

Initial distribution: $P(X_2 = \text{sun}) = 0.9$



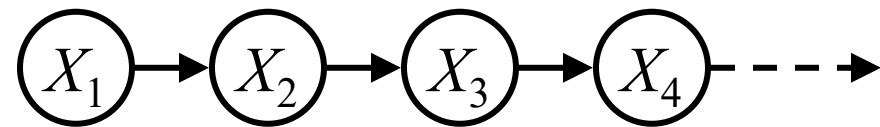
What is the probability distribution after the next step?

$$P(X_3 = \text{sun}) = ?$$

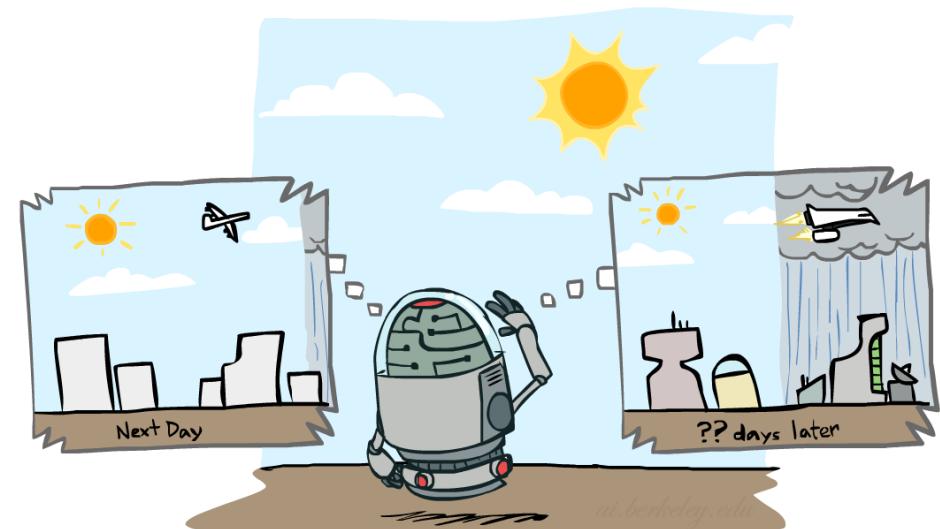
- A) 0.81
- B) 0.84
- C) 0.9
- D) 1.0
- E) 1.2

$$\begin{aligned} P(X_3 = \text{sun}) &= \sum_{x_2} P(X_3 = \text{sun}, X_2 = x_2) \\ &= \sum_{x_2} P(X_3 = \text{sun} | X_2 = x_2) P(X_2 = x_2) \\ &= 0.9 \cdot 0.9 + 0.3 \cdot 0.1 \\ &= 0.81 + 0.03 = 0.84 \end{aligned}$$

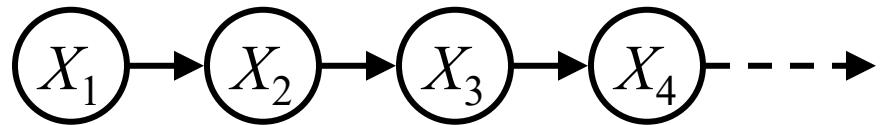
Markov Chain Inference



If you know the transition probabilities, $P(X_t \mid X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.



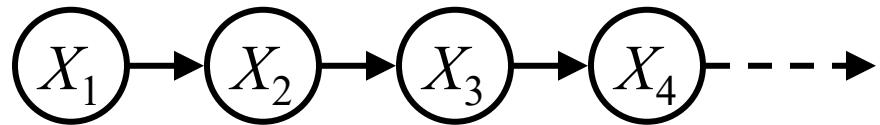
Markov Chain Inference



If you know the transition probabilities, $P(X_t \mid X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$\begin{aligned} P(X_5) &= \sum_{x_4} P(x_4, X_5) \\ &= \sum_{x_4} P(X_5 \mid x_4) P(x_4) \end{aligned}$$

Markov Chain Inference



If you know the transition probabilities, $P(X_t \mid X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

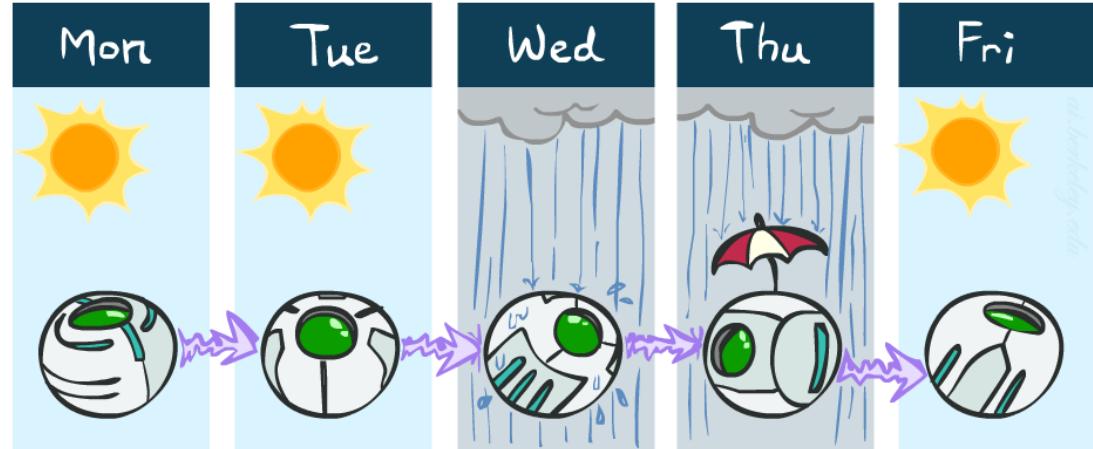
$$\begin{aligned} P(X_5) &= \sum_{x_1, x_2, x_3, x_4} P(x_1, x_2, x_3, x_4, X_5) \\ &= \sum_{x_1, x_2, x_3, x_4} P(X_5 \mid x_4) P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1) \\ &= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1) \\ &= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_1, x_2, x_3, x_4) \\ &= \sum_{x_4} P(X_5 \mid x_4) P(x_4) \end{aligned}$$

Weather prediction

States {rain, sun}

- Initial distribution $P(X_0)$

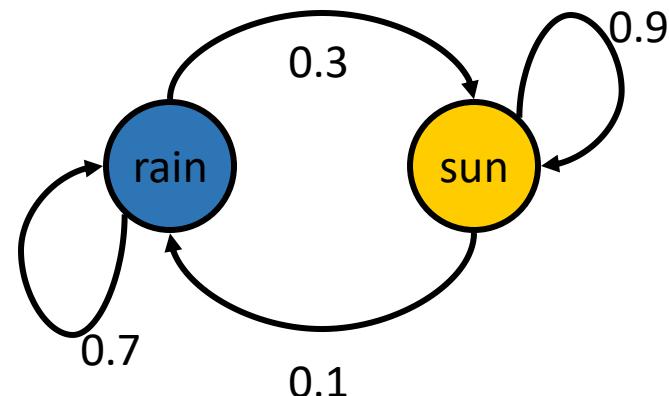
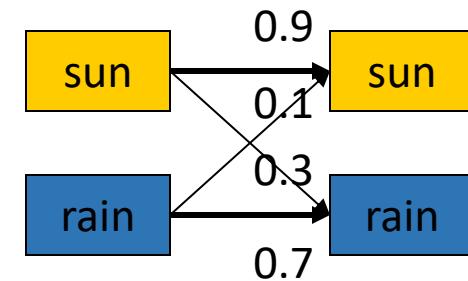
$P(X_0)$	
sun	rain
0.5	0.5



Two new ways of representing the same CPT

- Transition model $P(X_t | X_{t-1})$

X_{t-1}	$P(X_t X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7



Weather prediction

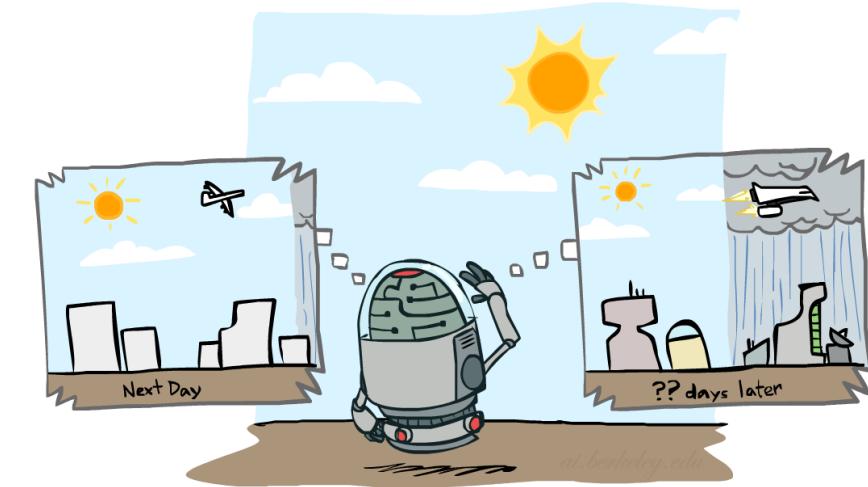
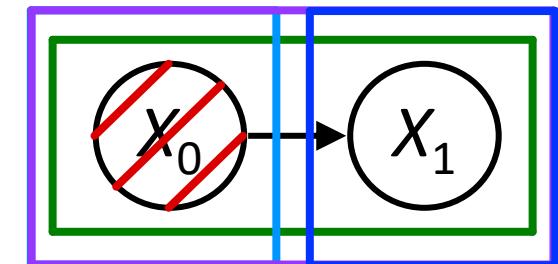
Time 0: $P(X_0) = \langle 0.5, 0.5 \rangle$

What is the weather like at time 1?

$$P(X_1) =$$

$$\begin{aligned} & \sum_{x_0} P(X_0 = x_0, X_1) \\ &= \sum_{x_0} P(X_1 | X_0 = x_0) P(X_0 = x_0) \\ &= 0.5 \langle 0.9, 0.1 \rangle + 0.5 \langle 0.3, 0.7 \rangle \\ &= \langle 0.6, 0.4 \rangle \end{aligned}$$

x_{t-1}	$P(x_t x_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7



Weather prediction, contd.

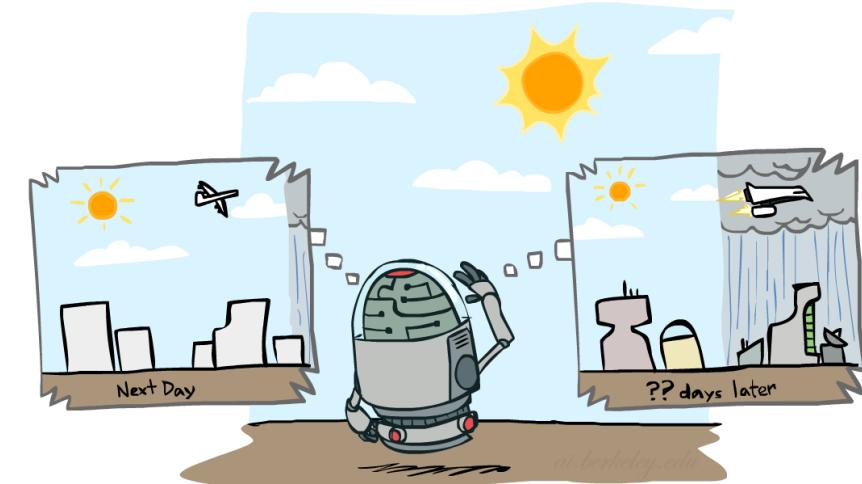
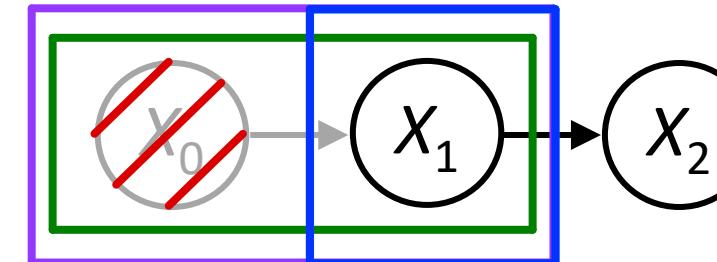
Time 1: $P(X_1) = \langle 0.6, 0.4 \rangle$

What is the weather like at time 2?

$$P(X_2) =$$

$$\begin{aligned} & \sum_{x_1} P(X_1 = x_1, X_2) \\ &= \sum_{x_1} P(X_2 | X_1 = x_1) P(X_1 = x_1) \\ &= 0.6 \langle 0.9, 0.1 \rangle + 0.4 \langle 0.3, 0.7 \rangle \\ &= \langle 0.66, 0.34 \rangle \end{aligned}$$

x_{t-1}	$P(x_t x_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7



Weather prediction, contd.

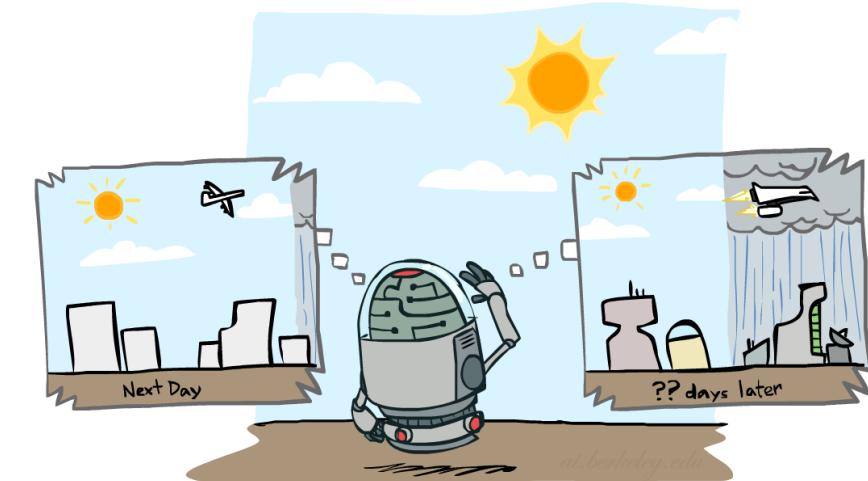
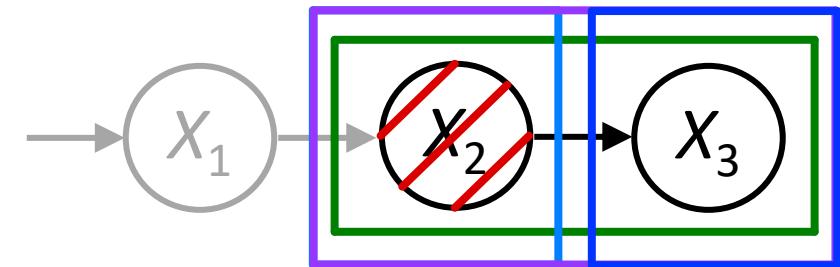
Time 2: $P(X_2) = \langle 0.66, 0.34 \rangle$

What is the weather like at time 3?

$$P(X_3) =$$

$$\begin{aligned} & \sum_{x_2} P(X_2 = x_2, X_3) \\ &= \sum_{x_2} P(X_3 | X_2 = x_2) P(X_2 = x_2) \\ &= 0.66 \langle 0.9, 0.1 \rangle + 0.34 \langle 0.3, 0.7 \rangle \\ &= \langle 0.696, 0.304 \rangle \end{aligned}$$

x_{t-1}	$P(x_t x_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7



Forward algorithm (simple form)

What is the state at time t ?

$$\begin{aligned} P(X_t) &= \sum_{x_{t-1}} P(X_{t-1} = x_{t-1}, X_t) \\ &= \sum_{x_{t-1}} P(X_t | X_{t-1} = x_{t-1}) P(X_{t-1} = x_{t-1}) \end{aligned}$$

Transition model

Probability from previous iteration

Iterate this update starting at $t=0$

Prediction with Markov chains

As time passes, uncertainty “accumulates”

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	1.00	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

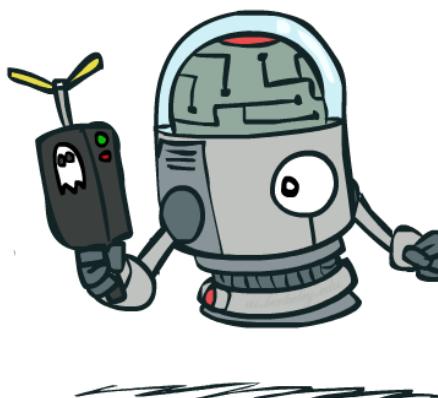
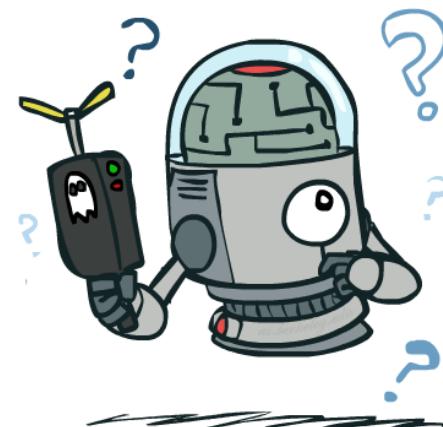
$T = 1$

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01

$T = 2$

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

$T = 5$



(Transition model: ghosts usually go clockwise)

Observations Reduce Uncertainty

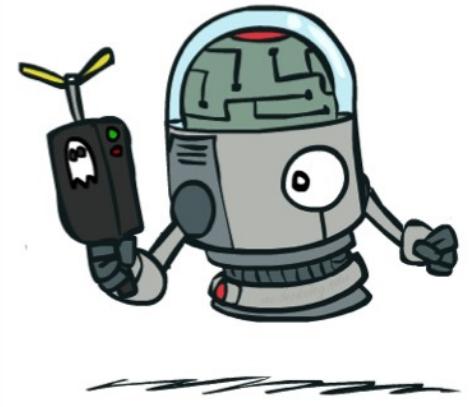
As we get observations, beliefs get reweighted, uncertainty “decreases”

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation



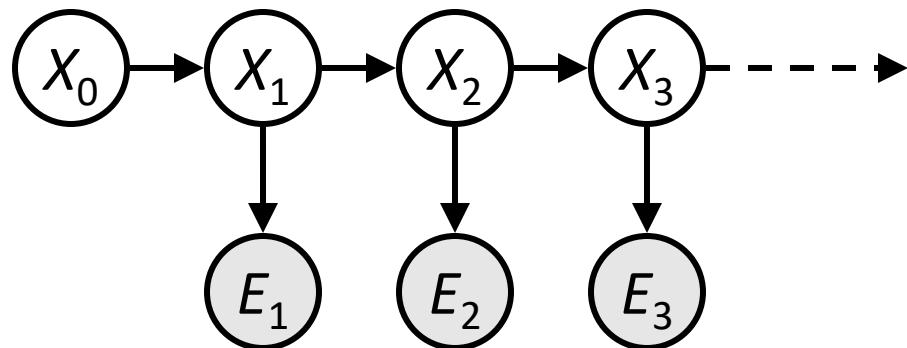
Hidden Markov Models

Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)

- Underlying Markov chain over states X
- You observe evidence E at each time step
- X_t is a single discrete variable; E_t may be continuous and may consist of several variables



Real HMM Examples

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

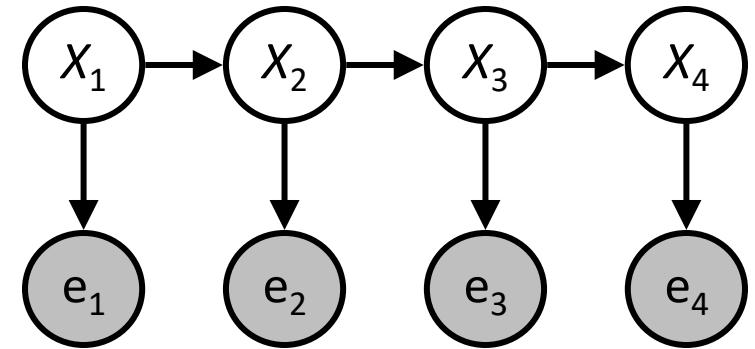
Molecular biology:

- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.

HMM as a Bayes Net Warm-up

- For the following Bayes net, write the query $P(X_4 \mid e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.

$$P(X_4 \mid e_1, e_2, e_3, e_4) =$$



HMM as a Bayes Net Warm-up

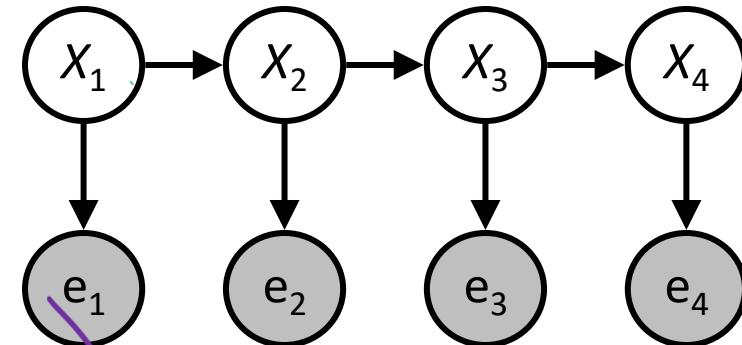
For the following Bayes net, write the query $P(X_4 | e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.

$$P(X_4 | e_1, e_2, e_3, e_4) = \alpha P(X_4, e_{1:4})$$

$$= \alpha \sum_{x_1} \sum_{x_2} \sum_{x_3} P(x_1, x_2, x_3, X_4, e_1, e_2, e_3, e_4)$$

$$= \alpha \sum_{x_1} \sum_{x_2} \sum_{x_3} P(x_1) P(e_1 | x_1) P(x_2 | x_1) P(e_2 | x_1) P(x_3 | x_2) \dots$$

$$\alpha = \frac{1}{P(e_1, e_2, e_3, e_4)}$$



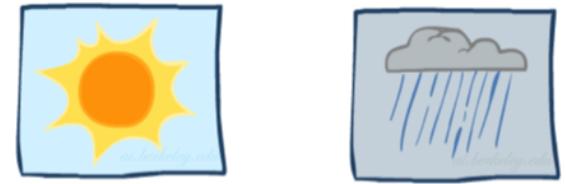
Useful notation: $X_{a:b} = X_a, X_{a+1}, \dots, X_b$

For example: $P(X_{1:2} | e_{1:3}) = P(X_1, X_2 | e_1, e_2, e_3)$

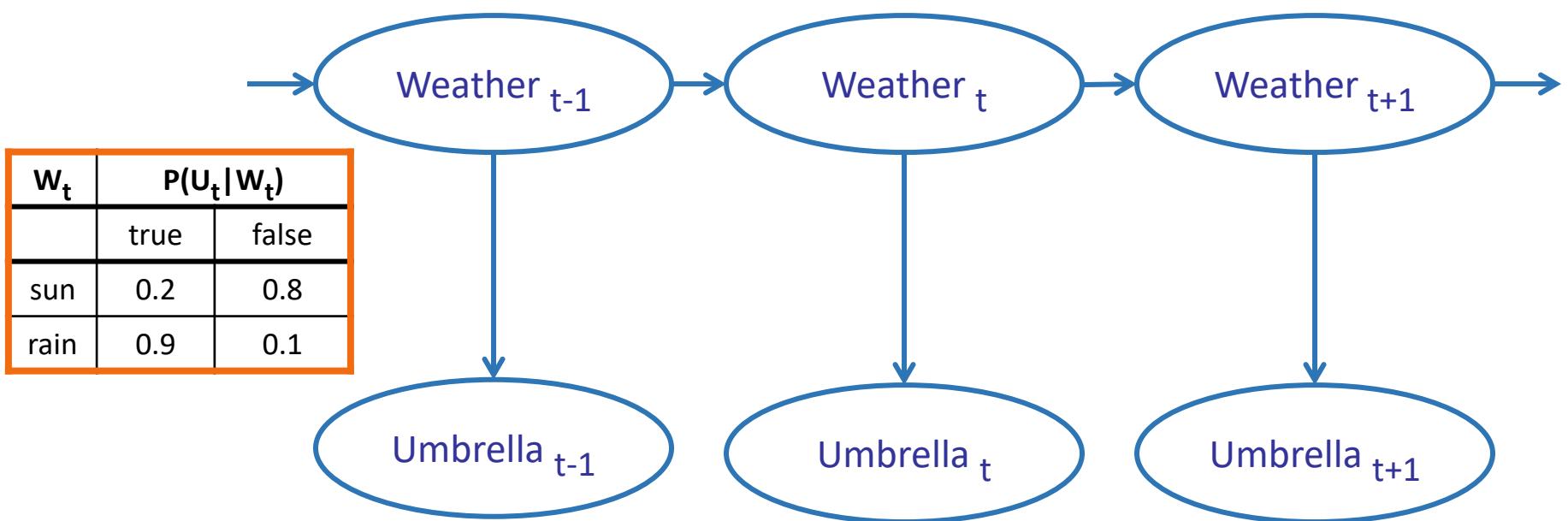
Example: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_0)$
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

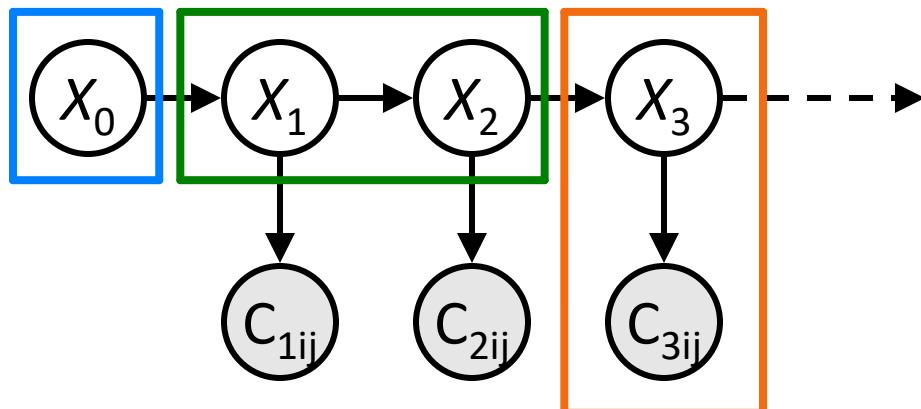


W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7



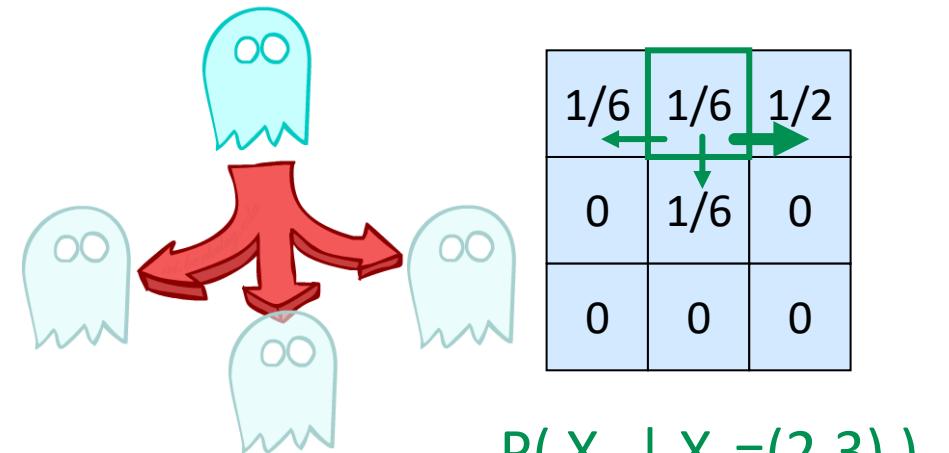
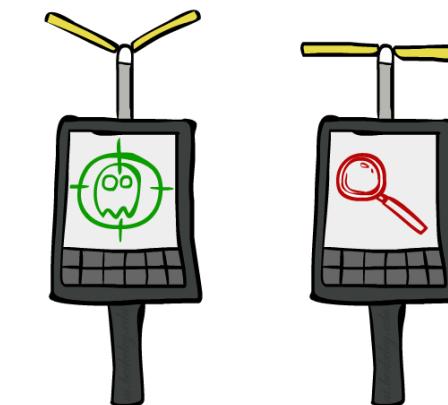
Example: Ghostbusters HMM

- State: location of moving ghost
- Observations: Color recorded by ghost sensor at clicked squares
- $P(X_0)$ = uniform
- $P(X_t | X_{t-1})$ = usually move clockwise, but sometimes move randomly or stay in place
- $P(C_{tij} | X_t)$ = same sensor model as before: red means close, green means far away.



1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

$P(X_0)$



[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]

HMM as Probability Model

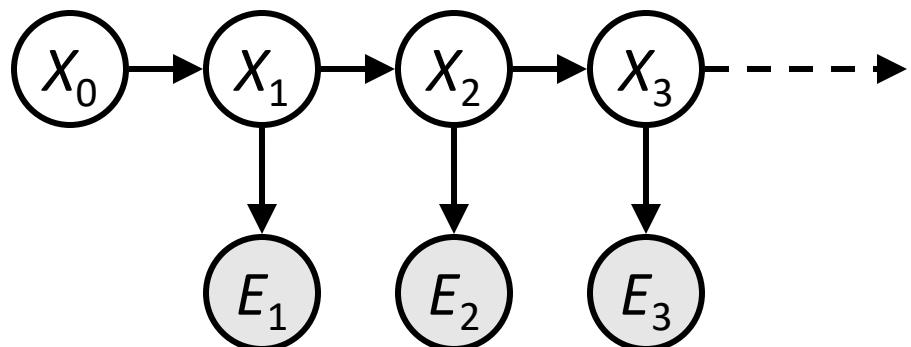
- Joint distribution for Markov model:

$$P(X_0, \dots, X_T) = P(X_0) \prod_{t=1:T} P(X_t | X_{t-1})$$

- Joint distribution for hidden Markov model:

$$P(X_0, X_1, E_1, \dots, X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t | X_{t-1}) P(E_t | X_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

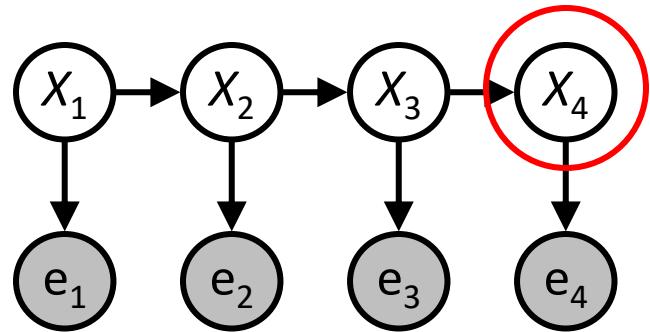


Useful notation: $X_{a:b} = X_a, X_{a+1}, \dots, X_b$

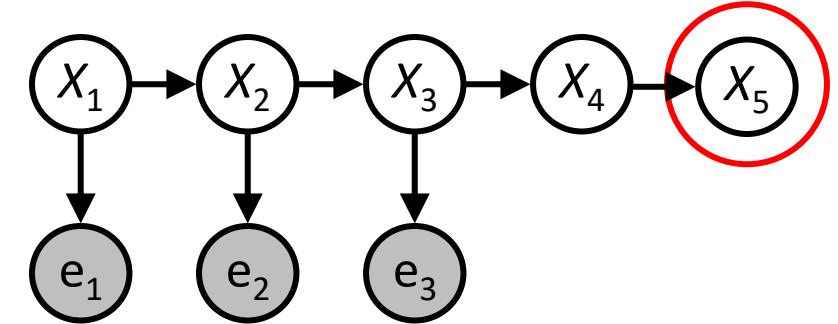
For example: $P(X_{1:2} | e_{1:3}) = P(X_1, X_2, | e_1, e_2, e_3)$

HMM Queries

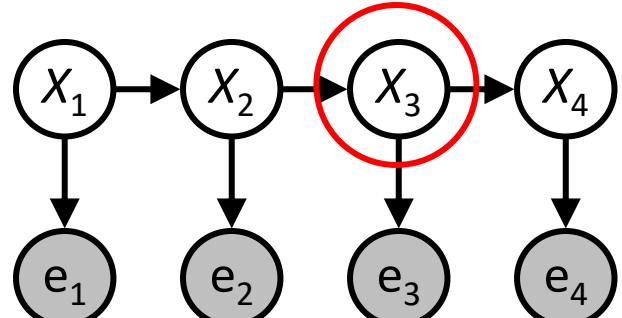
Filtering: $P(X_t | e_{1:t})$



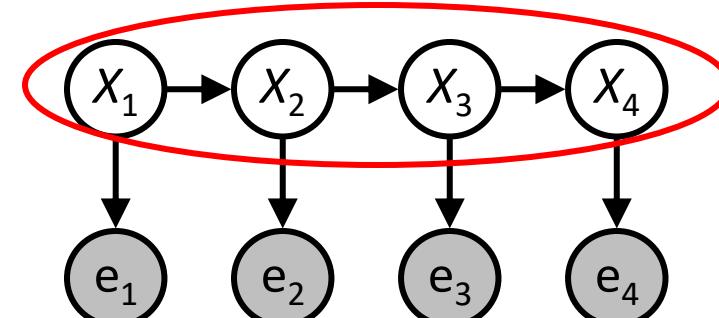
Prediction: $P(X_{t+k} | e_{1:t})$



Smoothing: $P(X_k | e_{1:t}), k < t$



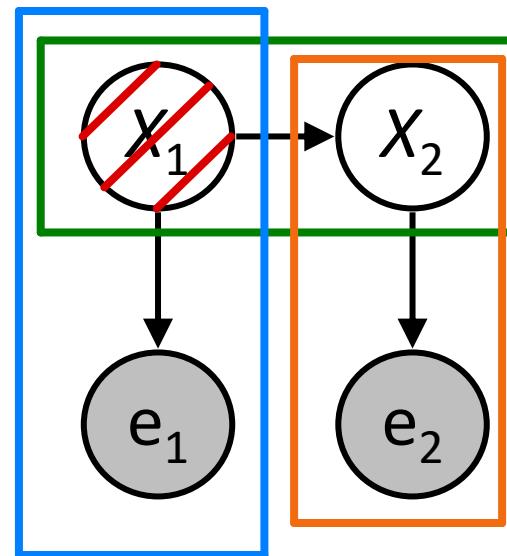
Explanation: $P(X_{1:t} | e_{1:t})$



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

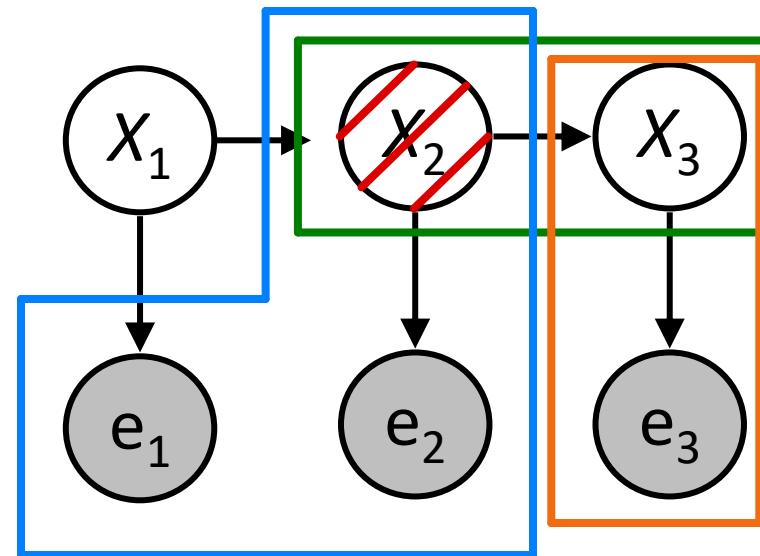
Marching **forward** through the HMM network



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

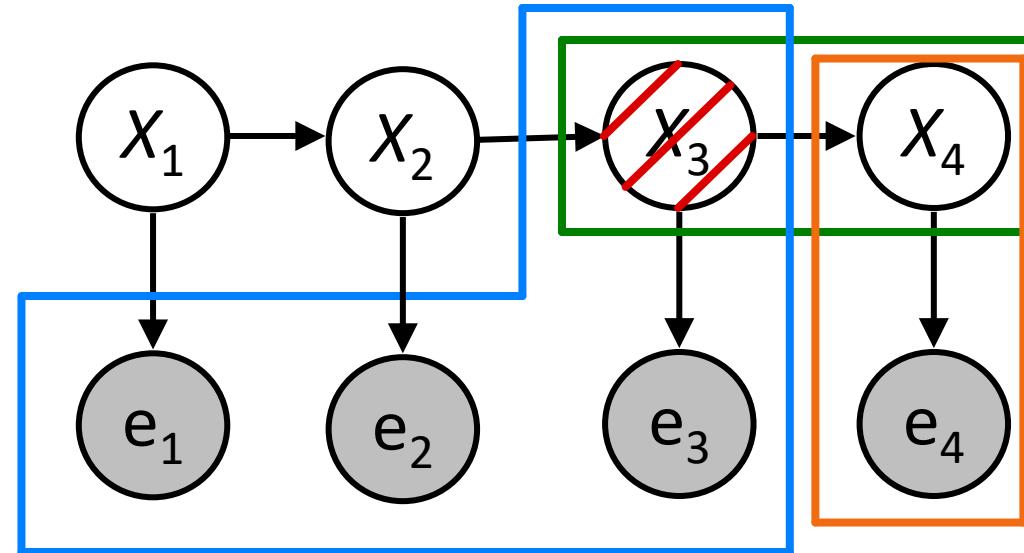
Marching **forward** through the HMM network



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

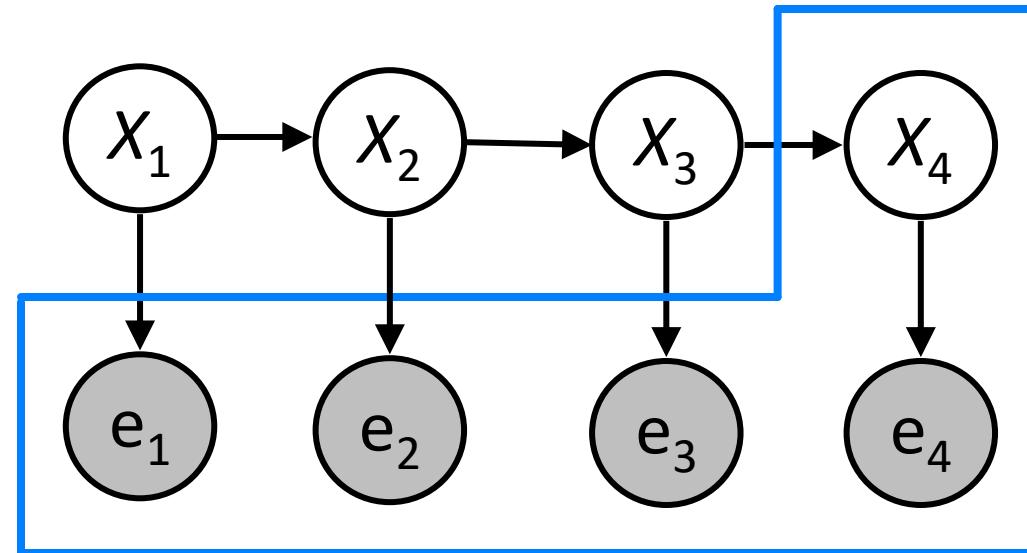
Marching **forward** through the HMM network



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Marching **forward** through the HMM network



Filtering Algorithm

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t})$$

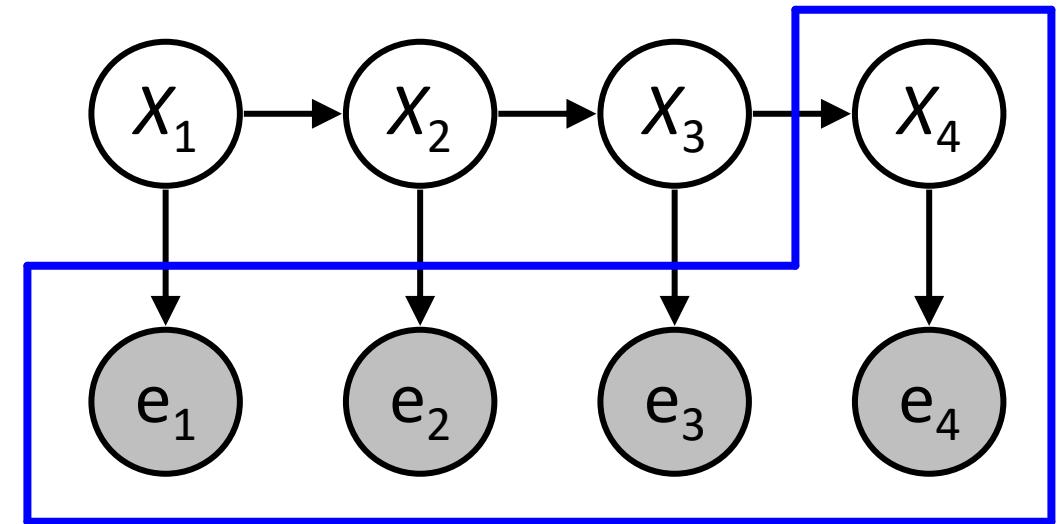
$$\mathbf{f}_{1:t+1} = \text{FORWARD}(\mathbf{f}_{1:t}, e_{t+1})$$

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \end{aligned}$$



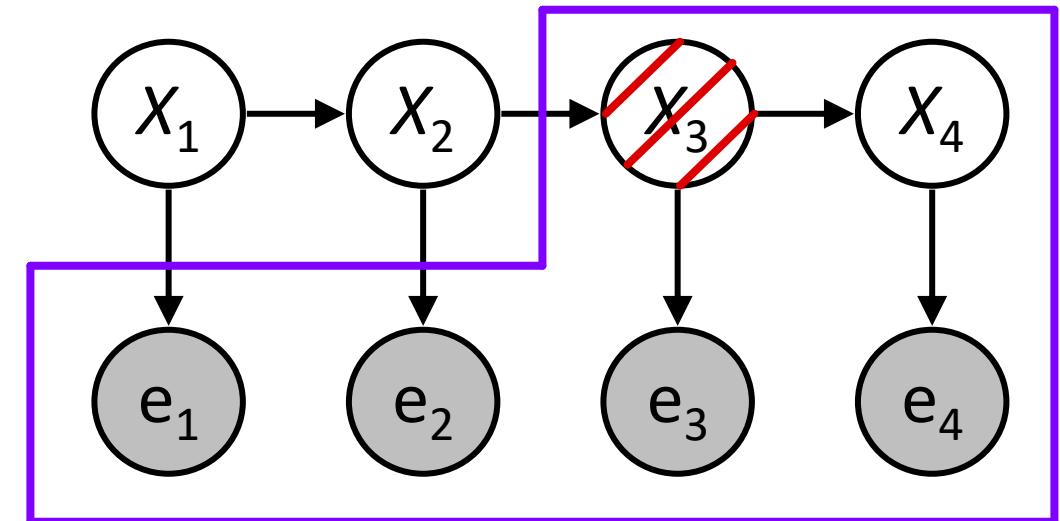
Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \end{aligned}$$

Summation over variable X_{t-1}

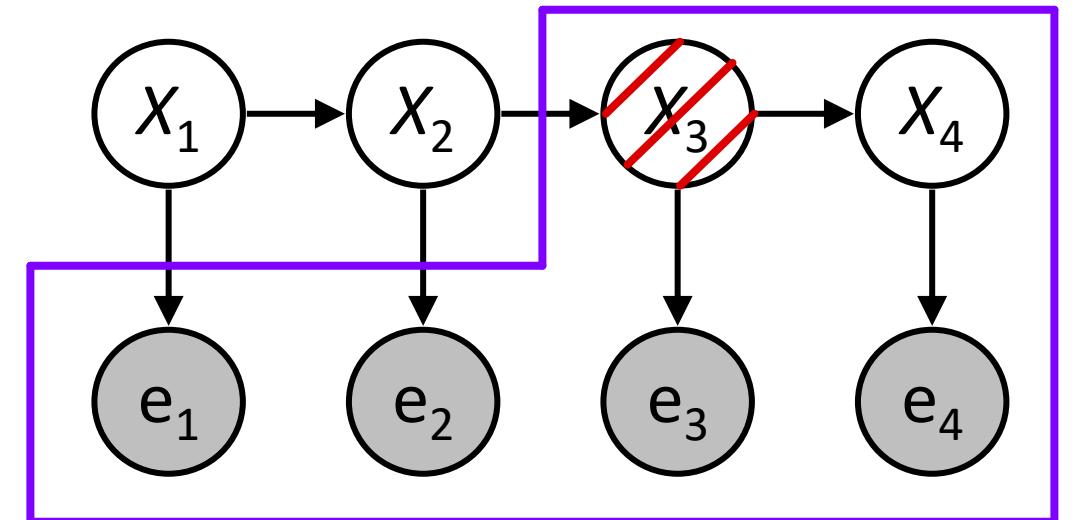


Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}, e_{1:t-1}) P(e_t | X_t, x_{t-1}, e_{1:t-1}) \end{aligned}$$



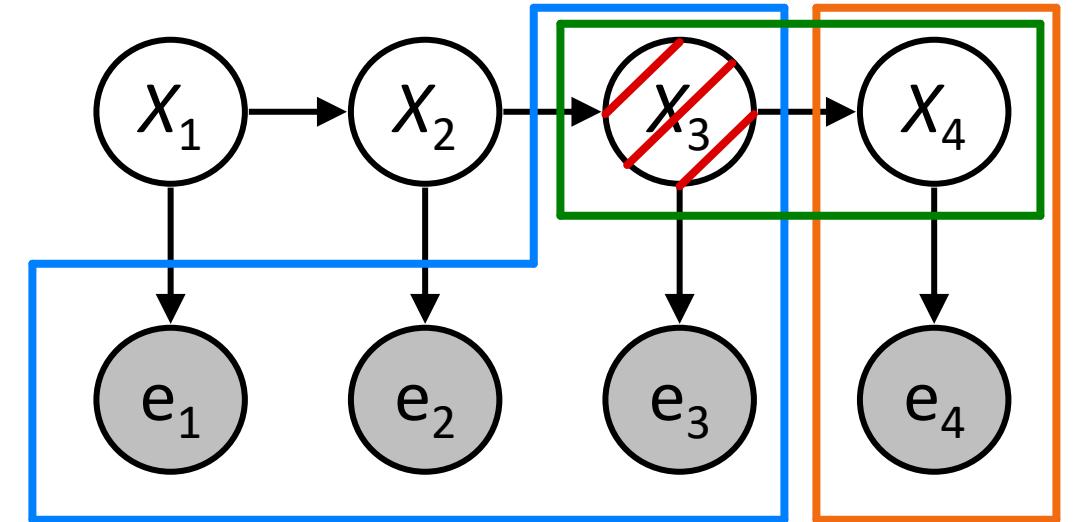
Chain rule with x_{t-1} , X_t , and e_t

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}, e_{1:t-1}) P(e_t | X_t, x_{t-1}, e_{1:t-1}) \end{aligned}$$



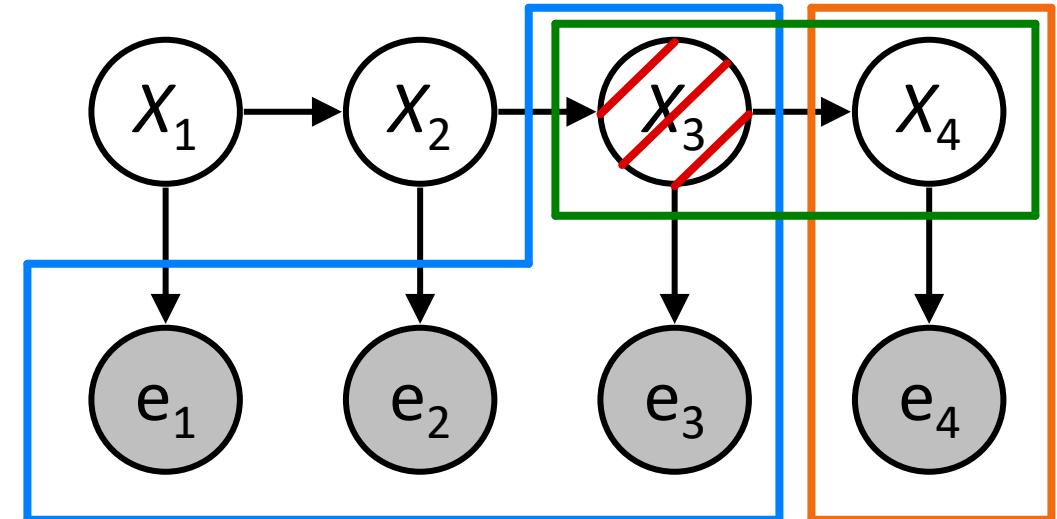
Chain rule with x_{t-1} , X_t , and e_t

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t) \end{aligned}$$

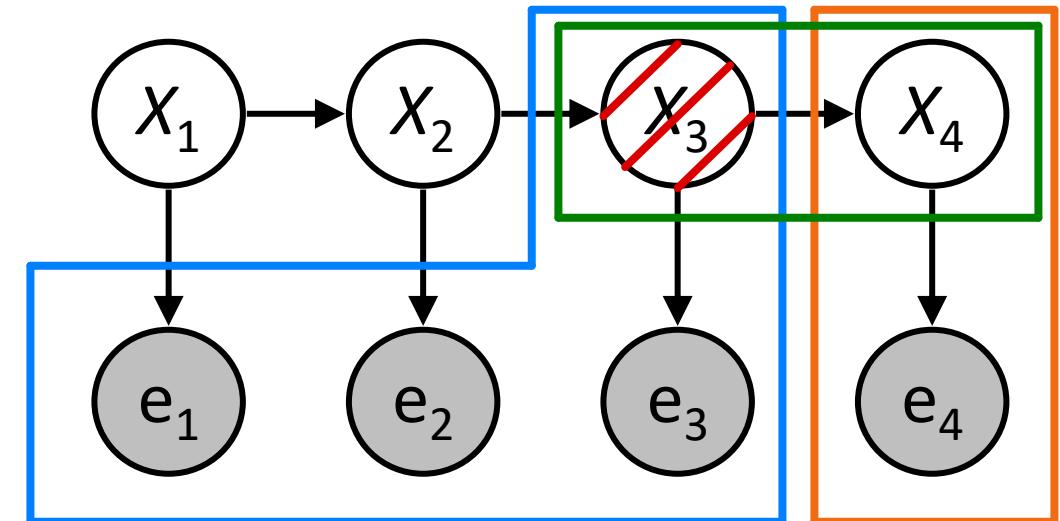


Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t) \\ &= \alpha P(e_t | x_t) \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1} | e_{1:t-1}) \end{aligned}$$



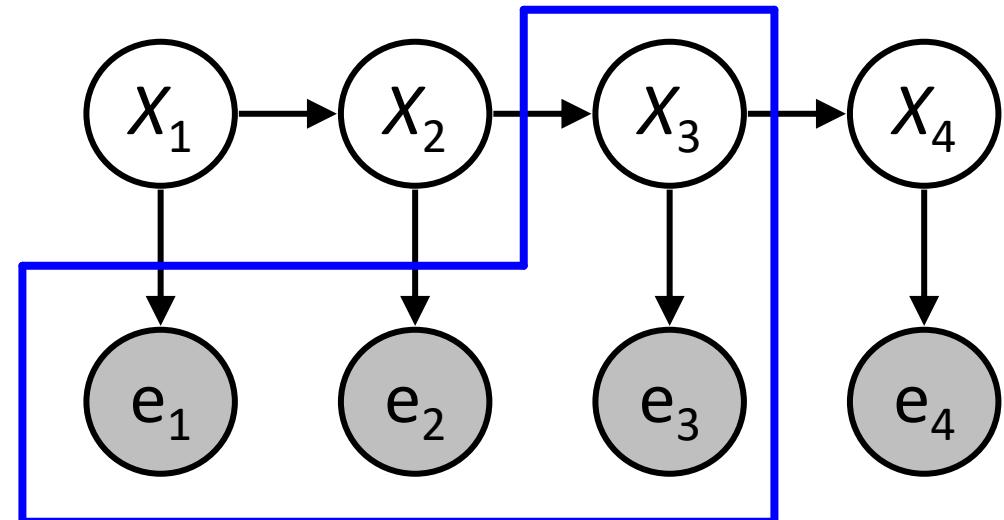
Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

Recursion!

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t) \\ &= \alpha P(e_t | x_t) \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1} | e_{1:t-1}) \end{aligned}$$



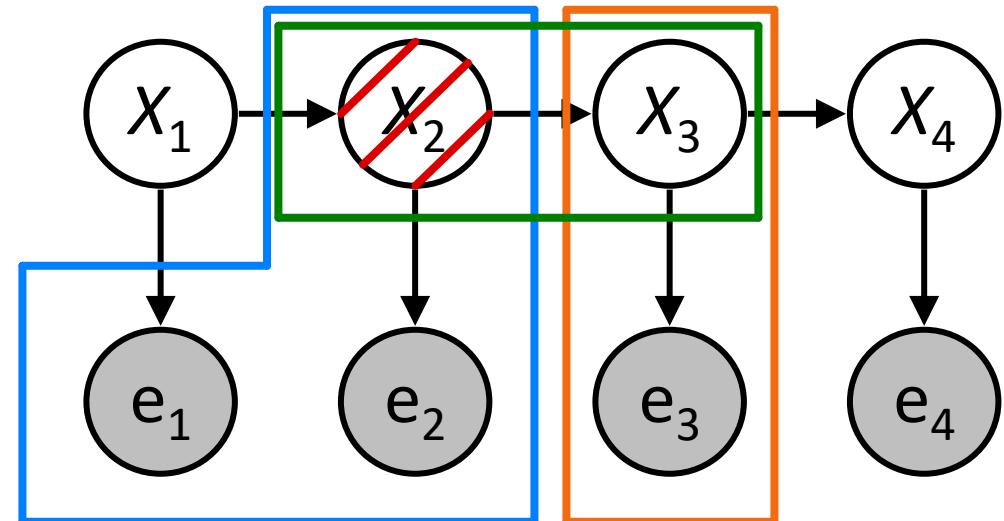
Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

Recursion!

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t) \\ &= \alpha P(e_t | x_t) \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1} | e_{1:t-1}) \end{aligned}$$



Poll 2

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t})$$

What is the runtime of the forward algorithm (i.e., doing the above for one value of t) in terms of the number of states $|X|$ and time t ?
Assume all 3 CPTs are given.

- A) $O(|X|^2 * t)$
- B) $O(|X| * t)$
- C) $O(|X|^2)$
- D) $O(|X|)$

Filtering Algorithm

$$P(X_{t+1} | e_{1:t+1}) = \alpha \frac{P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t})}{\text{Normalize}}$$

$$f_{1:t+1} = \text{FORWARD}(f_{1:t}, e_{t+1})$$

Cost per time step: $O(|X|^2)$ where $|X|$ is the number of states

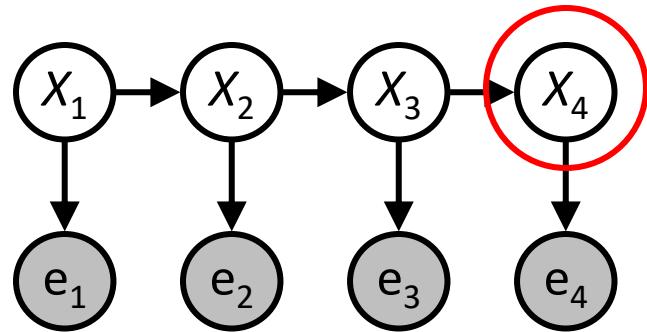
Time and space costs are independent of t

$O(|X|^2)$ is infeasible for models with many state variables

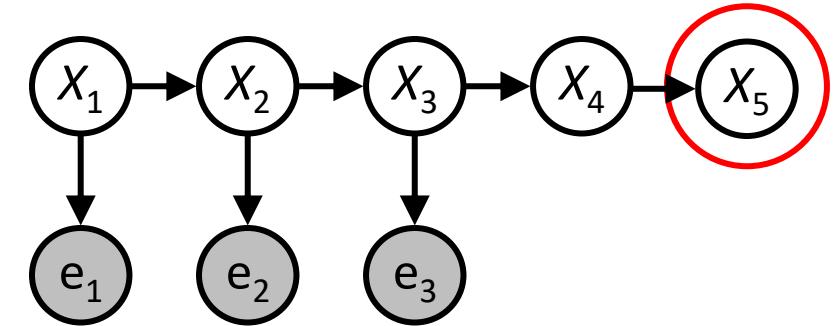
We get to invent really cool approximate filtering algorithms

Other HMM Queries

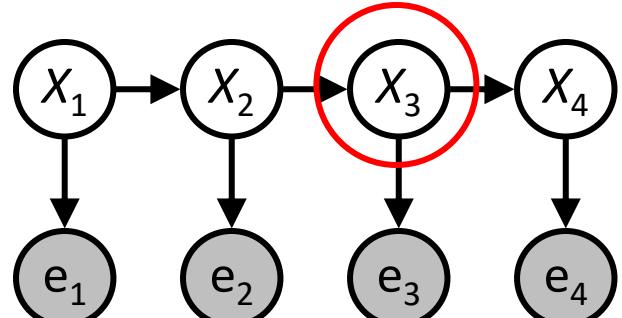
Filtering: $P(X_t | e_{1:t})$



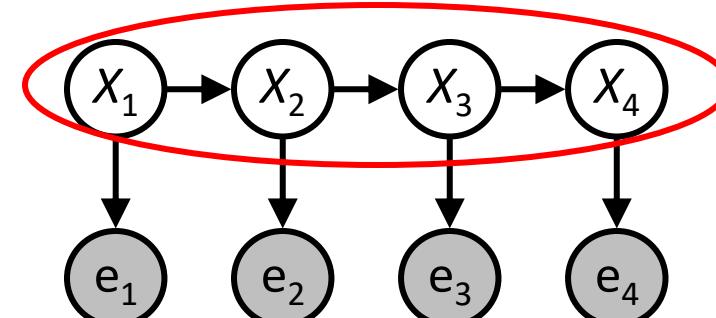
Prediction: $P(X_{t+k} | e_{1:t})$



Smoothing: $P(X_k | e_{1:t}), k < t$



Explanation: $P(X_{1:t} | e_{1:t})$



Inference Tasks

Filtering: $P(X_t | e_{1:t})$

- belief state—input to the decision process of a rational agent

Prediction: $P(X_{t+k} | e_{1:t})$ for $k > 0$

- evaluation of possible action sequences; like filtering without the evidence

Smoothing: $P(X_k | e_{1:t})$ for $0 \leq k < t$

- better estimate of past states, essential for learning

Most likely explanation: $\operatorname{argmax}_{x_{1:t}} P(x_{1:t} | e_{1:t})$

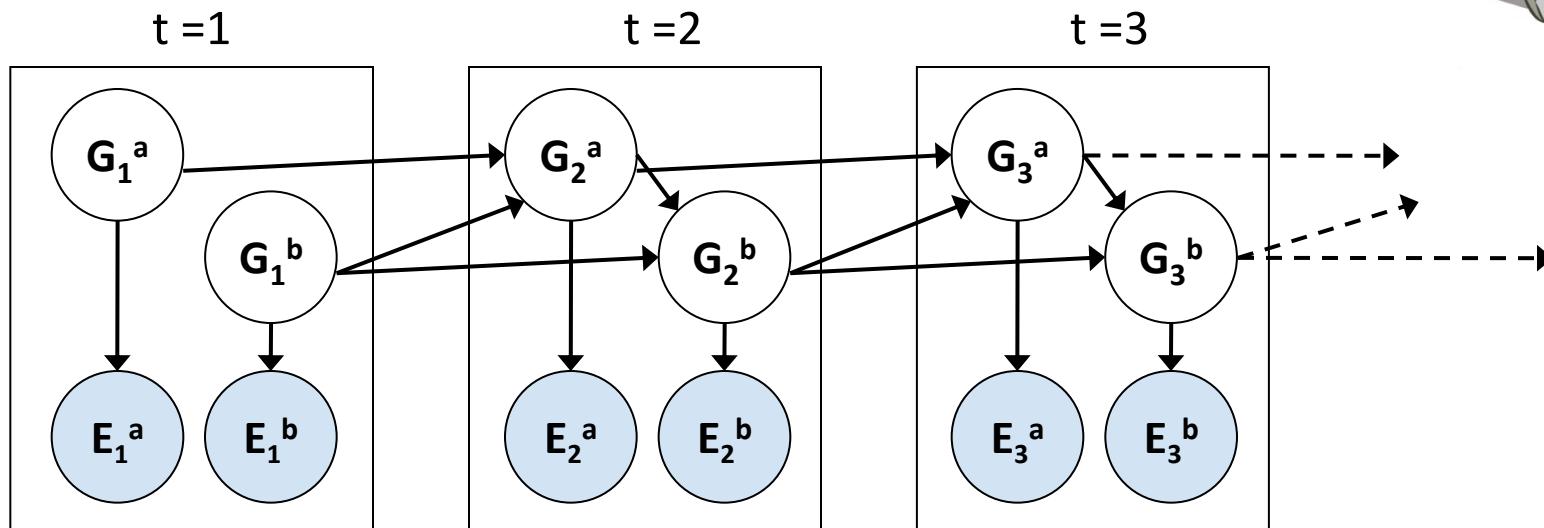
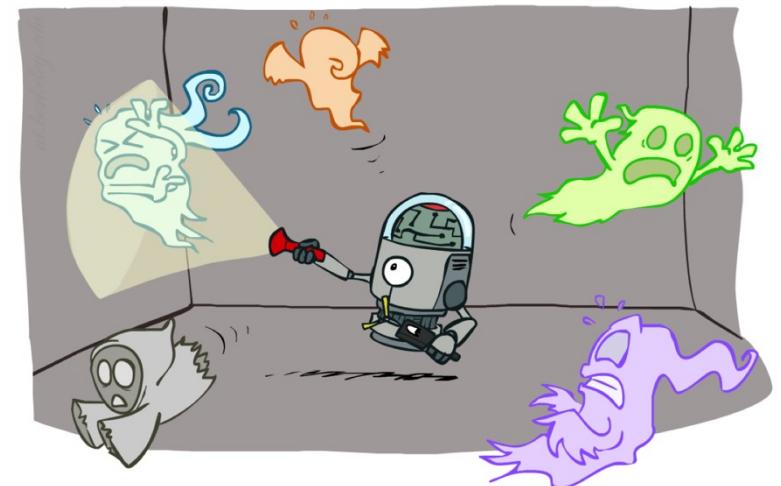
- speech recognition, decoding with a noisy channel

Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time t can condition on those from $t-1$



Practice Activity: Weather HMM

An HMM is defined by:

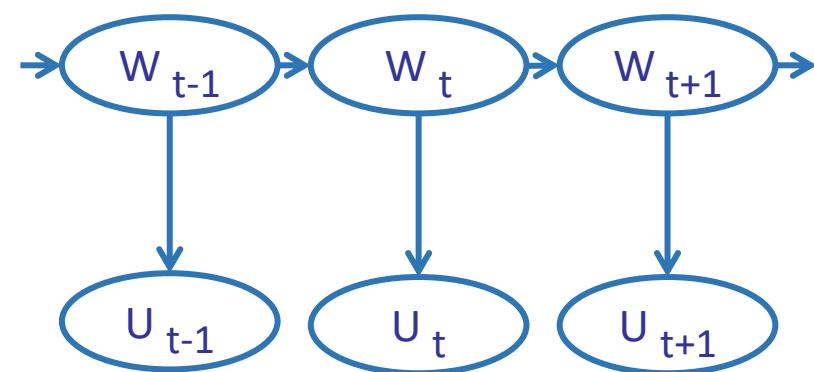
- Initial distribution: $P(X_1)$
- Transition model: $P(X_t | X_{t-1}) = P(W_t | W_{t-1})$
- Sensor model: $P(E_t | X_t) = P(U_t | W_t)$

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

w_t	$P(u_t w_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Given $P(X_1) = \{\text{sun:0.5, rain:0.5}\}$

Compute $P(X_4 = \text{sun} \mid e_4 = e_3 = e_2 = e_1 = \text{True})$



Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W_t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Compute $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$ and $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$P(X_1, e_1) = P(e_1 | X_1)P(X_1)$ #OBSERVE (chain rule)

$P(X_1 | e_1) = \alpha P(X_1, e_1) \rightarrow \alpha = 1 / \sum_{x_1} P(e_1 | x_1)P(x_1)$ #Don't forget to NORMALIZE

$P(X_2 | e_1) = \sum_{x \in X_1} P(X_2 | x)P(x | e_1)$ #PREDICT

Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W_t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Compute $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$ and $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_2|e_1) = \sum_{x \in X_1} P(X_2|x)P(x|e_1) \text{ #PREDICT}$$

$$P(X_2|e_1, e_2) = \alpha P(X_2, e_2|e_1) = \alpha P(e_2|X_2)P(X_2|e_1); \alpha = 1 / \sum_{x \in X_2} P(e_2|x)P(x|e_1)$$

$$P(X_3|e_1, e_2) = \sum_{x_2 \in X_2} P(X_3|x_2)P(x_2|e_1, e_2) \text{ #PREDICT}$$

Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W_t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Compute $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$ and $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_3 | e_1, e_2) = \sum_{x_2 \in X_2} P(X_3 | x_2) P(x_2 | e_1, e_2) \text{ #PREDICT}$$

$$P(X_3 | e_1, e_2, e_3) = \alpha P(X_3, e_3 | e_1, e_2) = \alpha P(e_3 | X_3) P(X_3 | e_1, e_2);$$
$$\alpha = 1 / \sum_{x \in X_3} P(e_3 | x) P(x | e_1, e_2)$$

$$P(X_4 | e_1, e_2, e_3) = \sum_{x \in X_3} P(X_4 | x) P(x | e_1, e_2, e_3) \text{ #PREDICT}$$

Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W_t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Compute $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$ and $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_4 | e_1, e_2, e_3) = \sum_{x \in X_3} P(X_4 | x) P(x | e_1, e_2, e_3) \text{ #PREDICT}$$

$$P(X_4 | e_1, e_2, e_3, e_4) = \alpha P(X_4, e_4 | e_1, e_2, e_3) = \alpha P(e_4 | X_4) P(X_4 | e_1, e_2, e_3);$$
$$\alpha = 1 / \sum_{x \in X_4} P(e_4 | x) P(x | e_1, e_2, e_3)$$

Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W_t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Compute $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$ and $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_1, e_1) = P(e_1 | X_1)P(X_1) \text{ #OBSERVE (chain rule)}$$

$$P(e_1 = \text{True} | X_1 = \text{sun})P(X_1 = \text{sun}) = .2 * .5 = .1$$

$$P(e_1 = \text{True} | X_1 = \text{rain})P(X_1 = \text{rain}) = .9 * .5 = .45$$

$$P(X_1 | e_1) = \frac{P(X_1, e_1)}{P(e_1)} = P(e_1 | X_1)P(X_1) / \sum_{x \in X_1} P(e_1 | x)P(x) \text{ #NORMALIZE USING BAYES RULE}$$

$$P(X_1 = \text{sun} | e_1 = \text{True}) = \frac{.1}{.1 + .45} = .18$$

$$P(X_1 = \text{rain} | e_1 = \text{True}) = \frac{.45}{.1 + .45} = .82$$

Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W_t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Compute $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$ and $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_2|e_1) = \sum_{x \in X_1} P(X_2|x)P(x|e_1) \text{ #PREDICT}$$

$$P(X_2 = \text{sun}|e_1 = \text{True}) = \sum_{x \in X_1} P(X_2 = \text{sun}|x)P(x|e_1 = \text{True}) = .9 * .18 + .3 * .82 = .41$$

$$P(X_2 = \text{rain}|e_1 = \text{True}) = \sum_{x \in X_1} P(X_2 = \text{rain}|x)P(x|e_1 = \text{True}) = .1 * .18 + .7 * .82 = .59$$

Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W_t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Compute $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$ and $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_2|e_1, e_2) = \alpha P(X_2, e_2|e_1) = \alpha P(e_2|X_2)P(X_2|e_1); \alpha = 1 / \sum_{x \in X_2} P(e_2|x)P(x|e_1)$$

$$P(X_2 = \text{sun}|e_1, e_2 = \text{True}) = \alpha P(e_2|X_2 = \text{sun})P(X_2 = \text{sun}|e_1) = \alpha(0.2)(0.41) = 0.13$$

$$P(X_2 = \text{rain}|e_1, e_2 = \text{True}) = \alpha P(e_2|X_2 = \text{rain})P(X_2 = \text{rain}|e_1) = \alpha(0.9)(0.59) = 0.87$$

$$P(X_3|e_1, e_2) = \sum_{x \in X_3} P(X_3|x)P(x|e_1, e_2) \text{ #PREDICT}$$

$$P(X_3 = \text{sun}|e_1, e_2) = P(X_3 = \text{sun}|x = \text{sun})P(x = \text{sun}|e_1, e_2) + P(X_3 = \text{rain}|x = \text{rain})P(x = \text{rain}|e_1, e_2) = 0.38$$

$$P(X_3 = \text{rain}|e_1, e_2) = P(X_3 = \text{rain}|x = \text{sun})P(x = \text{sun}|e_1, e_2) + P(X_3 = \text{rain}|x = \text{rain})P(x = \text{rain}|e_1, e_2) = 0.62$$

Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W_t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Compute $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$ and $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_3 | e_1, e_2, e_3) = \alpha P(X_3, e_3 | e_1, e_2) = \alpha P(e_3 | X_3) P(X_3 | e_1, e_2);$$

$$\alpha = 1 / \sum_{x \in X_3} P(e_3 | x) P(x | e_1, e_2)$$

$$P(X_3 = \text{sun} | e_1, e_2, e_3) = \alpha P(e_3 = \text{True} | X_3 = \text{sun}) P(X_3 = \text{sun} | e_1, e_2) = \alpha(0.2)(0.38) = 0.12$$

$$P(X_3 = \text{rain} | e_1, e_2, e_3) = \alpha P(e_3 = \text{True} | X_3 = \text{rain}) P(X_3 = \text{rain} | e_1, e_2) = \alpha(0.9)(0.62) = 0.88$$

Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W_t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Compute $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$ and $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_4 | e_1, e_2, e_3) = \sum_{x \in X_3} P(X_4 | x)P(x | e_1, e_2, e_3) \text{ #PREDICT}$$

$$P(X_4 = \text{sun} | e_1, e_2, e_3) = \sum_{x \in \{\text{sun}, \text{rain}\}} P(X_4 = \text{sun} | x)P(x | e_1, e_2, e_3) = .9 * .12 + .3 * .88 = .37$$

$$P(X_4 = \text{rain} | e_1, e_2, e_3) = \sum_{x \in \{\text{sun}, \text{rain}\}} P(X_4 = \text{rain} | x)P(x | e_1, e_2, e_3) = .1 * .12 + .7 * .88 = .63$$

Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W_t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Compute $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$ and $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_4 | e_1, e_2, e_3, e_4) = \alpha P(X_4, e_4 | e_1, e_2, e_3) = \alpha P(e_4 | X_4)P(X_4 | e_1, e_2, e_3);$$
$$\alpha = 1 / \sum_{x \in X_4} P(e_4 | x)P(x | e_1, e_2, e_3)$$

$$\alpha P(e_4 = \text{True} | X_4 = \text{sun})P(X_4 = \text{sun} | e_1, e_2, e_3) = \alpha(.2 * .37) = .115$$
$$\alpha P(e_4 = \text{True} | X_4 = \text{rain})P(X_4 = \text{rain} | e_1, e_2, e_3) = \alpha(.9 * .63) = .885$$

Poll 3

Suppose we are given $P(X4=\text{sun} \mid e4= e3= e2= e1=\text{True})$, along with the same CPT tables as the activity example, and we want to compute $P(X5=\text{sun} \mid e5= e4= e3= e2= e1=\text{True})$.

What is the first step we would perform?

Predict

Observe

Forward

Smoothing