Warm-up as you walk in

= For the following Bayes net, write the query P(X, | e,,,) in terms of
the conditional probability tables associated with the Bayes net.

Q(lD_. X,
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P(X, | e,e,ese,) =
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Announcements

= HWO9 due the 11 (Friday)
= TA applications (on Piazza) due the 12t (Saturday)
= Makeup final form (on Piazza) due the 14t (Monday)



Al: Representation and Problem Solving
Hidden Markov Models

Instructors: Tuomas Sandholm and Vincent Conitzer
Slide credits: CMU Al and http://ai.berkeley.edu
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= For the following Bayes net, write the query P(X, | e,,,) in terms of
the conditional probability tables associated with the Bayes net.
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Reasoning over Time or Space

Often, we want to reason about a sequence of observations
= Speech recognition

= Robot localization

= User attention

= Medical monitoring

Need to introduce time (or space) into our models



Markov Chain Models

Value of X at a given time is called the state

=00 -~

P(X1)
P(X; | Xt—1)

" Parameters: called transition probabilities or dynamics, specify how the
state evolves over time (also, initial state probabilities)

= Stationarity assumption: transition probabilities the same at all times

= Same as MDP transition model, but no choice of action



Conditional Independence

...,.@ B3 &)

Basic conditional independence:

= Past and future independent given the present
= Each time step only depends on the previous

= This is called the (first order) Markov property

Note that the chain is just a (growable) BN

= We can always use generic BN reasoning on it if we truncate
the chain at a fixed length



Example: Markov Chain Weather

States: X = {rain, sun}

= |nitial distribution: 1.0 sun

= CPT P(X, | X,.,):

Xew | X | P(XcIX4)
sun | sun 0.9
sun | rain 0.1
rain | sun 0.3
rain | rain 0.7
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Two new ways of representing the same CPT

0.9
0.3

sun v sun




0.9
Example: Markov Chain Weather

0.3
Initial distribution: P(X; = sun) = 1.0 .@ @

0.7 0.1

What is the probability distribution after one step?

P(X, =sun) =% Z ?(X\?% cun/ X)
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Example: Markov Chain Weather
Initial distribution: P(X; = sun) = 1.0

What is the probability distribution after one step?
P(X, =sun) =7

P(X; = sun) = ), P(X; = x,X, = sun)
= lep(Xz =sun | X; = x1 )P(X; = x1)
= P(X, =sun| X; =sun)P(X; = sun) +
P(X, =sun| X = rain)P(X,; = rain)
=09-1.04+0.3-0.0=0.9

0.1

0.9



0.9

Poll 1

0.3 ’
Initial distribution: P(X, = sun) = 0.9 .@ @

0.7
What is the probability distribution after the next step?

P(X; =sun) =7
?bﬁ@ ”QM) i 77(?% o 2] Pl )

0.1

A) 0.81 D
(B) 0sa > | (thg(/\M/Kf?WW(/Q:gW\
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Poll 1
Initial distribution: P(X, = sun) = 0.9
0.7 0.1
What is the probability distribution after the next step? '
P(X; =sun) =7
?(X :5M“\) = Z P(st“{\) XZ:XZ\
A) 0.81 ? X,
B) 0.84 _ _ _ =
) - Z PCX's"SW‘(\ \Xz"' A PCXZ XZ\
C) 0.9 X,
D) 1.0 = 0409 + 030\

E) 1.2
- O3 + 0.03 = 0,94

1



Markov Chain Inference

@)~ --+

If you know the transition probabilities, P(X; | X;_1), and you know P (X,),
write an equation to compute P(X5s).




Markov Chain Inference

@)~ --+

If you know the transition probabilities, P(X; | X;_1), and you know P (X,),
write an equation to compute P(X5s).

P(Xs) = Zx4P(x4,X5)
= Zx4P(X5 | x4 )P (x4)



Markov Chain Inference

@)~ --+

If you know the transition probabilities, P(X; | X;_1), and you know P (X,),
write an equation to compute P(X5s).

P(Xs) = le,xz,x3,x4 P(x1, x5, x3, X4, X5)
= le,XZ,X3,X4P(X5 | x4 )P (x4 | x3)P(x3 | x2)P(x2 | X1)P(xq)
= Zx4P(X5 x4)2x1,x2,x3p(x4 | x3)P(x3 | x2)P(x2 | x1)P(xq)
= Zx4P(X5 x4)2x1,x2,x3P(Xsz,xs,sz)
= 2x4P(X5 x4 )P (x4)




Weather prediction

States {rain, sun}

= Initial distribution P(X)

P(X,)

sun rain
0.5 0.5

Two new ways of representing the same CPT

= Transition model P(X, | X, )

0.9
0.3

X,., P(X,|X..,) sun v sun
sun rain A

sun 0.9 0.1 0.7

rain 0.3 0.7 0.1




Weather prediction

Time 0: P(X,) = (0.5, 0.5) Xeo | PX %)

sun rain

sun 0.9 0.1
What is the weather like attime 1? [T o3 0.7

P(X1) —

ZxOP(XO = X0, X1)

=ZxOP(X1|X0 = x0) P(Xo = xo)
= 0.5(0.9,0.1) + 0.5¢(0.3,0.7)

= (0.6,0.4)




Weather prediction, contd.

sun rain

sun 0.9 0.1
What is the weather like at time 2? [ ain | 03 0.7

P(X,) =

lep(X1 = X1, X32)

=2, P(X2| X1 = )P (X1 = x1)
= 0.6(0.9,0.1) + 0.4(0.3,0.7)

= (0.66,0.34)




Weather prediction, contd.

Time 2: P(X,) = (0.66, 0.34) Xeo | POGIX,y)

sun rain

sun 0.9 0.1

What is the weather like at time 3? |rain| 03 0.7

P(X3) =

=2x2P(X3|X2 = x2)P(X; = x3)
= 0.66(0.9,0.1) + 0.34(0.3,0.7)
= (0.696, 0.304)

-©)




Forward algorithm (simple form)

What is the state at time t? Transition model}

P(Xt) = P(Xt—l - Xt—l:X Probability from
X previous iteration
t—1

— 2 P(X¢|Xe—q = x21)P(Xpoq = Xp—q)

Xt—1

Iterate this update starting at t=0




Prediction with Markov chains

. . (11 77
As time passes, uncertainty “accumulates (Transition model: ghosts usually go clockwise)
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Observations Reduce Uncertainty

As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation




Hidden Markov Models




Hidden Markov Models

Usually the true state is not observed
directly

Hidden Markov models (HMMs)

= Underlying Markov chain over states X
" You observe evidence E at each time step

" X, is a single discrete variable; £, may be
continuous and may consist of several variables

OaOnOn Ol




Real HMM Examples

Speech recognition HMMs:
= Observations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

= Observations are words (tens of thousands)
= States are translation options

Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)

Molecular biology:
= Observations are nucleotides ACGT
= States are coding/non-coding/start/stop/splice-site etc.



HMM as a Bayes Net Warm-up

= For the following Bayes net, write the query P(X, | e,.,) in terms of the conditional

probability tables associated with the Bayes net.
et OXOJORO



HMM as a Bayes Net Warm-up

A=

7

Ple. gz € < 6’45

For the following Bayes net, write the query P(X, | e,.,) in terms of the conditional
probability tables associated with the Bayes net.

P(X, | e, €, €3 €)= PO(1 S ?,.D

_,0(222 P(x X

X D(L)(

—XCZ & P

P
/ 3 73€)€ e(f

Pl )P )P

be )xb =

Useful notation: X ab = Xg, Xqt

For example: P(X;., | e4.5) =




Example: Weather HMM

An HMM is defined by:
" |nitial distribution: P(X,)

" Transition model: P(X, | X, ;) - PRTITRE
t-1 t t-1
= Sensor model: P(E, | X,) sun | rain
sun 0.9 0.1
rain 0.3 0.7
Weathert_l Weathert Weathert+1
W, P(U,|W,)

true false

sun 0.2 0.8

rain 0.9 0.1




Example: Ghostbusters HMM

State: location of moving ghost

Observations: Color recorded by )
ghost sensor at clicked squares 1/46_-1/16 ¥
P(X,) = uniform 0 |1/6] O
P(X, | X, ,) = usually move clockwise, but ololo
sometimes move randomly or stay in place 1/91/9|1/9
P(C,; | X.) = same sensor model as before: 1/9|1/9|1/9 P(X, | X;=(2,3))
red means close, green means far away.

1/911/9(1/9

P(X,) |

© © &

[Demo: Ghostbusters — Circular Dynamics — HMM (L14D2)]



HMM as Probability Model

= Joint distribution for Markov model:

P(Xgyeeey X7) = PXg) I Licq.7 PO, | X q)
= Joint distribution for hidden Markov model:

P(Xgy X1yEqy -y X1E7) = PIXo) L Licq .7 PG | Xoq) PUE, | X)
= Future states are independent of the past given the present
= Current evidence is independent of everything else given the current state
= Are evidence variables independent of each other?

-—==»

é é é Useful notation: X,., = X, X1, .-, X},

For example: P(X;., | e4.5) = P(X{, X5, | €4, €5, €3)



HMM Queries
Filtering: P(X,|e,.,)
D@
() () () (0

Smoothing: P(X,|e,.,), k<t
OO
& ® ® &

Prediction: P(X,,.|e,.,)

OXOHONONO)
@ @ ©

Explanation: P(X,.,|e;.,)

OO 66




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

>

(o)

¥




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

ofer




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

A4

]




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network




Filtering Algorithm

P(Xiiil€1.001) = P(et+1 |Xt+1) th P( t+1| Xt) P(x, | eq.)

l Normalize I E)date Nedict ]

fl:t+1 = FORWARD(fl:t ’ et+1)




P |
Filtering Algorithm P X M/%} = % — %W/%)

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

B e D-O-OFE
:ta [e)l()t(t) etl elil:t—elt) elt 1 Xl - Xz - X3 +
) 4 A4 A4




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X;: | e1.r) = P(X¢| ers€q:6-1) @_’@ﬂ'@-

= a P(X;, er| e1.0—1) l

A 4 \ 4
Pl [OJOXOXO

Xt—1




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X;: | e1.r) = P(X¢| ers€q:6-1) @_’@ﬂ'@-

= a P(X;, er| e1.0—1) l

A 4 \ 4
Pl [OJOXOXO

Xt—1

a z P(x¢—1| €1.t-1) P(X¢|x¢—1, €1.4—1) P(ee| X, Xe—1, €1.6-1)

Xt—1



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er, €1.6-1) @*@ '@ >@

= a P(X;, et er.6-1)

azp(xt_1,xt;et|el:t—1)

Xt—1

a z P(x¢—q| €1.4—1) P(X¢|x¢—1, €1.4—1) P(er| X, xe—1, €1.6-1)

Xt—1



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1)
= a P(X;, er| e1.0—1)

a Z P(x¢—q,Xe, €] €1.6-1)

Xt—1

Xt—1

orol

]

@ ) POl exe-1) P(Xclxey) PlerlX)




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1)

= a P(X; et e1.6-1)
04 z P(x¢—1, X¢, €| €1.6—1)

Xt—1

orol

]

a z P(xe—1| €1.t—1) P(X¢|xe—q) P(es]| Xt)

Xt—1

a P(e¢|x;) 2 P(xelxe—1) P(x¢—q| €1.6-1)

Xt—1




Recursion!

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| e, €1.6-1) @—»@——»@—
= a P(X; et e1.4-1)

o z P(xi_1,X¢, €| €1.4-1)

Xt—1

a Z P(xe—1| e1.6—1) P(X¢|xe—q) P(es]| X¢)

Xt—1

a P(e¢|x;) Z P(xelxe—1) P(xe—1] €1.0-1)

Xt—1

gg



Recursion!

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1) Xy »@»
= a P(X;, et| e1.e—1)

—»Xy

A4

!
o Z P(x¢—1, Xt el €1.4-1)

Xt—1

a Z P(xe—1| e1.6—1) P(X¢|xe—q) P(es]| X¢)

Xt—1

a P(e¢|x;) Z P(xelxe—1) P(xe—1] €1.0-1)

Xt—1



Poll 2

'D(Xt+1|el t+1) = P t+1 |Xt+1 th P t+1| Xt) 'D Xt | €1. t)

I Normalize I hdate ﬁedict ]

What is the runtime of the forward algorithm (i.e., doing the above for
one value of t) in terms of the number of states |X| and time t?
Assume all 3 CPTs are given.

A) O(|X|%2*t) +—
B) O(|X]| *1t)

D) O(1X])



Filtering Algorithm

P(Xp1l€1.000) = P €1 |Xt+1 th P t+1| Xt) Pixe | 1)

I Normalize I hdate ﬁedict ]

fl:t+1 = FORWARD(fl:t ’ et+1)
Cost per time step: O(|X|?) where | X| is the number of states

Time and space costs are independent of t
O(|X|?) is infeasible for models with many state variables
We get to invent really cool approximate filtering algorithms



Other HMM Queries
Filtering: P(X,|e,.,)
D@
() () (&) (o

Smoothing: P(X,|e,.,), k<t
OO
& ® ® &

Prediction: P(X,,.|e,.,)

OXOHONONO)
@ @ ©

Explanation: P(X,.,|e;.,)

OO 66




Inference Tasks

Filtering: P(X;|eq.;)

= belief state—input to the decision process of a rational agent

Prediction: P(X,,|eq.;) for k>0

= evaluation of possible action sequences; like filtering without the evidence
Smoothing: P(X,|e,.;) forO <k <t

" better estimate of past states, essential for learning

Most likely explanation: argmaxxlth(xlzt | e1.4)

= speech recognition, decoding with a noisy channel



Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using
multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time t can condition on those from t-1

t=1 t=2 t=3




Practice Activity: Weather HMM

An HMM is defined by:

" |nitial distribution: P(X))

" Transition model: P(X, | X, ,) = P(W, |W,)
= Sensor model: P(E, | X,) = P(U, |W,)

Given P(X;) = {sun:0.5, rain:0.5}
Compute P(X,=sun | e,= e;= e,= e,=True)

Wi

P(W,W,_,)

sun

rain

sun

0.9

0.1

rain

0.3

0.7

W, P(U,|W,)
true false
sun 0.2 0.8
rain 0.9 0.1
Wi




Practice Activity: Weather HMM
An HMM is defined by:

o o . W | P(W W) W, P(U,|W,)
" |nitial distribution: P(X)) on | ramn rue | faloe
* Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X;,e;) = P(eq|X;)P(X;) #OBSERVE (chain rule)

P(Xile;) = aP(Xy,e;) > a =1/ X, P(eslx;)P(x;) #Don't forget to NORMALIZE

P(Xyler) = Txex, P(Xz|%)P(x|e;) #PREDICT



Practice Activity: Weather HMM
An HMM is defined by:

o o . W | P(W W) W, P(U,|W,)
" |nitial distribution: P(X)) on | ramn rue | faloe
* Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X;le ) = erxl P(X;|x)P(x|e;) #PREDICT

P(X;le1,e;) = aP(X,, e3le;) = aP(e;|X3)P(Xzleq); a =1/ Z P(ez|x)P(x|eq)

xEX2

P(X3ley, e;) = Qix,€X, P(X3|x2)P(x;|eq, e;) #PREDICT



Practice Activity: Weather HMM

An HMM is defined by:

" |nitial distribution: P(X))

" Transition model: P(X, | X, ,)
= Sensor model: P(E, | X,)

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

W, 4 P(W,|W,_4) W, P(U,|W,)
sun rain true false

sun 0.9 0.1 sun 0.2 0.8

rain 0.3 0.7 rain 0.9 0.1

P(Xsley, e3) = szexz P(X3lx3)P(x2]eq, e2) #PREDICT

P(X3lei,e5,e3) = aP(X3,e3leq, ;) = aP(e3|X3)P(X3leq, €3);

a=1/ P(e3|x)P(x|eq,ez)

.XEX3

P(X4leq, ez, e3) = Yyex, P(X4|x)P(x|eq, €3, €3) #PREDICT




Practice Activity: Weather HMM

An HMM is defined by:

" |nitial distribution: P(X))

" Transition model: P(X, | X, ,)
= Sensor model: P(E, | X,)

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X4leq, ez, e3) = Yyex, P(X4|x)P(x|eq, €3, €3) #PREDICT

W, 4 P(W,|W,_4) W, P(U,|W,)
sun rain true false

sun 0.9 0.1 sun 0.2 0.8

rain 0.3 0.7 rain 0.9 0.1

P(X4leq,e5,e3,64) = aP(Xy, eqleq, e3,e3) = aP(e4|X4)P(X4leq, ez, €3);

a=1/ ) Pleslx)P(x|es, ez €3)

xEX4,




Practice Activity: Weather HMM
An HMM is defined by:

o o _ W | P(W W) W, P(U,|W,)
" |nitial distribution: P(X)) on | ramn rue | faloe
* Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X;,e;) = P(e;|X;)P(X;) #OBSERVE (chain rule)
P(e; = True|X; = sun)P(Xy =sun) =.2x.5=.1
P(e; = True|X; = rain)P(X; = rain) = 9*.5= 45

P(Xyle) = B280 — p(e|X)P(X,)/ Srex, P(ey|x)P(x) HNORMALIZE USING BAYES RULE

P(eq) .
P(X, = sunle; = True) = 14,45 = .18
P(X; = rainle; = True) = = .82

1+ .45



Practice Activity: Weather HMM
An HMM is defined by:

o o _ W | P(W W) W, P(U,|W,)
" |nitial distribution: P(X)) on | ramn rue | faloe
* Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: 'D(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X;le) = erxl P(X;|x)P(x|e;) #PREDICT
P(X, = sun|e; = True) = z P(X, = sun|x)P(x|e; = True) = 9%.18+ .3 .82 = 41

X
P(X, = rain|e; = True) = i P(X, = rain|x)P(x|e; = True) = .1 .18+ .7 *.82 = .59

xEX1



Practice Activity: Weather HMM
An HMM is defined by:

o o _ W | P(W W) W, P(U,|W,)
" |nitial distribution: P(X)) on | ramn rue | faloe
* Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: 'D(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X;leq,e2) = aP(Xy, ezle1) = aP(e;|X;)P(Xzler); a =1/ Z P(e|x)P(x|e1)

XEX
P(X, = sun|ey,e;, = True) = aP(e,|X, = sun)P(X, = sunlel)zz a(.2)(41) = .13
P(X, = rain|e;,e, = True) = aP(e,|X, = rain)P(X, = rainle;) = a(9)(.59) = .87

P(X3leq,ez2) = Xyex, P(X3|x)P(x|eq, e;) #PREDICT
P(X; = sunleq, e;) = P(X53 = sun|x = sun)P(x = sun|ey,e,) + P(X3|x = rain)P(x = rain|e;,e,) =0.38
P(X3; = rain|eq,e,) = P(X3 = rain|x = sun)P(x = sun|eq,e,) + P(X3|x = rain)P(x = rainle,,e,) =0.62



Practice Activity: Weather HMM
An HMM is defined by:

o o _ W | P(W W) W, P(U,|W,)
" |nitial distribution: P(X)) on | ramn rue | faloe
* Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X3lei,e5,e3) = aP(X3,e3leq, ;) = aP(e3|X3)P(X3leq, €3);
a=1/ P(es|x)P(x|ey, e;)

xEX3

P(X; = sunleq, ey, e3) = aP(e3 = True|X; = sun)P(X3 = sunleq,e,) = a(.2)(.38) =.12
P(X5; = rainle;, e,,e3) = aP(e3 = True|X3; = rain)P(X; = rainley, e;) = a(.9)(.62)=.88



Practice Activity: Weather HMM
An HMM is defined by:

o o _ W | P(W W) W, P(U,|W,)
" |nitial distribution: P(X)) on | ramn rue | faloe
* Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}
P(X4leq, ez, e3) = Yyex, P(X4|x)P(x|eq, €3, €3) #PREDICT

P(X, = sun|eq, ey, e3) = z P(X, = sun|x)P(x|e, e5,e3) = 9*.12+ .3%.88 = .37
X€E{s in}
P(X, = rainley, e,,e3) = P(X, = rain|x)P(x|eq,e,,e3) = 1x.12+ .7 .88 = .63

xe{sun,rain}



Practice Activity: Weather HMM

An HMI\/I s defmed by: T P 8 BT

" |nitial distribution: P(X)) wn | rain true | false
* Transition model: P(X, | X, ,) sun | 09 | 0.1 sun | 02 | 08
= Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X4|e1;€ ,93;94) = aP(X,, e4|el,ez,eg) = “P(94|X4)P(X4|31;32;e3)i
a=1/ P(e4|x)P(x|ey, 2, €3)

.XEX4

aP(e, = True|X, = sun)P(X, = sunleq, ey, e3) = a(.2*.37) =.115
aP(e, = True|X, = rain)P(X, = rainleq, e,,e3) = a(.9*.63) = .885



Poll 3

Suppose we are given P(X4=sun | e4=e3=e2=el=True), along with the
same CPT tables as the activity example, and we want to compute
P(X5=sun | e5= e4= e3=e2=el=True).

What is the first step we would perform?

Predict
Observe
Forward
Smoothing
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