Announcements / reminders

HW2 (online and written) due Jan 30 – make sure to budget enough time Programming 1 due Feb 6 – there is a post on Piazza to help find partners

AI: Representation and Problem Solving

Adversarial Search

Instructors: Tuomas Sandholm and Vincent Conitzer

Slide credits: CMU AI, http://ai.berkeley.edu

Outline

History / Overview

Zero-Sum Games (Minimax)

Evaluation Functions

Search Efficiency (α-β Pruning)

Games of Chance (Expectimax)

Game Playing State-of-the-Art

Checkers:

- 1950: First computer player.
- 1959: Samuel's self-taught program.
- 1994: First computer world champion: Chinook ended 40-year-reign of human champion Marion Tinsley using complete 8-piece endgame. ■ 2007: Checkers solved! Endgame database of 39 trillion states **Chess:** ■ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, McCarthy. ■ 1960s onward: gradual improvement under "standard model" ■ 1997: special-purpose chess machine Deep Blue defeats human champion Gary Kasparov in a six-game match. Deep Blue examined 200M positions per second and extended some lines of search up to 40 ply. Current programs running on a PC rate > 3200 (vs 2870 for Magnus Carlsen).

Go:

- 1968: Zobrist's program plays legal Go, barely (b>300!)
- 2005-2014: Monte Carlo tree search enables rapid advances: current programs beat strong amateurs, and professionals with a 3-4 stone handicap.

Game Playing State-of-the-Art

Checkers:

- 1950: First computer player.
- 1959: Samuel's self-taught program.
- 1994: First computer world champion: Chinook ended 40-year-reign of human champion Marion Tinsley using complete 8-piece endgame.
- 2007: Checkers solved! Endgame database of 39 trillion states

Chess:

- 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, McCarthy.
- 1960s onward: gradual improvement under "standard model"
- 1997: special-purpose chess machine Deep Blue defeats human champion Gary Kasparov in a six-game match. Deep Blue examined 200M positions per second and extended some lines of search up to 40 ply. Current programs running on a PC rate > 3200 (vs 2870 for Magnus Carlsen).

Go:

- 1968: Zobrist's program plays legal Go, barely (b>300!)
- 2005-2014: Monte Carlo tree search enables rapid advances: current programs beat strong amateurs, and professionals with a 3-4 stone handicap.
- 2015: AlphaGo from DeepMind beats Lee Sedol

Behavior from Computation

Types of Games

Many different kinds of games!

Axes:

- Deterministic or stochastic?
- Perfect information (fully observable)?
- One, two, or more players?
- Turn-taking or simultaneous?
- Zero sum?

Want algorithms for calculating a *contingent plan* (a.k.a. strategy or policy) which recommends a move for every possible eventuality

(Two-Player) Zero-Sum Games

- Zero-Sum Games
	- **EXECUTE: Agents have** *opposite* utilities
	- Pure competition:
		- One *maximizes*, the other *minimizes*

- General Games
	- Agents have *independent* utilities
	- Cooperation, indifference, competition, shifting alliances, and more are all possible

"Standard" Games

Standard games are deterministic, observable, two-player, turn-taking, zero-sum

Game formulation:

- Initial state: s_0
- Players: Player(s) indicates whose move it is
- Actions: Actions(s) for player on move
- **Transition model: Result(s,a)**
- **EXTERE: Terminal-Test(s)**
- Terminal values: Utility(s,p) for player p
	- Or just Utility(s) for player making the decision at root

Adversarial Search

Minimax

States Actions Values

Single-Agent Trees

Minimax

States Actions Values

What is the minimax value at the root?

Minimax Code

Max Code

Max Code

```
def max_value(state):
```

```
if state.is_leaf:
    return state.value
# TODO Also handle depth limit
best_value = -10000000for action in state.actions:
    next_{state} = state.result(action)next_value = max_value(next_state)if next_value > best_value:
        best_value = next_valuereturn best_value
```
Minimax Code

```
def max_value(state):
```

```
if state.is_leaf:
        return state.value
    # TODO Also handle depth limit
    best value = -10000000for action in state.actions:
        next_{state} = state.result(action)next_value = min_value(next_state)if next_value > best_value:
            best_value = next_value
    return best_value
def min_value(state):
```
Minimax Notation

```
def max_value(state):
```

```
if state.is_leaf:
    return state.value
# TODO Also handle depth limit
```


```
V(s) = \max\boldsymbol{a}V(s^{\prime}),where s' = result(s, a)
```

```
best value = -10000000
```

```
for action in state.actions:
    next_{state} = state.result(action)
```

```
next value = min value(next state)
```

```
if next_value > best_value:
   best value = next value
```
return best_value

def min value(state):

Minimax Notation

$$
\hat{a} = \underset{a}{\operatorname{argmax}} V(s'),
$$

where $s' = result(s, a)$

Generic Game Tree Pseudocode

function minimax decision(state) return argmax _{a in state.actions} value(state.result(a))

function value(state) if state.is leaf return state.value

> if state.player is MAX return max a in state.actions value(state.result(a))

if state.player is MIN return min _{a in state.actions} value(state.result(a))

Generalized minimax (better name: backward induction)

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:

- Terminals have *utility tuples*
- Node values are also utility tuples
- *Each player maximizes its own component*
- Can give rise to cooperation and competition dynamically…

Generalized minimax / backward induction

[Three Person Chess](https://www.youtube.com/watch?v=HHVPutfveVs)

https://www.youtube.com/watch?v=HHVPutfveVs

Minimax Efficiency

Minimax Efficiency

How efficient is minimax?

- **U** Just like (exhaustive) DFS
- \blacksquare Time: $O(b^m)$
- Space: O(bm)

Example: For chess, b \approx 35, m \approx 100

- Exact solution is completely infeasible
- Humans can't do this either, so how do we play chess?
- Bounded rationality Herbert Simon

Resource Limits

Resource Limits

Problem: In realistic games, cannot search to leaves!

Solution 1: Bounded lookahead

- Search only to a preset *depth limit* or *horizon*
- **Use an** *evaluation function* for non-terminal positions

Guarantee of optimal play is gone

More plies make a BIG difference

Example:

- Suppose we have 100 seconds, can explore 10K nodes / sec
- So can check 1M nodes per move
- For chess, b= \approx 35 so reaches about depth 4 not so good

Depth Matters

Evaluation functions are always imperfect

Deeper search => better play (usually)

Or, deeper search gives same quality of play with a less accurate evaluation function

An important example of the tradeoff between complexity of features and complexity of computation

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

Ideal function: returns the actual minimax value of the position

In practice: typically weighted linear sum of features:

- **EVAL(s)** = $w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)$
- E.g., $w_1 = 9$, $f_1(s) = (num white queens num black queens)$, etc.

Evaluation for Pacman

Game Tree Pruning

Minimax Example

Alpha-Beta Example

α = best option so far from any MAX node on this path

The order of generation matters: more pruning is possible if good moves come first

Alpha-Beta Implementation

α: MAX's best option on path to root β: MIN's best option on path to root

```
def max-value(state, α, β):
    initialize v = -\inftyfor each successor of state:
        v = max(v, value(successor, \alpha, \beta))if v ≥ β
               return v
         \alpha = max(\alpha, v)
    return v
```
def min-value(state , α, β): initialize $v = +\infty$ for each successor of state: $v = min(v, value(successor, \alpha, \beta))$ if $v \leq \alpha$ return v $β = min(β, v)$ return v

Alpha-Beta Poll 3

α: MAX's best option on path to root β: MIN's best option on path to root

def max-value(state, α, β): initialize $v = -\infty$ for each successor of state: $v = max(v, value(successor, \alpha, \beta))$ **if v ≥ β return v** α = max(α , v) return v

Alpha-Beta Poll 3

α: MAX's best option on path to root β: MIN's best option on path to root

def min-value(state, α , β): initialize $v = +\infty$ for each successor of state: $v = min(v, value(successor, \alpha, \beta))$ **if v ≤ α return v** $β = min(β, v)$ return v

Alpha-Beta Pruning Properties

Theorem: This pruning has *no effect* on minimax value computed for the root!

Good child ordering improves effectiveness of pruning

E Iterative deepening helps with this

With "perfect ordering":

- **Time complexity drops to O(b^{m/2})**
- **Doubles solvable depth!**
- \blacksquare 1M nodes/move => depth=8, respectable

This is a simple example of metareasoning (computing about what to compute)

How well would a minimax Pacman perform against a ghost that moves randomly?

- A. Better than against a minimax ghost
- B. Worse than against a minimax ghost
- C. Same as against a minimax ghost

Know your opponent

Know your opponent

Minimax autonomous vehicle?

Image: https://corporate.ford.com/innovation/autonomous-2021.html

Minimax Driver?

<https://youtu.be/5PRrwlkPdNI?t=52>

Clip: How I Met Your Mother, CBS

Dangerous Pessimism Assuming the worst case when it's not likely

Dangerous Optimism

Assuming chance when the world is adversarial

Chance nodes: Expectimax

Chance outcomes in trees

Tictactoe, chess *Minimax*

Tetris, investing *Expectimax*

Backgammon, Monopoly *Expectiminimax*

Probabilities

A random variable represents an event whose outcome is unknown

A probability distribution is an assignment of weights to outcomes

Example: Traffic on freeway

- Random variable: $T =$ whether there's traffic
- Outcomes: T in {none, light, heavy}
- **Distribution:**

 $P(T=none) = 0.25$, $P(T=light) = 0.50$, $P(T=heavy) = 0.25$

Probabilities over all possible outcomes sum to one

Expected Value

Expected value of a function of a random variable: Average the values of each outcome, weighted by the probability of that outcome

Example: How long to get to the airport?

Expectations

$$
V(s) = \max_{a} V(s'),
$$

where $s' = result(s, a)$

Max node notation Chance node notation

$$
V(s) = \sum_{s'} P(s') V(s')
$$

Expectimax Pruning?

Expectimax Code

- function value(state) if state.is leaf return state.value
	- if state.player is MAX return max a in state.actions value(state.result(a))
	- if state.player is MIN return min _{a in state.actions} value(state.result(a))
	- if state.player is CHANCE

return sum $_{\text{s}}$ in state.next_states $P(S)$ * value(s)

Preview: MDP/Reinforcement Learning Notation

 $V(s) = \max_{a} \sum_{s} P(s') V(s')$ \overline{S}

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

$$
V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')
$$

\n
$$
V(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')]
$$

\n
$$
V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_{k}(s')], \quad \forall s
$$

\n
$$
Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_{k}(s', a')], \quad \forall s, a
$$

\n
$$
\pi_{V}(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')], \quad \forall s
$$

\n
$$
V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V_{k}^{\pi}(s')], \quad \forall s
$$

\n
$$
\pi_{new}(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^{\pi_{old}(s')}], \quad \forall s
$$

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

$$
V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')
$$

\n
$$
V(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')]
$$

\n
$$
V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_{k}(s')], \quad \forall s
$$

\n
$$
Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_{k}(s', a')], \quad \forall s, a
$$

\n
$$
\pi_{V}(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')], \quad \forall s
$$

\n
$$
V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V_{k}^{\pi}(s')], \quad \forall s
$$

\n
$$
\pi_{new}(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^{\pi_{old}(s')}], \quad \forall s
$$

Why Expectimax?

Pretty great model for an agent in the world

Choose the action that has the: highest expected value

Bonus Question

Let's say you know that your opponent is actually running a depth 1 minimax, using the result 80% of the time, and moving randomly otherwise

Question: What tree search should you use?

- A: Minimax
- B: Expectimax
- C: Something completely different

Summary

Games require decisions when optimality is impossible

■ Bounded-depth search and approximate evaluation functions

Games force efficient use of computation

■ Alpha-beta pruning

Game playing has produced important research ideas

- Reinforcement learning (checkers)
- Iterative deepening (chess)
- Monte Carlo tree search (Go)
- Solution methods for partial-information games in economics (poker)

Video games present much greater challenges – lots to do!

 \bullet b = 10⁵⁰⁰, |S| = 10⁴⁰⁰⁰, m = 10,000