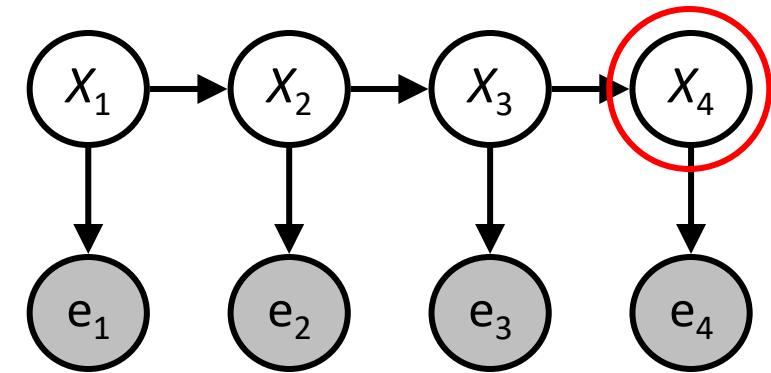


# Warm-up as you walk in

- For the following Bayes net, write the query  $P(X_4 \mid e_{1:4})$  in terms of the conditional probability tables associated with the Bayes net.

$$P(X_4 \mid e_1, e_2, e_3, e_4) =$$



# Announcements

- HW9 due the 11<sup>th</sup> (Friday)
- TA applications (on Piazza) due the 12<sup>th</sup> (Saturday)
- Makeup final form (on Piazza) due the 14<sup>th</sup> (Monday)

# AI: Representation and Problem Solving

## Hidden Markov Models



Instructors: Tuomas Sandholm and Vincent Conitzer

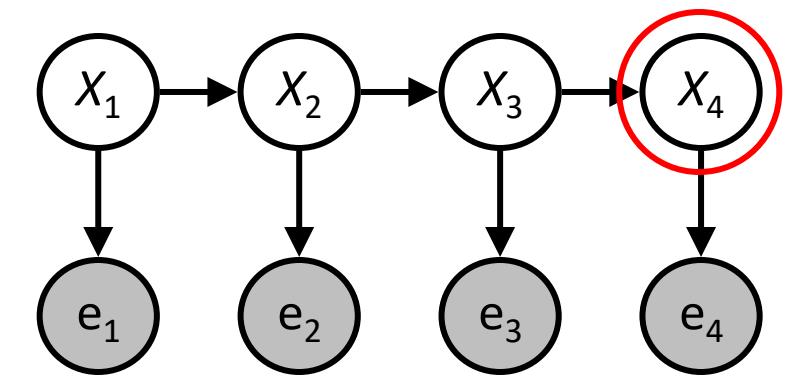
Slide credits: CMU AI and <http://ai.berkeley.edu>

Warm-up as you walk in  $P(X_4 | e_1, e_2, e_3, e_4) = \frac{P(X_4, e_1, e_2, e_3, e_4)}{P(e_1, e_2, e_3, e_4)}$

- For the following Bayes net, write the query  $P(X_4 | e_{1:4})$  in terms of the conditional probability tables associated with the Bayes net.

$$\begin{aligned}
 P(X_4 | e_1, e_2, e_3, e_4) &= \propto P(X_4, e_1, e_2, e_3, e_4) = \\
 &= \propto \sum_{x_3} \sum_{x_2} \sum_{x_1} P(x_1, x_2, x_3, X_4, e_1, e_2, e_3, e_4) \\
 &= \propto \sum_{x_3} \sum_{x_2} \sum_{x_1} P(x_1) P(e_1 | x_1) P(x_2 | x_1) P(e_2 | x_2) P(x_3 | x_2) P(e_3 | x_3) P(X_4 | x_3) P(e_4 | x_4)
 \end{aligned}$$

$$\begin{aligned}
 &= \propto P(e_4 | \cancel{x_4}) \cancel{\sum_{x_3} \sum_{x_2} \sum_{x_1} P(X_4 | x_3) P(e_3 | x_3) \cancel{\sum_{x_2} P(x_3 | x_2) P(e_2 | x_2)}} \\
 &\quad \cancel{\sum_{x_3} \cancel{\sum_{x_2} \cancel{\sum_{x_1} P(x_1) P(e_1 | x_1) P(x_2 | x_1) P(X_4 | x_3) P(e_4 | x_4)}}}
 \end{aligned}$$



# Reasoning over Time or Space

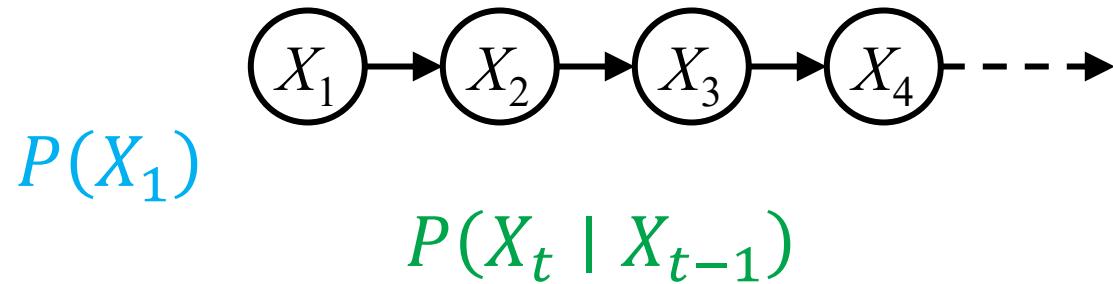
Often, we want to **reason about a sequence of observations**

- Speech recognition
- Robot localization
- User attention
- Medical monitoring

Need to introduce time (or space) into our models

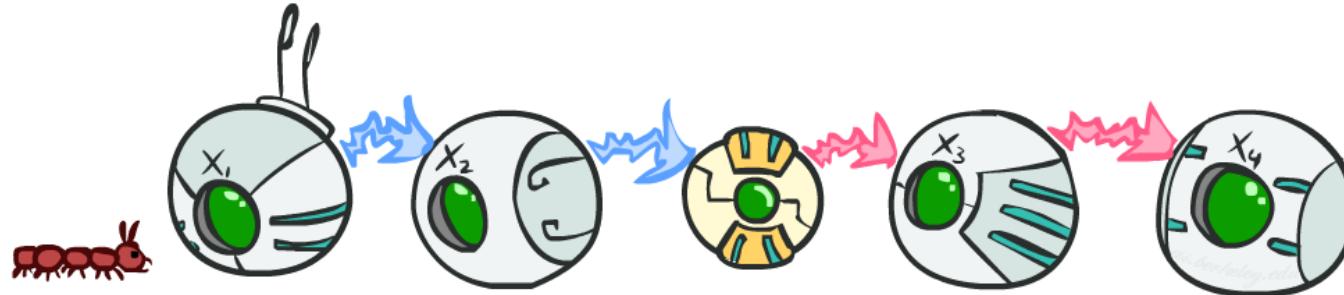
# Markov Chain Models

Value of  $X$  at a given time is called the **state**



- Parameters: called **transition probabilities** or dynamics, specify how the state evolves over time (also, **initial state probabilities**)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

# Conditional Independence



## Basic conditional independence:

- Past and future independent given the present
- Each time step only depends on the previous
- This is called the (first order) Markov property

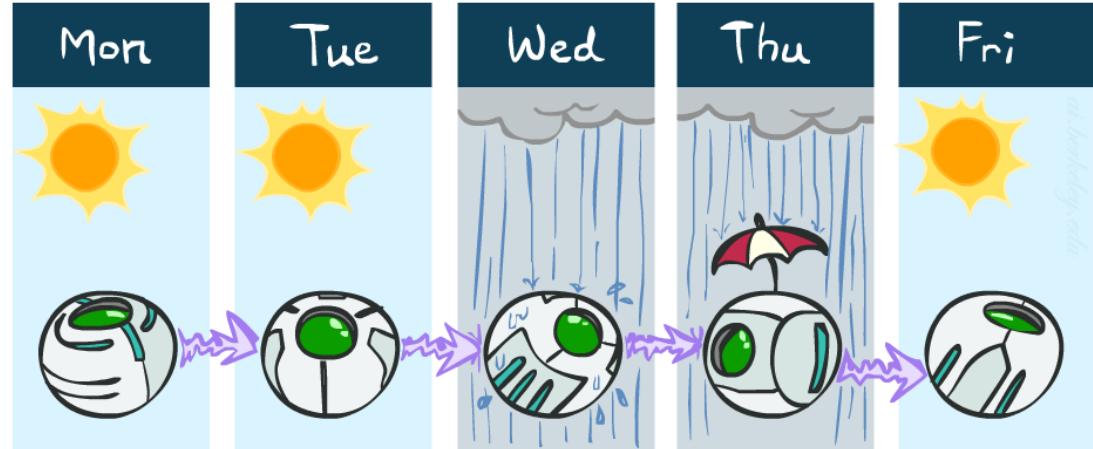
## Note that the chain is just a (growable) BN

- We can always use generic BN reasoning on it if we truncate the chain at a fixed length

# Example: Markov Chain Weather

States:  $X = \{\text{rain, sun}\}$

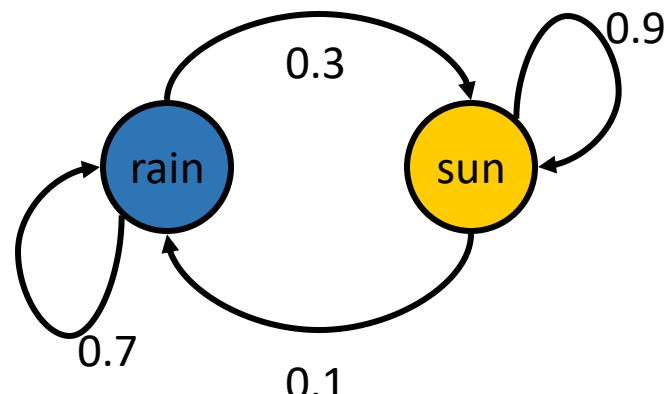
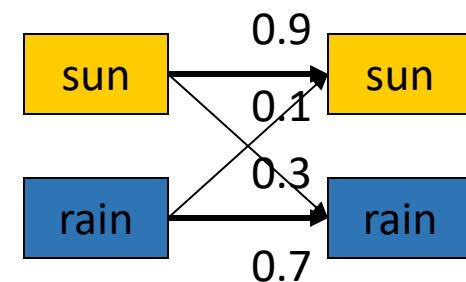
- Initial distribution: 1.0 sun



- CPT  $P(X_t | X_{t-1})$ :

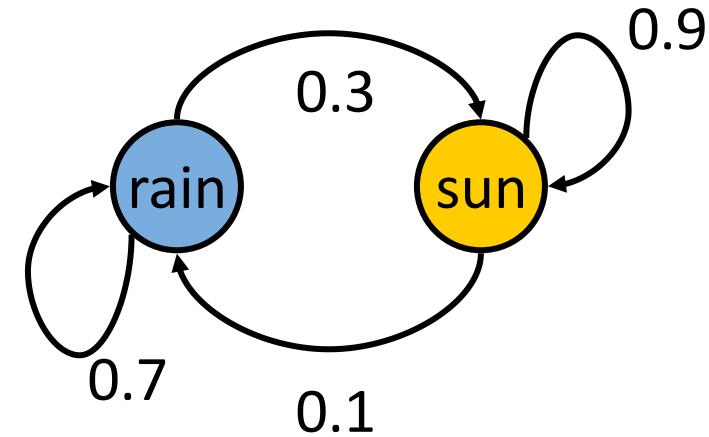
| $X_{t-1}$ | $X_t$ | $P(X_t   X_{t-1})$ |
|-----------|-------|--------------------|
| sun       | sun   | 0.9                |
| sun       | rain  | 0.1                |
| rain      | sun   | 0.3                |
| rain      | rain  | 0.7                |

Two new ways of representing the same CPT



# Example: Markov Chain Weather

Initial distribution:  $P(X_1 = \text{sun}) = 1.0$



What is the probability distribution after one step?

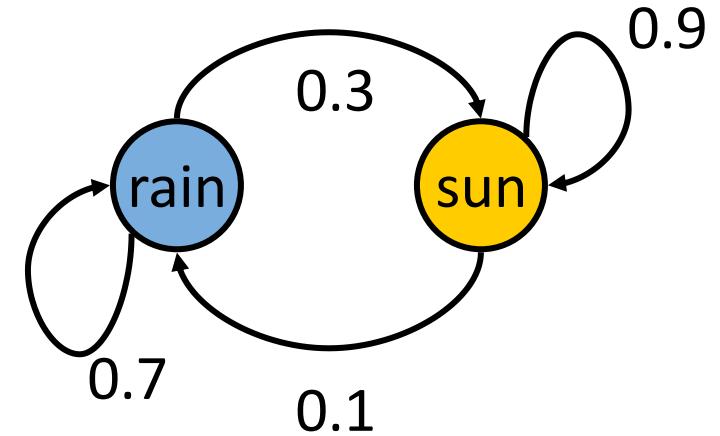
$$\begin{aligned} P(X_2 = \text{sun}) &= \sum_{X_1} P(X_1) P(X_2 = \text{sun} | X_1) \\ &= P(X_1 = \text{sun}) P(X_2 = \text{sun} | X_1 = \text{sun}) \\ &\quad + P(X_1 = \text{rain}) P(X_2 = \text{sun} | X_1 = \text{rain}) = 1.0 + 0.1 \cdot 0.3 \\ &= 1.0 + 0.3 = 0.9 \end{aligned}$$

# Example: Markov Chain Weather

Initial distribution:  $P(X_1 = \text{sun}) = 1.0$

What is the probability distribution after one step?

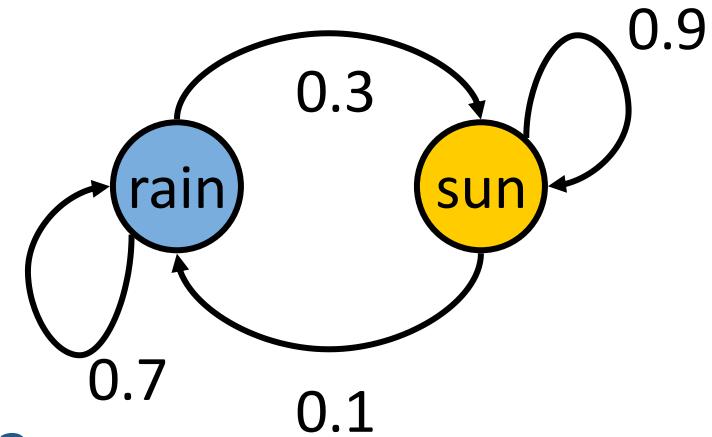
$P(X_2 = \text{sun}) = ?$



$$\begin{aligned} P(X_2 = \text{sun}) &= \sum_{x_1} P(X_1 = x_1, X_2 = \text{sun}) \\ &= \sum_{x_1} P(X_2 = \text{sun} | X_1 = x_1) P(X_1 = x_1) \\ &= P(X_2 = \text{sun} | X_1 = \text{sun}) P(X_1 = \text{sun}) + \\ &\quad P(X_2 = \text{sun} | X_1 = \text{rain}) P(X_1 = \text{rain}) \\ &= 0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9 \end{aligned}$$

## Poll 1

Initial distribution:  $P(X_2 = \text{sun}) = 0.9$



What is the probability distribution after the next step?

$$P(X_3 = \text{sun}) = ?$$

- A) 0.81
- B) 0.84
- C) 0.9
- D) 1.0
- E) 1.2

$$P(X_3 = \text{sun}) = \sum_{X_2} P(X_3 = \text{sun} | X_2) P(X_2)$$

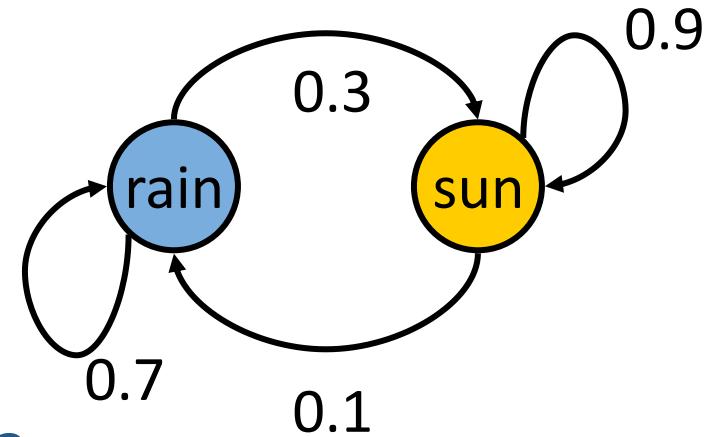
$$= P(X_3 = \text{sun} | X_2 = \text{sun}) P(X_2 = \text{sun})$$

$$+ P(X_3 = \text{sun} | X_2 = \text{rain}) P(X_2 = \text{rain})$$

$$= .9 \times .9 + .1 \times .3 = .84$$

## Poll 1

Initial distribution:  $P(X_2 = \text{sun}) = 0.9$



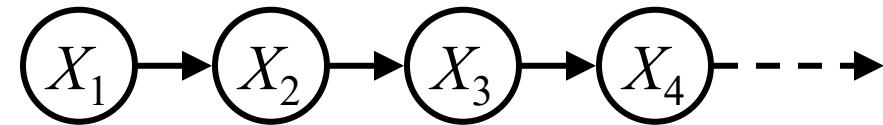
What is the probability distribution after the next step?

$$P(X_3 = \text{sun}) = ?$$

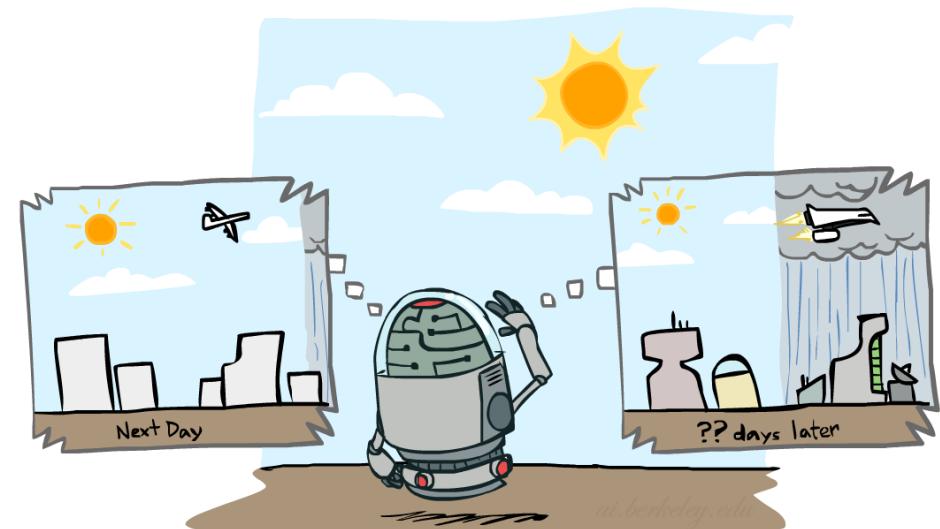
- A) 0.81
- B) 0.84
- C) 0.9
- D) 1.0
- E) 1.2

$$\begin{aligned} P(X_3 = \text{sun}) &= \sum_{x_2} P(X_3 = \text{sun}, X_2 = x_2) \\ &= \sum_{x_2} P(X_3 = \text{sun} | X_2 = x_2) P(X_2 = x_2) \\ &= 0.9 \cdot 0.9 + 0.3 \cdot 0.1 \\ &= 0.81 + 0.03 = 0.84 \end{aligned}$$

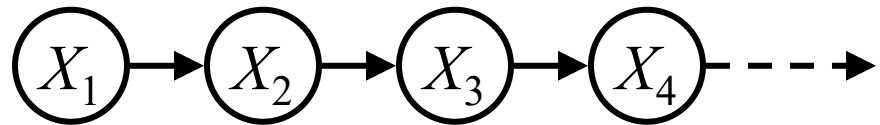
# Markov Chain Inference



If you know the transition probabilities,  $P(X_t \mid X_{t-1})$ , and you know  $P(X_4)$ , write an equation to compute  $P(X_5)$ .



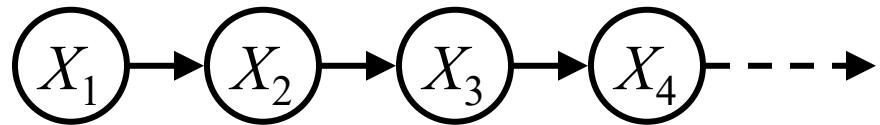
# Markov Chain Inference



If you know the transition probabilities,  $P(X_t \mid X_{t-1})$ , and you know  $P(X_4)$ , write an equation to compute  $P(X_5)$ .

$$\begin{aligned} P(X_5) &= \sum_{x_4} P(x_4, X_5) \\ &= \sum_{x_4} P(X_5 \mid x_4) P(x_4) \end{aligned}$$

# Markov Chain Inference



If you know the transition probabilities,  $P(X_t \mid X_{t-1})$ , and you know  $P(X_4)$ , write an equation to compute  $P(X_5)$ .

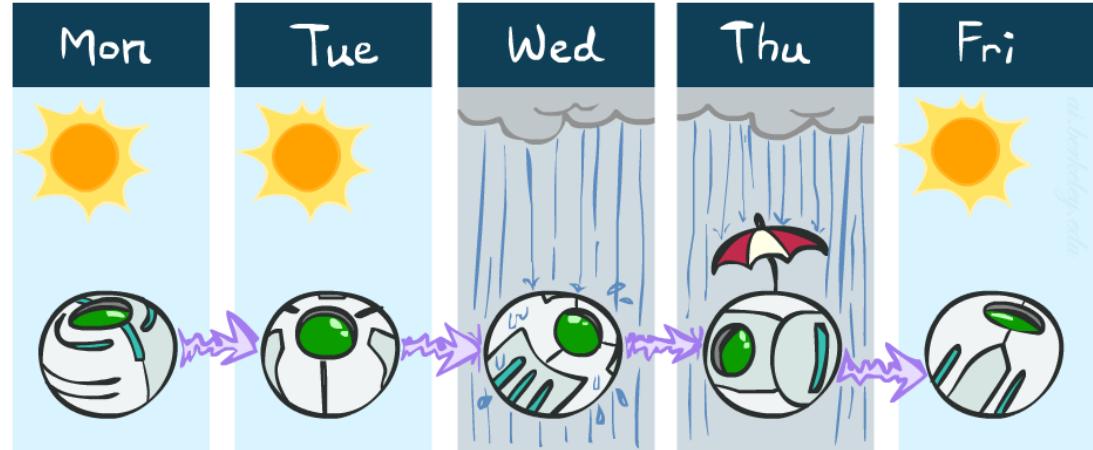
$$\begin{aligned} P(X_5) &= \sum_{x_1, x_2, x_3, x_4} P(x_1, x_2, x_3, x_4, X_5) \\ &= \sum_{x_1, x_2, x_3, x_4} P(X_5 \mid x_4) P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1) \\ &= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1) \\ &= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_1, x_2, x_3, x_4) \\ &= \sum_{x_4} P(X_5 \mid x_4) P(x_4) \end{aligned}$$

# Weather prediction

States {rain, sun}

- Initial distribution  $P(X_0)$

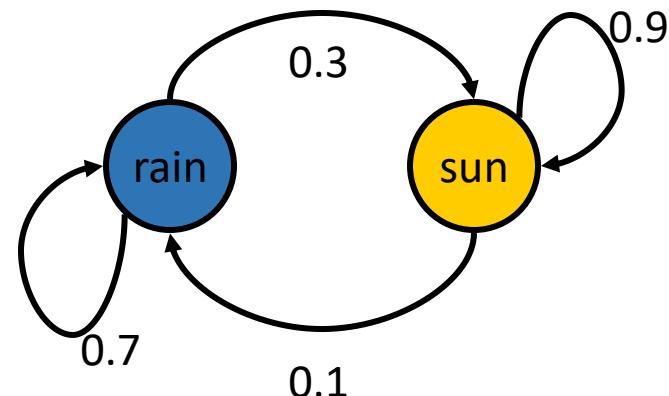
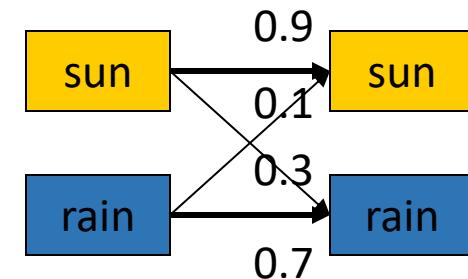
| $P(X_0)$ |      |
|----------|------|
| sun      | rain |
| 0.5      | 0.5  |



Two new ways of representing the same CPT

- Transition model  $P(X_t | X_{t-1})$

| $X_{t-1}$ | $P(X_t   X_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |



# Weather prediction

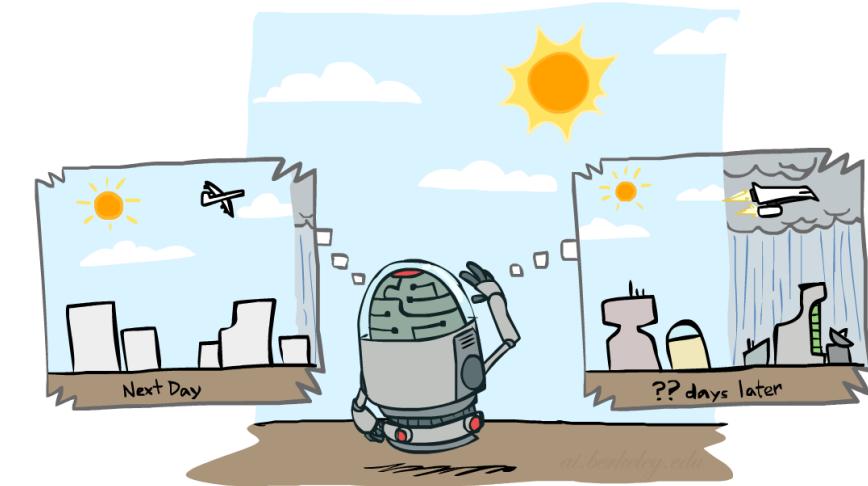
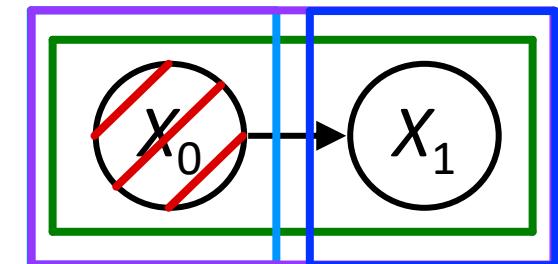
Time 0:  $P(X_0) = \langle 0.5, 0.5 \rangle$

What is the weather like at time 1?

$$P(X_1) =$$

$$\begin{aligned} & \sum_{x_0} P(X_0 = x_0, X_1) \\ &= \sum_{x_0} P(X_1 | X_0 = x_0) P(X_0 = x_0) \\ &= 0.5 \langle 0.9, 0.1 \rangle + 0.5 \langle 0.3, 0.7 \rangle \\ &= \langle 0.6, 0.4 \rangle \end{aligned}$$

| $x_{t-1}$ | $P(x_t   x_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |



# Weather prediction, contd.

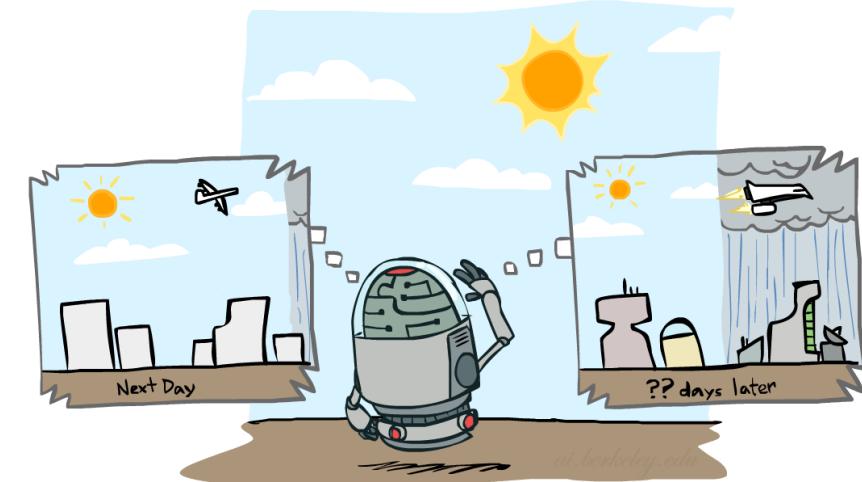
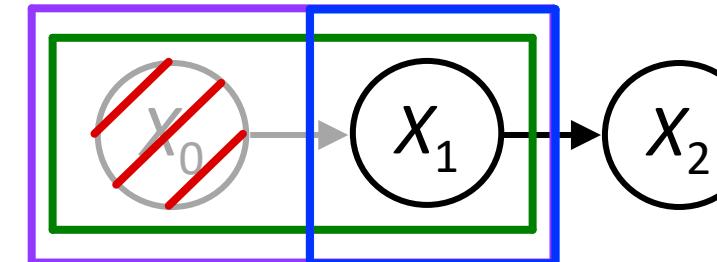
Time 1:  $P(X_1) = \langle 0.6, 0.4 \rangle$

What is the weather like at time 2?

$$P(X_2) =$$

$$\begin{aligned} & \sum_{x_1} P(X_1 = x_1, X_2) \\ &= \sum_{x_1} P(X_2 | X_1 = x_1) P(X_1 = x_1) \\ &= 0.6 \langle 0.9, 0.1 \rangle + 0.4 \langle 0.3, 0.7 \rangle \\ &= \langle 0.66, 0.34 \rangle \end{aligned}$$

| $x_{t-1}$ | $P(x_t   x_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |



# Weather prediction, contd.

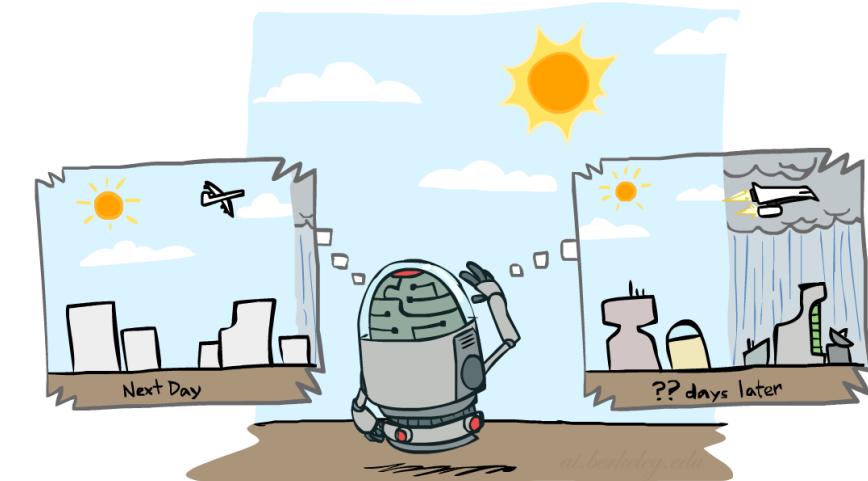
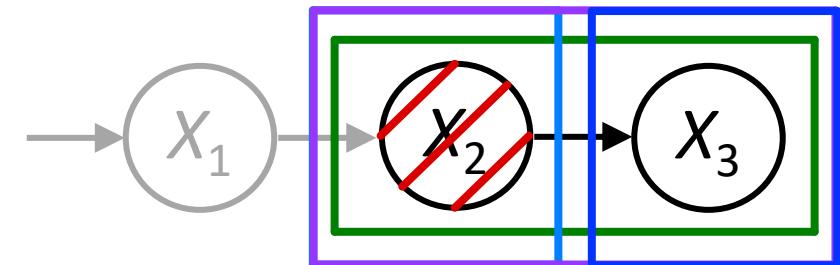
Time 2:  $P(X_2) = \langle 0.66, 0.34 \rangle$

What is the weather like at time 3?

$$P(X_3) =$$

$$\begin{aligned} & \sum_{x_2} P(X_2 = x_2, X_3) \\ &= \sum_{x_2} P(X_3 | X_2 = x_2) P(X_2 = x_2) \\ &= 0.66 \langle 0.9, 0.1 \rangle + 0.34 \langle 0.3, 0.7 \rangle \\ &= \langle 0.696, 0.304 \rangle \end{aligned}$$

| $x_{t-1}$ | $P(x_t   x_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |



# Forward algorithm (simple form)

What is the state at time  $t$ ?

$$\begin{aligned} P(X_t) &= \sum_{x_{t-1}} P(X_{t-1} = x_{t-1}, X_t) \\ &= \sum_{x_{t-1}} P(X_t | X_{t-1} = x_{t-1}) P(X_{t-1} = x_{t-1}) \end{aligned}$$

Transition model

Probability from previous iteration

Iterate this update starting at  $t=0$

# Prediction with Markov chains

As time passes, uncertainty “accumulates”

|       |       |       |       |       |       |
|-------|-------|-------|-------|-------|-------|
| <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| <0.01 | <0.01 | 1.00  | <0.01 | <0.01 | <0.01 |
| <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |

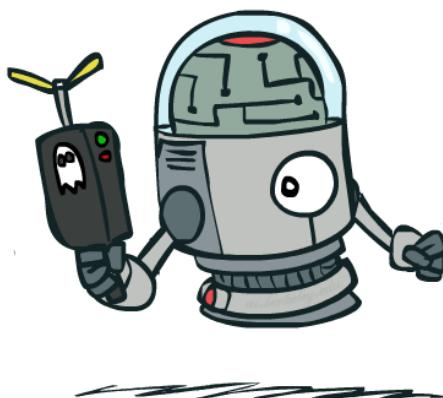
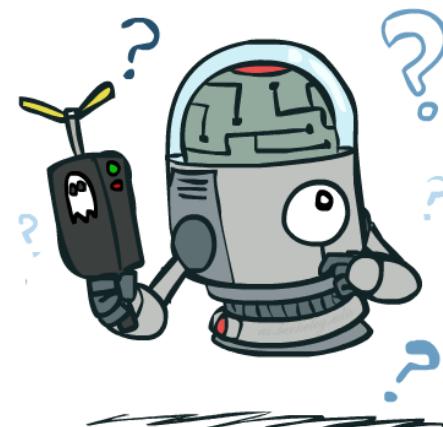
$T = 1$

|       |       |       |       |       |       |
|-------|-------|-------|-------|-------|-------|
| <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| <0.01 | <0.01 | 0.06  | <0.01 | <0.01 | <0.01 |
| <0.01 | 0.76  | 0.06  | 0.06  | <0.01 | <0.01 |
| <0.01 | <0.01 | 0.06  | <0.01 | <0.01 | <0.01 |

$T = 2$

|      |      |       |       |       |       |
|------|------|-------|-------|-------|-------|
| 0.05 | 0.01 | 0.05  | <0.01 | <0.01 | <0.01 |
| 0.02 | 0.14 | 0.11  | 0.35  | <0.01 | <0.01 |
| 0.07 | 0.03 | 0.05  | <0.01 | 0.03  | <0.01 |
| 0.03 | 0.03 | <0.01 | <0.01 | <0.01 | <0.01 |

$T = 5$



(Transition model: ghosts usually go clockwise)

# Observations Reduce Uncertainty

As we get observations, beliefs get reweighted, uncertainty “decreases”

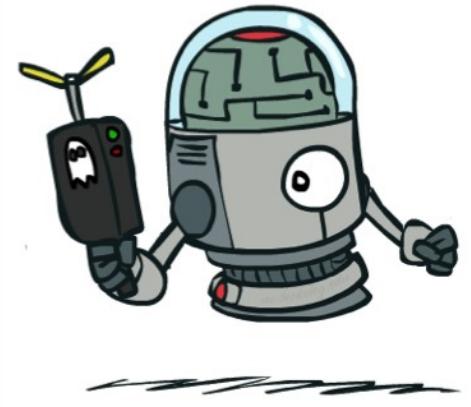
|      |      |       |       |       |       |
|------|------|-------|-------|-------|-------|
| 0.05 | 0.01 | 0.05  | <0.01 | <0.01 | <0.01 |
| 0.02 | 0.14 | 0.11  | 0.35  | <0.01 | <0.01 |
| 0.07 | 0.03 | 0.05  | <0.01 | 0.03  | <0.01 |
| 0.03 | 0.03 | <0.01 | <0.01 | <0.01 | <0.01 |

Before observation



|       |       |       |       |       |       |
|-------|-------|-------|-------|-------|-------|
| <0.01 | <0.01 | <0.01 | <0.01 | 0.02  | <0.01 |
| <0.01 | <0.01 | <0.01 | 0.83  | 0.02  | <0.01 |
| <0.01 | <0.01 | 0.11  | <0.01 | <0.01 | <0.01 |
| <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |

After observation



# Hidden Markov Models

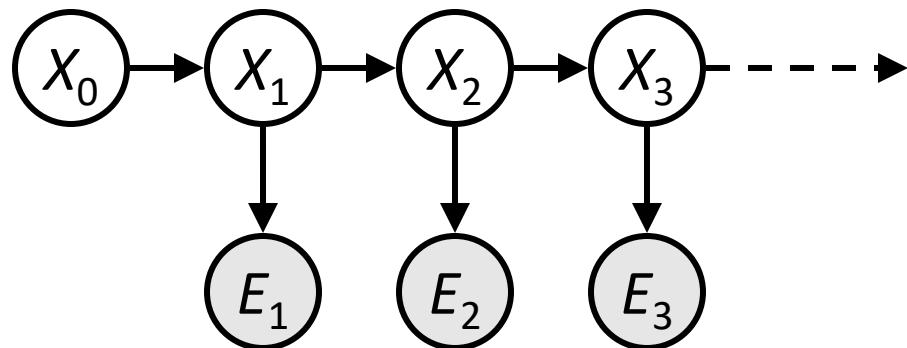


# Hidden Markov Models

Usually the true state is not observed directly

## Hidden Markov models (HMMs)

- Underlying Markov chain over states  $X$
- You observe evidence  $E$  at each time step
- $X_t$  is a single discrete variable;  $E_t$  may be continuous and may consist of several variables



# Real HMM Examples

## Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

## Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

## Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

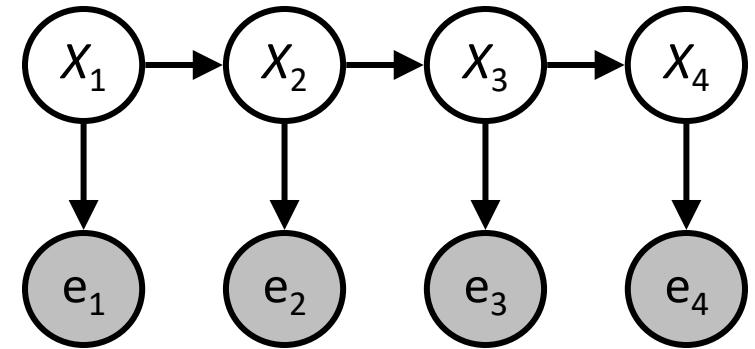
## Molecular biology:

- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.

# HMM as a Bayes Net Warm-up

- For the following Bayes net, write the query  $P(X_4 \mid e_{1:4})$  in terms of the conditional probability tables associated with the Bayes net.

$$P(X_4 \mid e_1, e_2, e_3, e_4) =$$



# HMM as a Bayes Net Warm-up

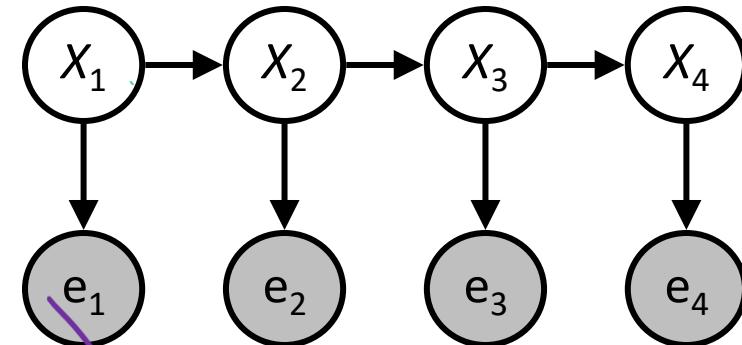
For the following Bayes net, write the query  $P(X_4 | e_{1:4})$  in terms of the conditional probability tables associated with the Bayes net.

$$P(X_4 | e_1, e_2, e_3, e_4) = \alpha P(X_4, e_{1:4})$$

$$= \alpha \sum_{x_1} \sum_{x_2} \sum_{x_3} P(x_1, x_2, x_3, X_4, e_1, e_2, e_3, e_4)$$

$$= \alpha \sum_{x_1} \sum_{x_2} \sum_{x_3} P(x_1) P(e_1 | x_1) P(x_2 | x_1) P(e_2 | x_1) P(x_3 | x_2) \dots$$

$$\alpha = \frac{1}{P(e_1, e_2, e_3, e_4)}$$



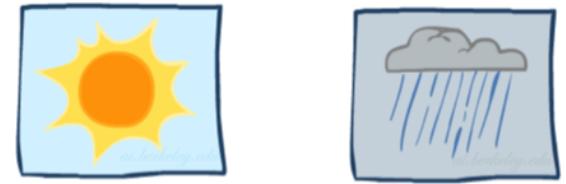
Useful notation:  $X_{a:b} = X_a, X_{a+1}, \dots, X_b$

For example:  $P(X_{1:2} | e_{1:3}) = P(X_1, X_2 | e_1, e_2, e_3)$

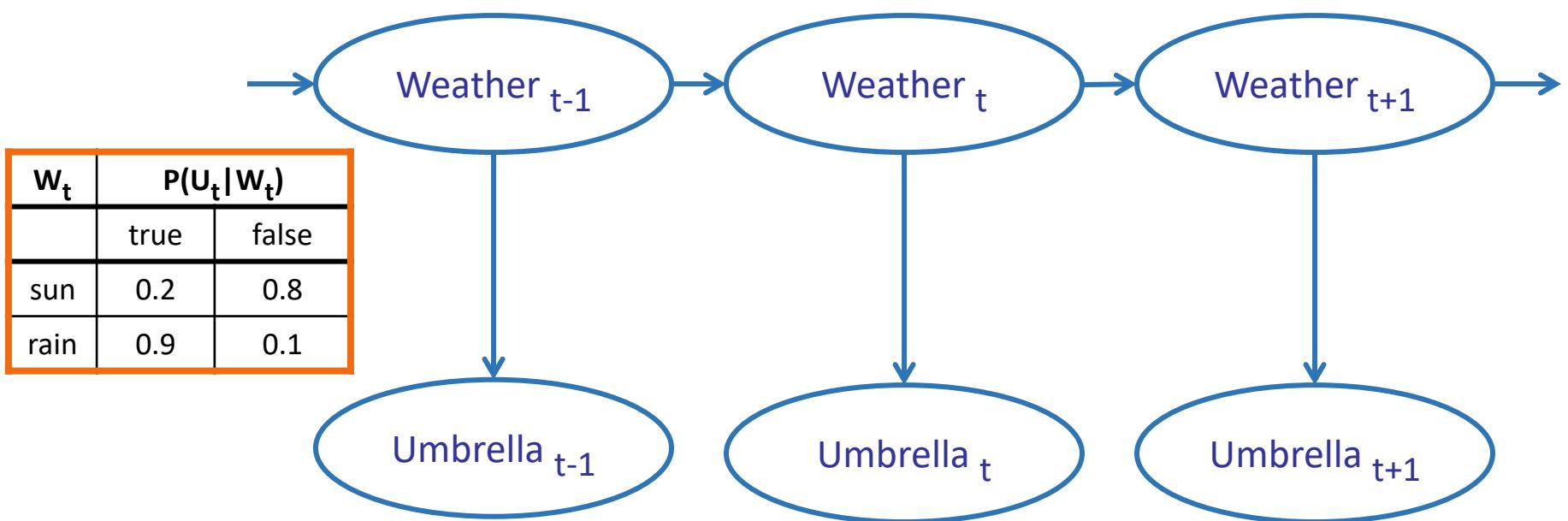
# Example: Weather HMM

An HMM is defined by:

- Initial distribution:  $P(X_0)$
- Transition model:  $P(X_t | X_{t-1})$
- Sensor model:  $P(E_t | X_t)$

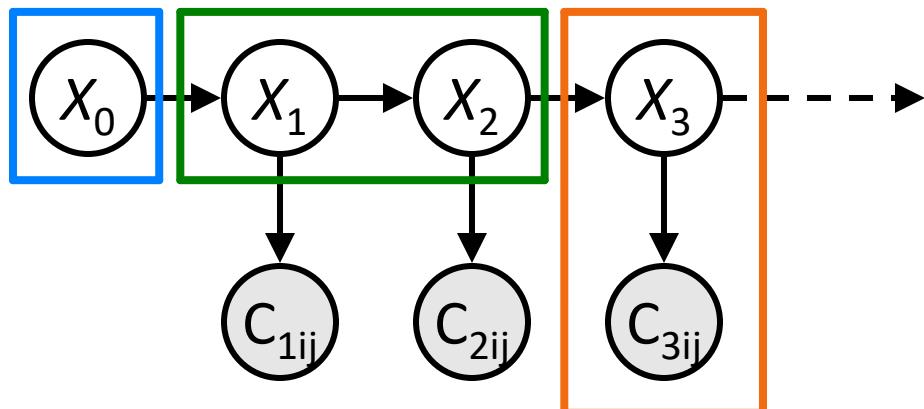


| $W_{t-1}$ | $P(W_t   W_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |



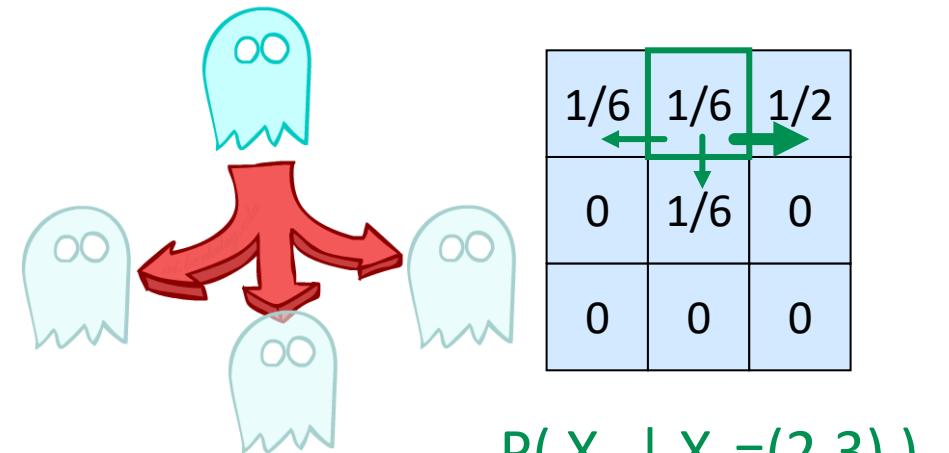
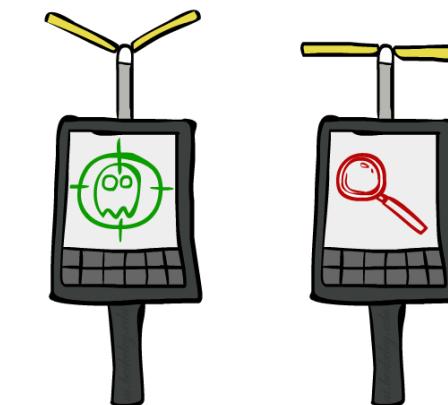
# Example: Ghostbusters HMM

- State: location of moving ghost
- Observations: Color recorded by ghost sensor at clicked squares
- $P(X_0)$  = uniform
- $P(X_t | X_{t-1})$  = usually move clockwise, but sometimes move randomly or stay in place
- $P(C_{tij} | X_t)$  = same sensor model as before: red means close, green means far away.



|     |     |     |
|-----|-----|-----|
| 1/9 | 1/9 | 1/9 |
| 1/9 | 1/9 | 1/9 |
| 1/9 | 1/9 | 1/9 |

$P(X_0)$



[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]

# HMM as Probability Model

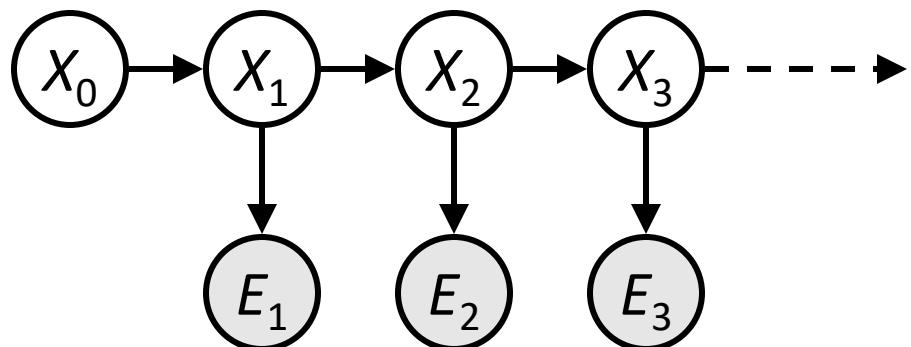
- Joint distribution for Markov model:

$$P(X_0, \dots, X_T) = P(X_0) \prod_{t=1:T} P(X_t | X_{t-1})$$

- Joint distribution for hidden Markov model:

$$P(X_0, X_1, E_1, \dots, X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t | X_{t-1}) P(E_t | X_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

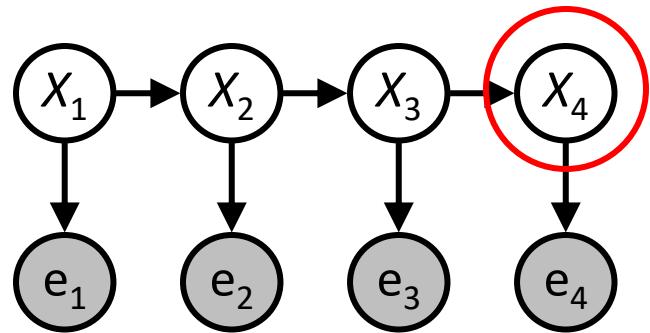


Useful notation:  $X_{a:b} = X_a, X_{a+1}, \dots, X_b$

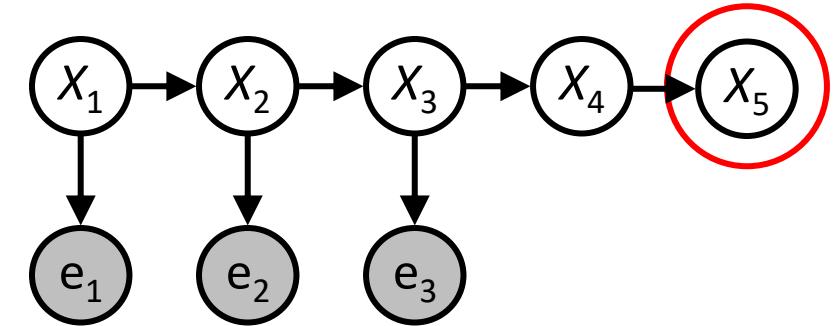
For example:  $P(X_{1:2} | e_{1:3}) = P(X_1, X_2, | e_1, e_2, e_3)$

# HMM Queries

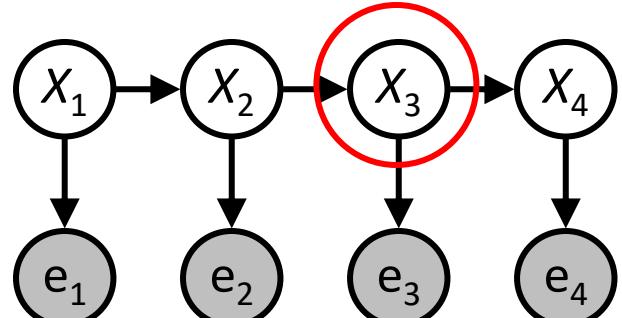
Filtering:  $P(X_t | e_{1:t})$



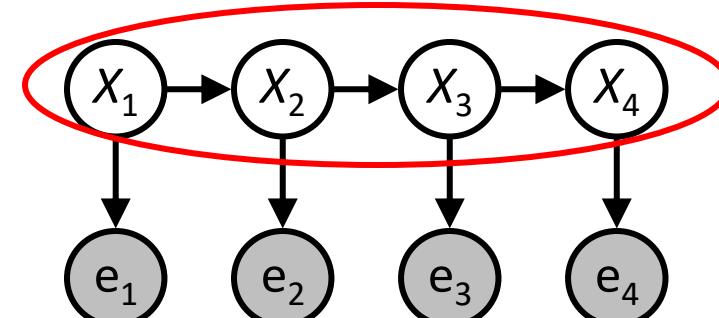
Prediction:  $P(X_{t+k} | e_{1:t})$



Smoothing:  $P(X_k | e_{1:t}), k < t$



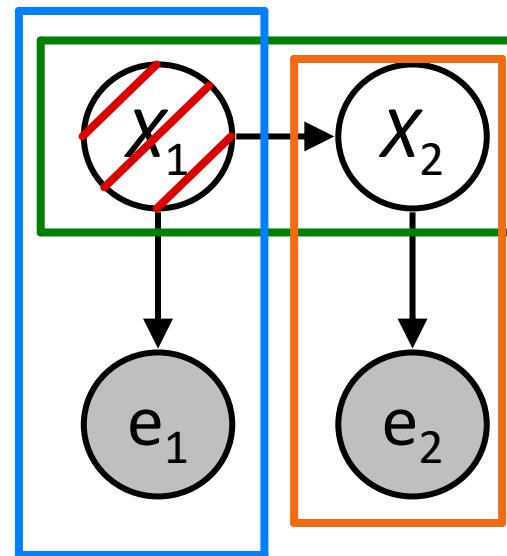
Explanation:  $P(X_{1:t} | e_{1:t})$



# Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

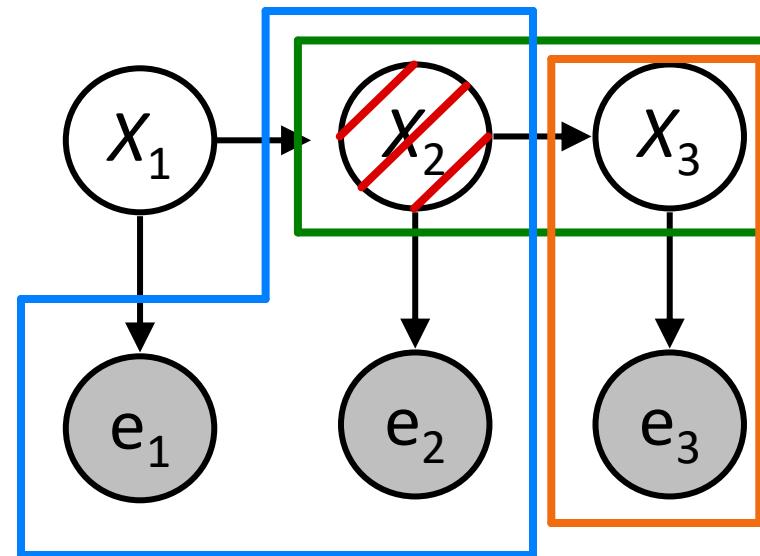
Marching **forward** through the HMM network



# Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

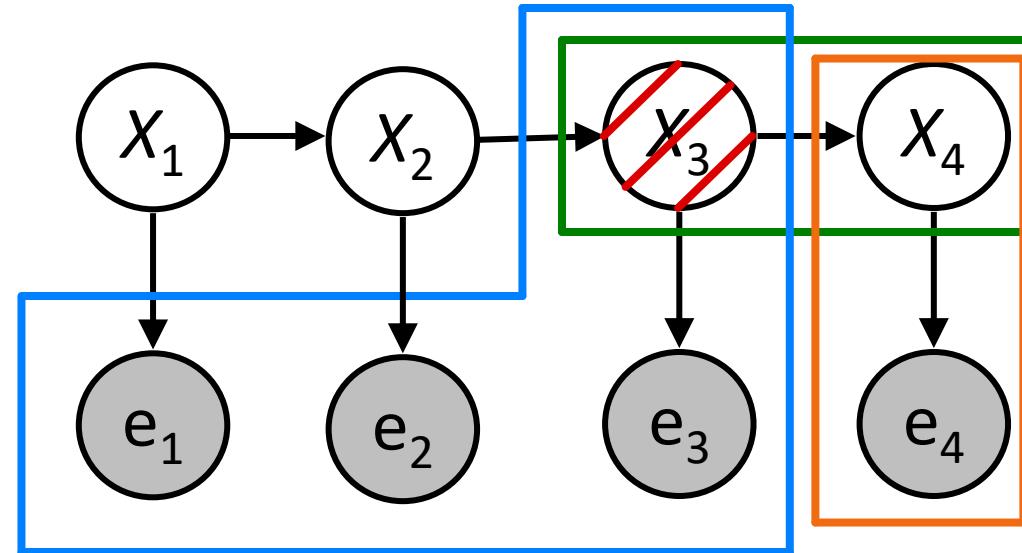
Marching **forward** through the HMM network



# Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

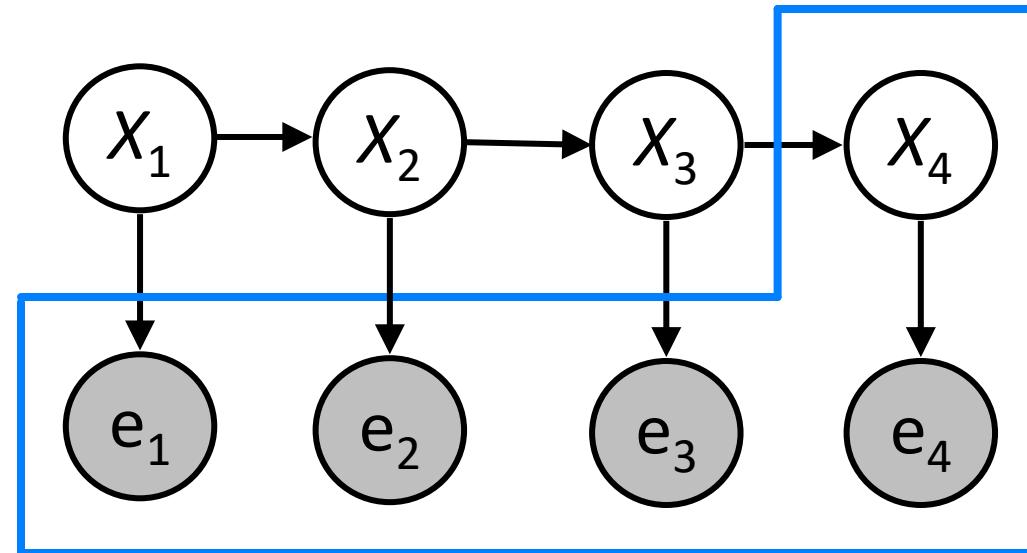
Marching **forward** through the HMM network



# Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Marching **forward** through the HMM network



# Filtering Algorithm

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t})$$



$$\mathbf{f}_{1:t+1} = \text{FORWARD}(\mathbf{f}_{1:t}, e_{t+1})$$

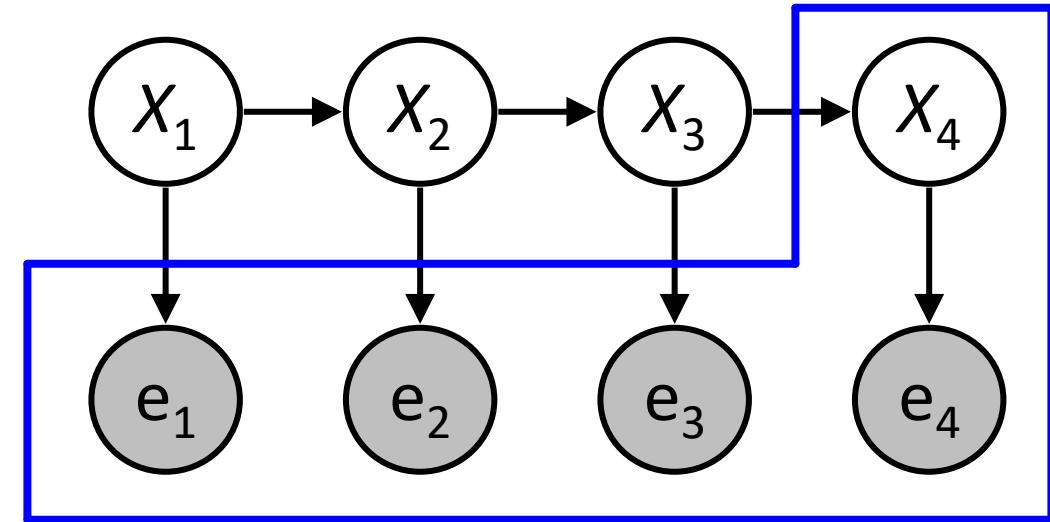
Def. of cond. probability with  $X_t, e_t$

Filtering Algorithm  $P(X|Y, Z) = \frac{P(X, Y|Z)}{P(Y|Z)} = \alpha P(X, Y|Z)$

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \end{aligned}$$



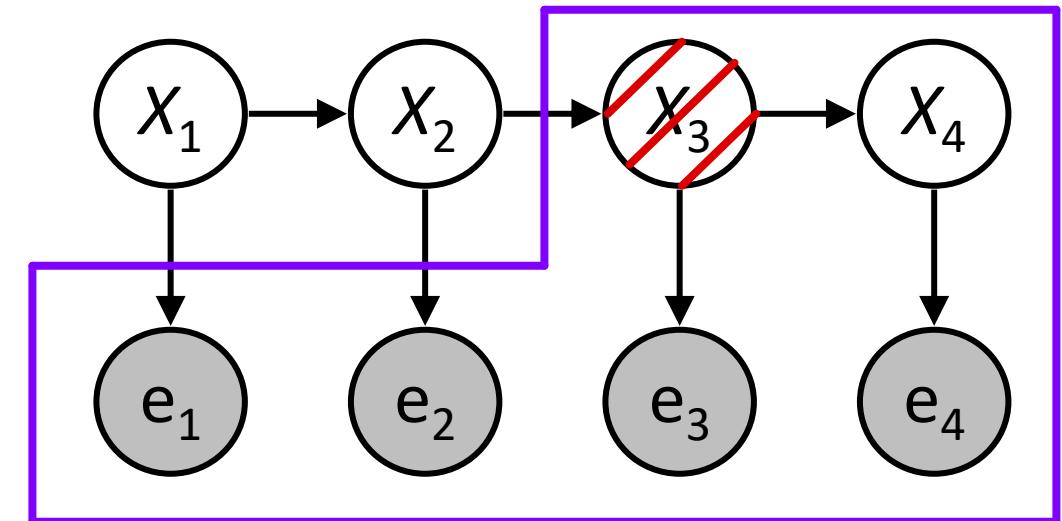
# Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \end{aligned}$$

Summation over variable  $X_{t-1}$

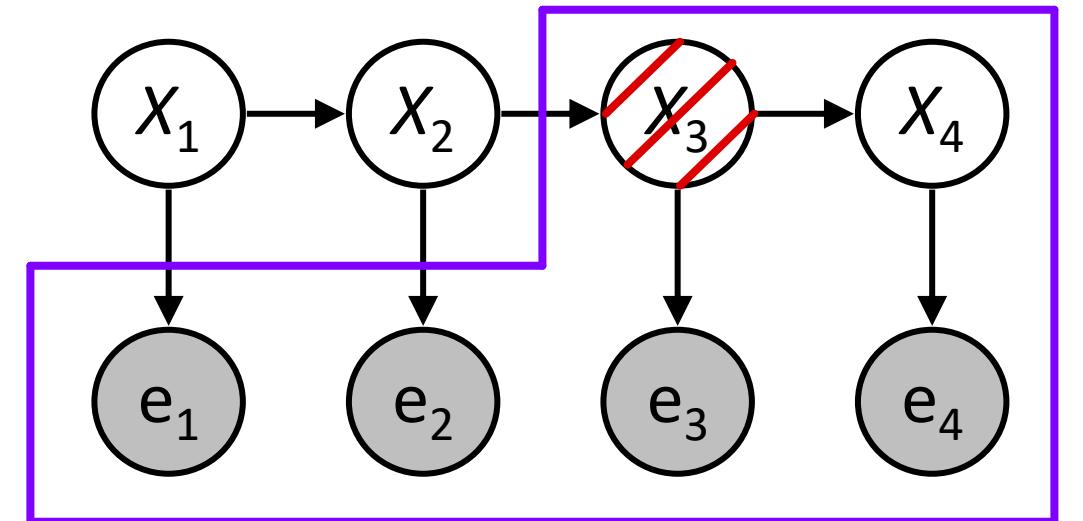


# Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}, e_{1:t-1}) P(e_t | X_t, x_{t-1}, e_{1:t-1}) \end{aligned}$$



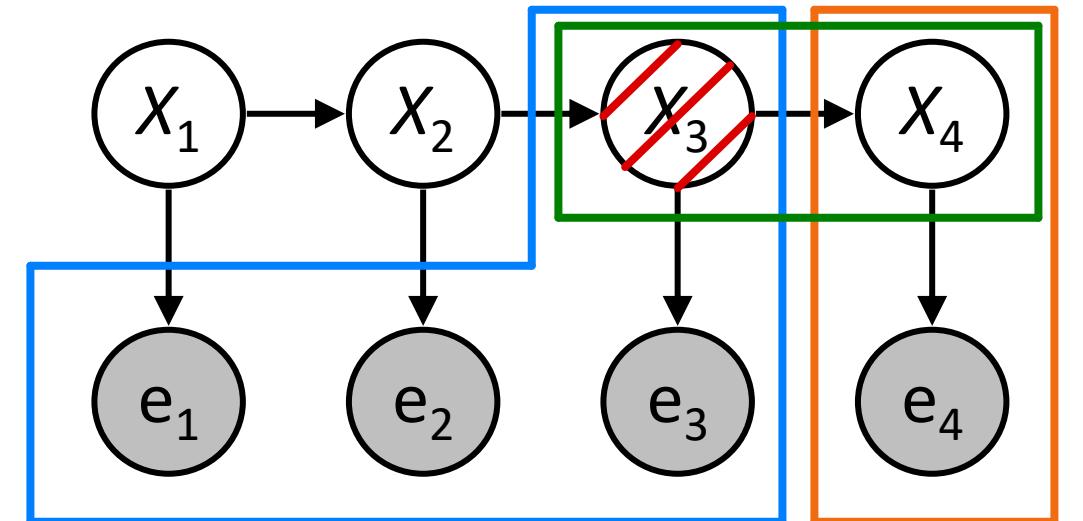
Chain rule with  $x_{t-1}$ ,  $X_t$ , and  $e_t$

# Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}, e_{1:t-1}) P(e_t | X_t, x_{t-1}, e_{1:t-1}) \end{aligned}$$



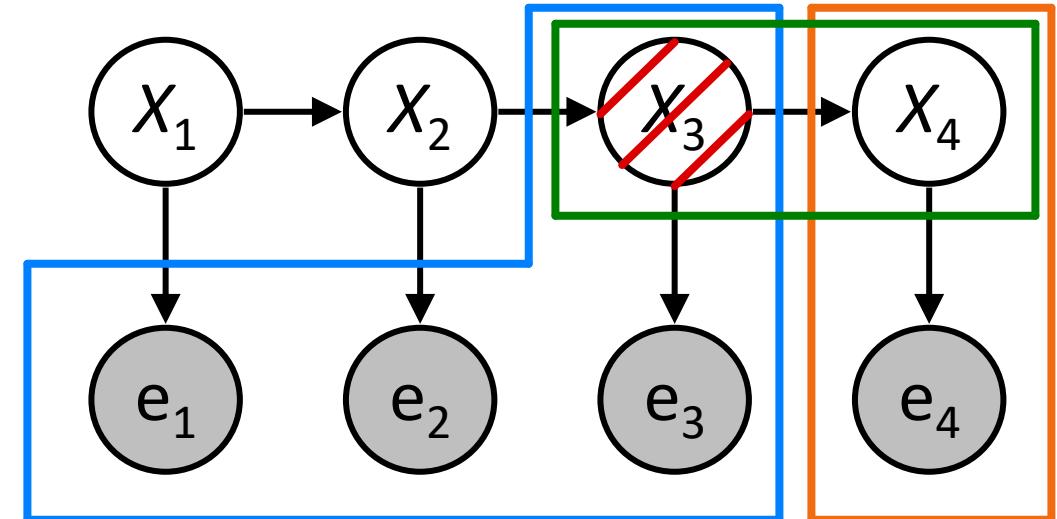
Chain rule with  $x_{t-1}$ ,  $X_t$ , and  $e_t$

# Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t) \end{aligned}$$

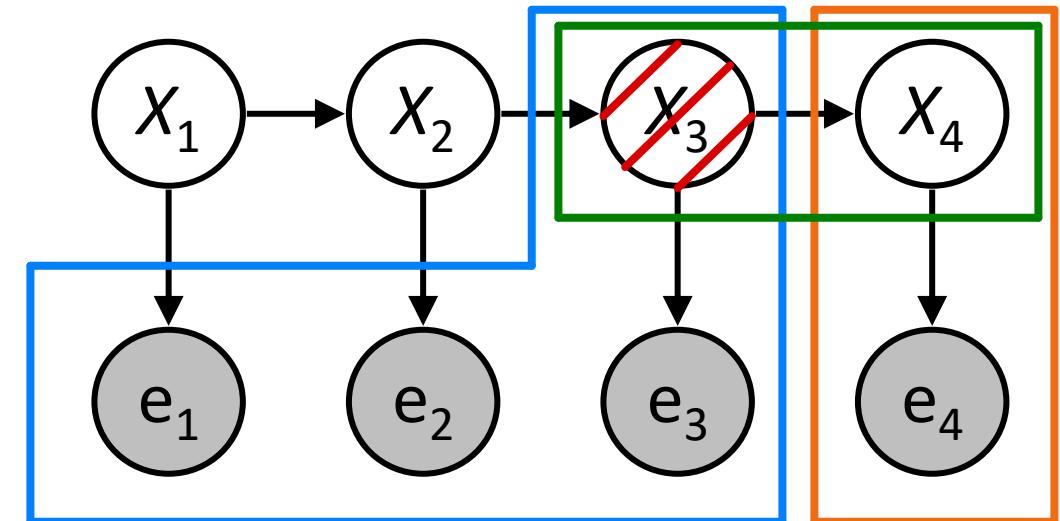


# Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t) \\ &= \alpha P(e_t | x_t) \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1} | e_{1:t-1}) \end{aligned}$$



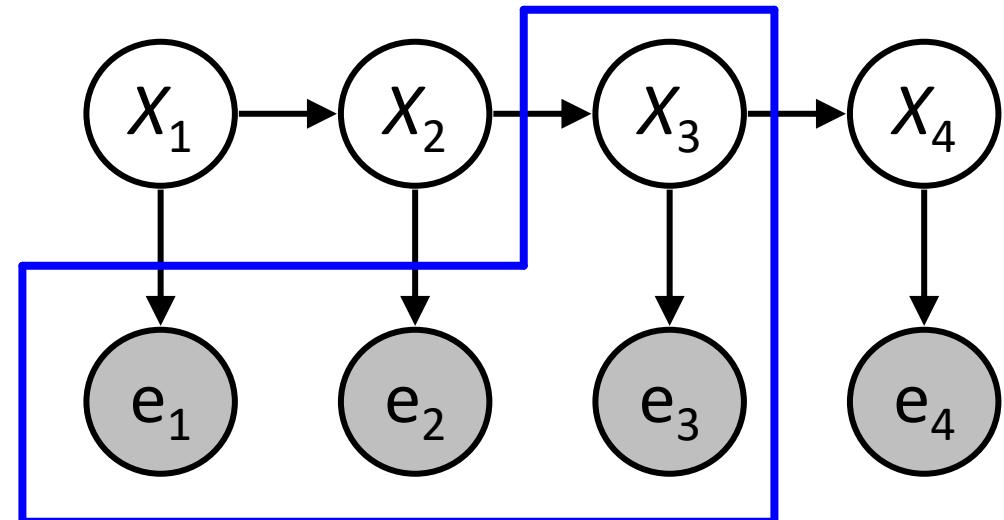
# Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

*Recursion!*

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t) \\ &= \alpha P(e_t | x_t) \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1} | e_{1:t-1}) \end{aligned}$$



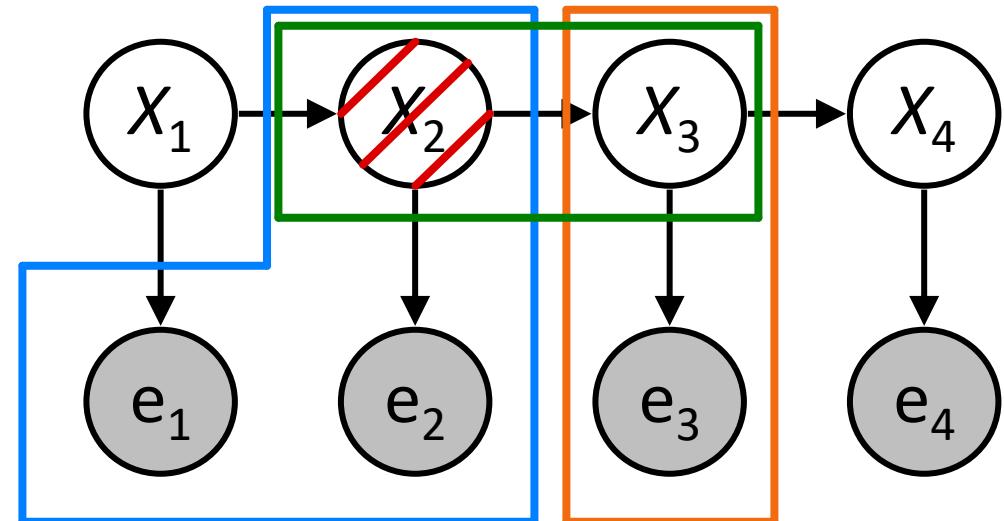
# Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

*Recursion!*

$$\begin{aligned} P(X_t | e_{1:t}) &= P(X_t | e_t, e_{1:t-1}) \\ &= \alpha P(X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1}) \\ &= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t) \\ &= \alpha P(e_t | x_t) \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1} | e_{1:t-1}) \end{aligned}$$



## Poll 2

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t})$$



What is the runtime of the forward algorithm (i.e., doing the above for one value of  $t$ ) in terms of the number of states  $|X|$  and time  $t$ ?  
Assume all 3 CPTs are given.

- A)  $O(|X|^2 * t)$  ←
- B)  $O(|X| * t)$
- C)  $O(|X|^2)$
- D)  $O(|X|)$

# Filtering Algorithm

$$P(X_{t+1} | e_{1:t+1}) = \alpha \frac{P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t})}{\text{Normalize}}$$



$$f_{1:t+1} = \text{FORWARD}(f_{1:t}, e_{t+1})$$

Cost per time step:  $O(|X|^2)$  where  $|X|$  is the number of states

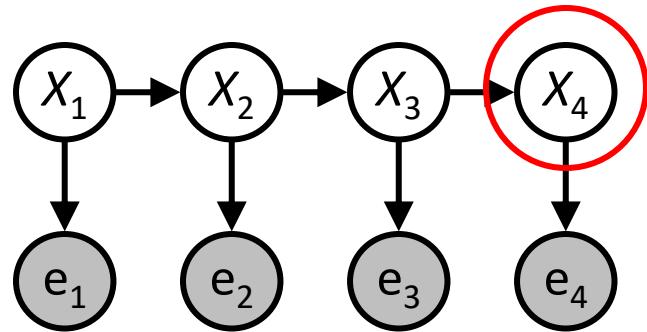
Time and space costs are independent of  $t$

$O(|X|^2)$  is infeasible for models with many state variables

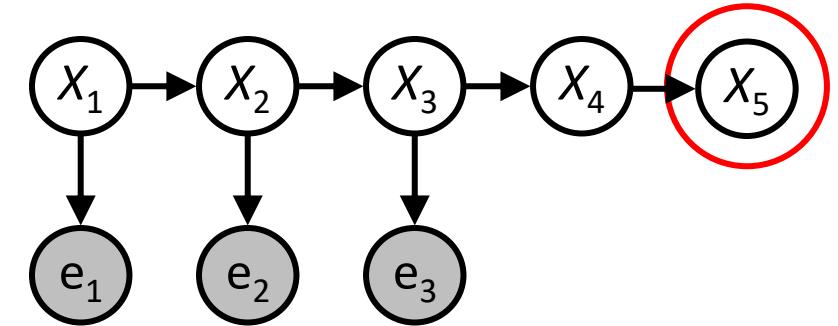
We get to invent really cool approximate filtering algorithms

# Other HMM Queries

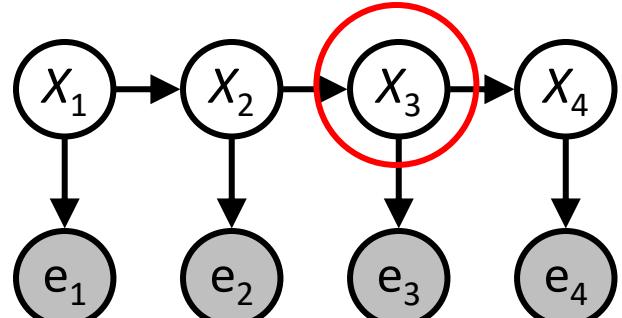
Filtering:  $P(X_t | e_{1:t})$



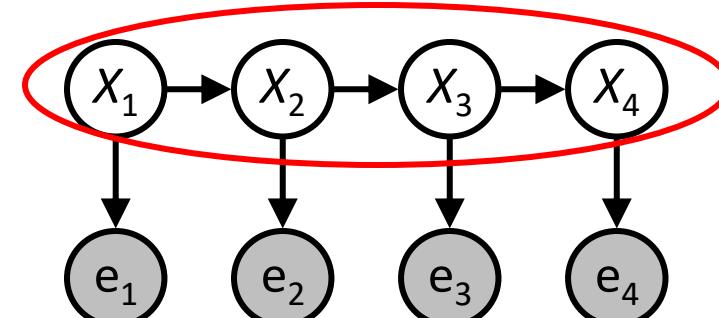
Prediction:  $P(X_{t+k} | e_{1:t})$



Smoothing:  $P(X_k | e_{1:t}), k < t$



Explanation:  $P(X_{1:t} | e_{1:t})$



# Inference Tasks

Filtering:  $P(X_t | e_{1:t})$

- belief state—input to the decision process of a rational agent

Prediction:  $P(X_{t+k} | e_{1:t})$  for  $k > 0$

- evaluation of possible action sequences; like filtering without the evidence

Smoothing:  $P(X_k | e_{1:t})$  for  $0 \leq k < t$

- better estimate of past states, essential for learning

Most likely explanation:  $\operatorname{argmax}_{x_{1:t}} P(x_{1:t} | e_{1:t})$

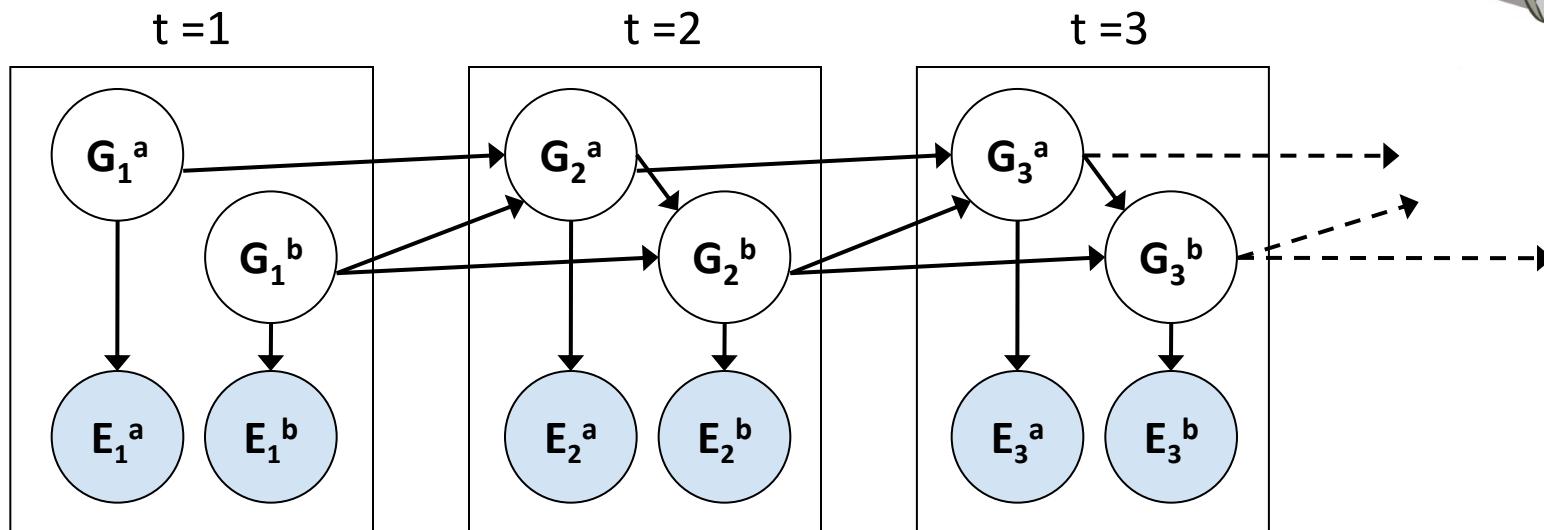
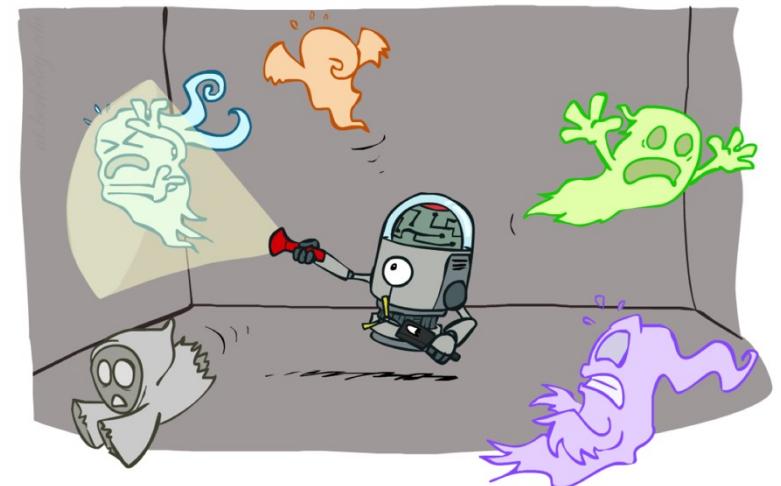
- speech recognition, decoding with a noisy channel

# Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time  $t$  can condition on those from  $t-1$



# Practice Activity: Weather HMM

An HMM is defined by:

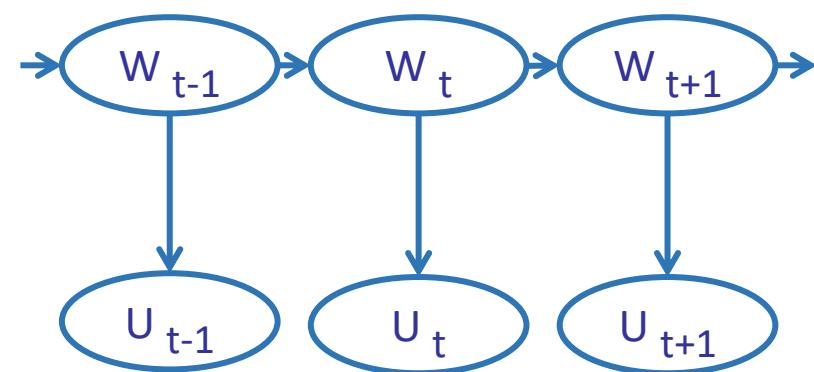
- Initial distribution:  $P(X_1)$
  - Transition model:  $P(X_t | X_{t-1}) = P(W_t | W_{t-1})$
  - Sensor model:  $P(E_t | X_t) = P(U_t | W_t)$

| $W_{t-1}$ | $P(W_t   W_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |

| $w_t$ | $P(u_t   w_t)$ |       |
|-------|----------------|-------|
|       | true           | false |
| sun   | 0.2            | 0.8   |
| rain  | 0.9            | 0.1   |

Given  $P(X_1) = \{\text{sun:0.5, rain:0.5}\}$

Compute  $P(X_4 = \text{sun} \mid e_4 = e_3 = e_2 = e_1 = \text{True})$



# Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution:  $P(X_1)$
- Transition model:  $P(X_t | X_{t-1})$
- Sensor model:  $P(E_t | X_t)$

| $W_{t-1}$ | $P(W_t   W_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |

| $W_t$ | $P(U_t   W_t)$ |       |
|-------|----------------|-------|
|       | true           | false |
| sun   | 0.2            | 0.8   |
| rain  | 0.9            | 0.1   |

Compute  $P(X_4=\text{sun} | e_4=e_3=e_2=e_1=\text{True})$  and  $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$P(X_1, e_1) = P(e_1 | X_1)P(X_1)$  #OBSERVE (chain rule)

$P(X_1 | e_1) = \alpha P(X_1, e_1) \rightarrow \alpha = 1 / \sum_{x_1} P(e_1 | x_1)P(x_1)$  #Don't forget to NORMALIZE

$P(X_2 | e_1) = \sum_{x \in X_1} P(X_2 | x)P(x | e_1)$  #PREDICT

# Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution:  $P(X_1)$
- Transition model:  $P(X_t | X_{t-1})$
- Sensor model:  $P(E_t | X_t)$

| $W_{t-1}$ | $P(W_t   W_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |

| $W_t$ | $P(U_t   W_t)$ |       |
|-------|----------------|-------|
|       | true           | false |
| sun   | 0.2            | 0.8   |
| rain  | 0.9            | 0.1   |

Compute  $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$  and  $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_2|e_1) = \sum_{x \in X_1} P(X_2|x)P(x|e_1) \text{ #PREDICT}$$

$$P(X_2|e_1, e_2) = \alpha P(X_2, e_2|e_1) = \alpha P(e_2|X_2)P(X_2|e_1); \alpha = 1 / \sum_{x \in X_2} P(e_2|x)P(x|e_1)$$

$$P(X_3|e_1, e_2) = \sum_{x_2 \in X_2} P(X_3|x_2)P(x_2|e_1, e_2) \text{ #PREDICT}$$

# Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution:  $P(X_1)$
- Transition model:  $P(X_t | X_{t-1})$
- Sensor model:  $P(E_t | X_t)$

| $W_{t-1}$ | $P(W_t   W_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |

| $W_t$ | $P(U_t   W_t)$ |       |
|-------|----------------|-------|
|       | true           | false |
| sun   | 0.2            | 0.8   |
| rain  | 0.9            | 0.1   |

Compute  $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$  and  $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_3 | e_1, e_2) = \sum_{x_2 \in X_2} P(X_3 | x_2) P(x_2 | e_1, e_2) \text{ #PREDICT}$$

$$P(X_3 | e_1, e_2, e_3) = \alpha P(X_3, e_3 | e_1, e_2) = \alpha P(e_3 | X_3) P(X_3 | e_1, e_2);$$
$$\alpha = 1 / \sum_{x \in X_3} P(e_3 | x) P(x | e_1, e_2)$$

$$P(X_4 | e_1, e_2, e_3) = \sum_{x \in X_3} P(X_4 | x) P(x | e_1, e_2, e_3) \text{ #PREDICT}$$

# Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution:  $P(X_1)$
- Transition model:  $P(X_t | X_{t-1})$
- Sensor model:  $P(E_t | X_t)$

| $W_{t-1}$ | $P(W_t   W_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |

| $W_t$ | $P(U_t   W_t)$ |       |
|-------|----------------|-------|
|       | true           | false |
| sun   | 0.2            | 0.8   |
| rain  | 0.9            | 0.1   |

Compute  $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$  and  $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_4 | e_1, e_2, e_3) = \sum_{x \in X_3} P(X_4 | x) P(x | e_1, e_2, e_3) \text{ #PREDICT}$$

$$P(X_4 | e_1, e_2, e_3, e_4) = \alpha P(X_4, e_4 | e_1, e_2, e_3) = \alpha P(e_4 | X_4) P(X_4 | e_1, e_2, e_3);$$
$$\alpha = 1 / \sum_{x \in X_4} P(e_4 | x) P(x | e_1, e_2, e_3)$$

# Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution:  $P(X_1)$
- Transition model:  $P(X_t | X_{t-1})$
- Sensor model:  $P(E_t | X_t)$

| $W_{t-1}$ | $P(W_t   W_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |

| $W_t$ | $P(U_t   W_t)$ |       |
|-------|----------------|-------|
|       | true           | false |
| sun   | 0.2            | 0.8   |
| rain  | 0.9            | 0.1   |

Compute  $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$  and  $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_1, e_1) = P(e_1 | X_1)P(X_1) \text{ #OBSERVE (chain rule)}$$

$$P(e_1 = \text{True} | X_1 = \text{sun})P(X_1 = \text{sun}) = .2 * .5 = .1$$

$$P(e_1 = \text{True} | X_1 = \text{rain})P(X_1 = \text{rain}) = .9 * .5 = .45$$

$$P(X_1 | e_1) = \frac{P(X_1, e_1)}{P(e_1)} = P(e_1 | X_1)P(X_1) / \sum_{x \in X_1} P(e_1 | x)P(x) \text{ #NORMALIZE USING BAYES RULE}$$

$$P(X_1 = \text{sun} | e_1 = \text{True}) = \frac{.1}{.1 + .45} = .18$$

$$P(X_1 = \text{rain} | e_1 = \text{True}) = \frac{.45}{.1 + .45} = .82$$

# Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution:  $P(X_1)$
- Transition model:  $P(X_t | X_{t-1})$
- Sensor model:  $P(E_t | X_t)$

| $W_{t-1}$ | $P(W_t   W_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |

| $W_t$ | $P(U_t   W_t)$ |       |
|-------|----------------|-------|
|       | true           | false |
| sun   | 0.2            | 0.8   |
| rain  | 0.9            | 0.1   |

Compute  $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$  and  $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_2|e_1) = \sum_{x \in X_1} P(X_2|x)P(x|e_1) \text{ #PREDICT}$$

$$P(X_2 = \text{sun}|e_1 = \text{True}) = \sum_{x \in X_1} P(X_2 = \text{sun}|x)P(x|e_1 = \text{True}) = .9 * .18 + .3 * .82 = .41$$

$$P(X_2 = \text{rain}|e_1 = \text{True}) = \sum_{x \in X_1} P(X_2 = \text{rain}|x)P(x|e_1 = \text{True}) = .1 * .18 + .7 * .82 = .59$$

# Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution:  $P(X_1)$
- Transition model:  $P(X_t | X_{t-1})$
- Sensor model:  $P(E_t | X_t)$

| $W_{t-1}$ | $P(W_t   W_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |

| $W_t$ | $P(U_t   W_t)$ |       |
|-------|----------------|-------|
|       | true           | false |
| sun   | 0.2            | 0.8   |
| rain  | 0.9            | 0.1   |

Compute  $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$  and  $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_2|e_1, e_2) = \alpha P(X_2, e_2|e_1) = \alpha P(e_2|X_2)P(X_2|e_1); \alpha = 1 / \sum_{x \in X_2} P(e_2|x)P(x|e_1)$$

$$P(X_2 = \text{sun}|e_1, e_2 = \text{True}) = \alpha P(e_2|X_2 = \text{sun})P(X_2 = \text{sun}|e_1) = \alpha(0.2)(0.41) = 0.13$$

$$P(X_2 = \text{rain}|e_1, e_2 = \text{True}) = \alpha P(e_2|X_2 = \text{rain})P(X_2 = \text{rain}|e_1) = \alpha(0.9)(0.59) = 0.87$$

$$P(X_3|e_1, e_2) = \sum_{x \in X_3} P(X_3|x)P(x|e_1, e_2) \text{ #PREDICT}$$

$$P(X_3 = \text{sun}|e_1, e_2) = P(X_3 = \text{sun}|x = \text{sun})P(x = \text{sun}|e_1, e_2) + P(X_3 = \text{rain}|x = \text{rain})P(x = \text{rain}|e_1, e_2) = 0.38$$

$$P(X_3 = \text{rain}|e_1, e_2) = P(X_3 = \text{rain}|x = \text{sun})P(x = \text{sun}|e_1, e_2) + P(X_3 = \text{rain}|x = \text{rain})P(x = \text{rain}|e_1, e_2) = 0.62$$

# Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution:  $P(X_1)$
- Transition model:  $P(X_t | X_{t-1})$
- Sensor model:  $P(E_t | X_t)$

| $W_{t-1}$ | $P(W_t   W_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |

| $W_t$ | $P(U_t   W_t)$ |       |
|-------|----------------|-------|
|       | true           | false |
| sun   | 0.2            | 0.8   |
| rain  | 0.9            | 0.1   |

Compute  $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$  and  $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_3 | e_1, e_2, e_3) = \alpha P(X_3, e_3 | e_1, e_2) = \alpha P(e_3 | X_3) P(X_3 | e_1, e_2);$$
$$\alpha = 1 / \sum_{x \in X_3} P(e_3 | x) P(x | e_1, e_2)$$

$$P(X_3 = \text{sun} | e_1, e_2, e_3) = \alpha P(e_3 = \text{True} | X_3 = \text{sun}) P(X_3 = \text{sun} | e_1, e_2) = \alpha(0.2)(0.38) = 0.12$$
$$P(X_3 = \text{rain} | e_1, e_2, e_3) = \alpha P(e_3 = \text{True} | X_3 = \text{rain}) P(X_3 = \text{rain} | e_1, e_2) = \alpha(0.9)(0.62) = 0.88$$

# Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution:  $P(X_1)$
- Transition model:  $P(X_t | X_{t-1})$
- Sensor model:  $P(E_t | X_t)$

| $W_{t-1}$ | $P(W_t   W_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |

| $W_t$ | $P(U_t   W_t)$ |       |
|-------|----------------|-------|
|       | true           | false |
| sun   | 0.2            | 0.8   |
| rain  | 0.9            | 0.1   |

Compute  $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$  and  $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_4 | e_1, e_2, e_3) = \sum_{x \in X_3} P(X_4 | x)P(x | e_1, e_2, e_3) \text{ #PREDICT}$$

$$P(X_4 = \text{sun} | e_1, e_2, e_3) = \sum_{x \in \{\text{sun}, \text{rain}\}} P(X_4 = \text{sun} | x)P(x | e_1, e_2, e_3) = .9 * .12 + .3 * .88 = .37$$

$$P(X_4 = \text{rain} | e_1, e_2, e_3) = \sum_{x \in \{\text{sun}, \text{rain}\}} P(X_4 = \text{rain} | x)P(x | e_1, e_2, e_3) = .1 * .12 + .7 * .88 = .63$$

# Practice Activity: Weather HMM

An HMM is defined by:

- Initial distribution:  $P(X_1)$
- Transition model:  $P(X_t | X_{t-1})$
- Sensor model:  $P(E_t | X_t)$

| $W_{t-1}$ | $P(W_t   W_{t-1})$ |      |
|-----------|--------------------|------|
|           | sun                | rain |
| sun       | 0.9                | 0.1  |
| rain      | 0.3                | 0.7  |

| $W_t$ | $P(U_t   W_t)$ |       |
|-------|----------------|-------|
|       | true           | false |
| sun   | 0.2            | 0.8   |
| rain  | 0.9            | 0.1   |

Compute  $P(X_4=\text{sun} | e_4 = e_3 = e_2 = e_1 = \text{True})$  and  $P(X_1) = \{\text{sun}:0.5, \text{rain}:0.5\}$

$$P(X_4 | e_1, e_2, e_3, e_4) = \alpha P(X_4, e_4 | e_1, e_2, e_3) = \alpha P(e_4 | X_4)P(X_4 | e_1, e_2, e_3);$$
$$\alpha = 1 / \sum_{x \in X_4} P(e_4 | x)P(x | e_1, e_2, e_3)$$

$$\alpha P(e_4 = \text{True} | X_4 = \text{sun})P(X_4 = \text{sun} | e_1, e_2, e_3) = \alpha(.2 * .37) = .115$$
$$\alpha P(e_4 = \text{True} | X_4 = \text{rain})P(X_4 = \text{rain} | e_1, e_2, e_3) = \alpha(.9 * .63) = .885$$

## Poll 3

Suppose we are given  $P(X4=\text{sun} \mid e4= e3= e2= e1=\text{True})$ , along with the same CPT tables as the activity example, and we want to compute  $P(X5=\text{sun} \mid e5= e4= e3= e2= e1=\text{True})$ .

What is the first step we would perform?

Predict

Observe

Forward

Smoothing