
Plan

Last time:
▪ Tree search vs graph search
▪ BFS, DFS, iterative deepening search, uniform cost search

Today:
▪ Heuristics
▪ Greedy search
▪ A* search
▪ Optimality

▪ More on heuristics



Informed Search

Instructors: Tuomas Sandholm and Vincent Conitzer

Slide credits: CMU AI, http://ai.berkeley.edu



Breadth-First Search (BFS) Properties
What nodes does BFS expand?
▪ Processes all nodes above shallowest solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

How much space does the frontier take?
▪ Has roughly the last tier, so O(bs)

Is it complete?
▪ s must be finite if a solution exists, so yes!

Is it optimal?
▪ Only if costs are all the same (more on costs later)
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Uniform Cost Search (UCS) Properties
What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution
▪ If that solution costs C* and step costs are at least ε , then 

the “effective depth” is roughly C*/ε
▪ Takes time O(bC*/ε) (exponential in effective depth)

How much space does the frontier take?
▪ Has roughly the last tier, so O(bC*/ε)

Is it complete?
▪ Assuming best solution has a finite cost and minimum step 

cost is positive, yes!

Is it optimal?
▪ Yes!  (Proof via A*)

b
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Uniform Cost Issues

Strategy:
▪ Explore (expand) the lowest path cost 

on frontier

The good:
▪ UCS is complete and optimal!

The bad:
▪  Explores options in every “direction”
▪  No information about goal location

We’ll fix that today!
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function GRAPH-SEARCH(problem) returns a solution, or failure

     initialize the explored set to be empty

     initialize the frontier as a priority queue using some metric as the priority

     add initial state of problem to frontier with initial metric = 0

     loop do 

             if the frontier is empty then 

                     return failure

             choose a node and remove it from the frontier

             if the node contains a goal state then 

                     return the corresponding solution

             add the node state to the explored set

             for each resulting child from node

                     if the child state is not already in the frontier or explored set then

                             add child to the frontier

                     else if the child is already in the frontier with worse metric then

                             replace that frontier node with child



Uninformed vs Informed Search



Today

Informed Search
▪ Heuristics
▪ Greedy Search
▪ A* Search



Search Heuristics
A heuristic is:
▪ A function that estimates how close a state is to a goal

▪ Designed for a particular search problem

▪ Examples: Manhattan distance, Euclidean distance for 
pathing
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Example: Euclidean distance to Bucharest

h(state) 🡪 value



Effect of heuristics

Guide search towards the goal instead of all over the place

Start GoalStart Goal

UninformedInformed



Greedy Search



Expand the node that seems closest…(order frontier by h)

What can possibly go wrong?

h=193

h= 253

h=100

h=0

h=176

Sibiu-Fagaras-Bucharest =
         99+211 = 310
Sibiu-Rimnicu Vilcea-Pitesti-Bucharest =
         80+97+101 = 278

1000000

Greedy Search (An aside: greedy search is not a greedy algorithm. 
The latter, viewed through the lense of search algorithms, is just one branch of a tree.)



Greedy Search

Strategy: expand a node that seems closest to a 
goal state, according to h

Problem 1: it chooses a node even if it’s at the 
end of a very long and winding road

Problem 2: it takes h literally even if it’s 
completely wrong

…
b



A* Search



A* Search

UCS Greedy

A*



Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost  g(n)

Greedy orders by goal proximity, or forward cost  h(n)

A* Search orders by the sum: f(n) = g(n) + h(n)
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function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

     initialize the explored set to be empty

     initialize the frontier as a priority queue using g(n) as the priority

     add initial state of problem to frontier with priority g(S) = 0

     loop do 

             if the frontier is empty then 

                     return failure

             choose a node and remove it from the frontier

             if the node contains a goal state then 

                     return the corresponding solution

             add the node state to the explored set

             for each resulting child from node

                     if the child state is not already in the frontier or explored set then

                             add child to the frontier

                     else if the child is already in the frontier with higher g(n) then

                             replace that frontier node with child



function A-STAR-SEARCH(problem) returns a solution, or failure

     initialize the explored set to be empty

     initialize the frontier as a priority queue using f(n) = g(n) + h(n) as the priority

     add initial state of problem to frontier with priority f(S) = 0 + h(S)

     loop do 

             if the frontier is empty then 

                     return failure

             choose a node and remove it from the frontier

             if the node contains a goal state then 

                     return the corresponding solution

             add the node state to the explored set

             for each resulting child from node

                     if the child state is not already in the frontier or explored set then

                             add child to the frontier

                     else if the child is already in the frontier with higher f(n) then

                             replace that frontier node with child



A* Search Algorithms
A* Tree Search

▪ Same tree search algorithm but with a frontier that is a priority 
queue using priority f(n) = g(n) + h(n)



A* Search Algorithms
A* Tree Search

▪ Same tree search algorithm but with a frontier that is a priority 
queue using priority f(n) = g(n) + h(n)

A* Graph Search

▪ Same as UCS graph search algorithm but with a frontier that is a 
priority queue using priority f(n) = g(n) + h(n)



UCS vs A* Contours

Uniform-cost expands equally in all 
“directions”

A* expands mainly toward the goal, 
but does hedge its bets to ensure 
optimality

Start Goal

Start Goal



Greedy Uniform Cost A*

Comparison



Is A* Optimal?

What went wrong?

Actual bad goal cost < estimated good goal cost

We need estimates to be less than actual costs!
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Admissible Heuristics



Admissible Heuristics

A heuristic h is admissible (optimistic) if:

       0 ≤ h(n) ≤ h*(n) 
where h*(n)  is the true cost to a nearest goal

Example:

Coming up with admissible heuristics is most of 
what’s involved in using A* in practice.

15



Optimality of A* Tree Search



A* Tree Search

S

A

C

G

1

3

1

3

h=2

h=4

h=1

h=0

S (0+2)

A (1+4)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree



Optimality of A* Tree Search

Assume:

A is an optimal goal node

B is a suboptimal goal node

h is admissible

Claim:

A will be chosen for exploration (popped off the frontier) before B

…

A
B



Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too 
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B
1. f(n) is less than or equal to f(A)

f(n) = g(n) + h(n)              Definition of f-cost

f(n) ≤ g(A)                         Admissibility of h

…

g(A) = f(A)                         h = 0 at a goal

A
B

n

 



Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too 
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B
1. f(n) is less than or equal to f(A)
2. f(A) is less than f(B)

…

A
B

n

g(A) <  g(B)                       Suboptimality of B

f(A) <  f(B)                         h = 0 at a goal

 



Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too 
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B
1. f(n) is less than or equal to f(A)
2. f(A) is less than f(B)
3. n is explored before B

All ancestors of A are explored before B

A is explored before B

A* search is optimal

…
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f(n)  ≤  f(A)  <  f(B)  

 



Next:
Optimality of A* Graph Search



Poll 1: A* Graph Search
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What paths does A* graph search consider 
during its search?

A)    S, S-A, S-C, S-C-G

C)    S, S-A, S-A-C, S-A-C-G

D)    S, S-A, S-C, S-A-C, S-A-C-G

B)    S, S-A, S-C, S-A-C, S-C-G



Poll 1: A* Graph Search
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Which paths does A* graph search consider 
during its search?

A)    S, S-A, S-C, S-C-G

C)    S, S-A, S-A-C, S-A-C-G

D)    S, S-A, S-C, S-A-C, S-A-C-G

B)    S, S-A, S-C, S-A-C, S-C-G



A* Graph Search
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A* Graph Search Gone Wrong?
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Simple check against explored set blocks C.

Fancy check allows new C if cheaper than old
but requires recalculating C’s descendants.
Can we avoid this if the heuristic has good properties?



Admissibility of Heuristics
Main idea: Estimated heuristic values ≤ actual costs

▪Admissibility:

heuristic value ≤ actual cost to goal

h(A) ≤ actual cost from A to G
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Consistency of Heuristics
Main idea: Estimated heuristic costs ≤ actual costs

▪Admissibility:

heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

▪Consistency:

“heuristic step cost” ≤ actual cost for each step

h(A) – h(C) ≤ cost(A to C)

triangle inequality

h(A) ≤ cost(A to C) + h(C)

Consequences of consistency:

▪ The f value along a path never decreases

▪A* graph search is optimal
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Optimality of A* Graph Search

Sketch: consider what A* does with a 
consistent heuristic:

▪Fact 1: In tree search, A* expands nodes 
in increasing total f value (f-contours)

▪Fact 2: For every state s, nodes that 
reach s optimally are explored before 
nodes that reach s suboptimally

▪Result: A* graph search is optimal

…

f ≤ 3
f ≤ 2

f ≤ 1



Optimality

Tree search:
▪A* is optimal if heuristic is admissible
▪UCS is a special case (h = 0)

Graph search:
▪A* optimal if heuristic is consistent
▪UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be 
consistent, especially if from relaxed problems



Creating Heuristics



Creating Admissible Heuristics
Most of the work in solving hard search problems optimally is in 
coming up with admissible heuristics

Often, admissible heuristics are solutions to relaxed problems, where 
new actions are available

15366



Example: 8 Puzzle

What are the states?

How many states?

What are the actions?

How many actions from the start state?

What should the step costs be?

Start State Goal StateActions



8 Puzzle I

Heuristic: Number of tiles misplaced

Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

8

Average nodes expanded when 
the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A*TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore



8 Puzzle II
What if we had an easier 8-puzzle 
where any tile could slide any 
direction at any time, ignoring 
other tiles?

Total Manhattan distance

Why is it admissible?

h(start) = 3 + 1 + 2 + … = 18

Average nodes expanded when 
the optimal path has…
…4 
steps

…8 
steps

…12 
steps

A*TILES 13 39 227

A*MANHATTAN 12 25 73

Start State Goal State



Combining heuristics
Dominance: h

a
 ≥ h

c
 if    

                     ∀n  h
a
(n) ≥ h

c
(n)

▪  Roughly speaking, larger is better as long as both are admissible
▪ The zero heuristic is pretty bad (what does A* do with h=0?)
▪ The exact heuristic is pretty good, but usually too expensive!

What if we have two heuristics, neither dominates the other?
▪  Form a new heuristic by taking the max of both:

                  h(n) = max( h
a
(n), h

b
(n) )

▪  Max of admissible heuristics is admissible and dominates both!



In-Class Activity

Q1: Practice creating heuristics and running Greedy and A* search

Q2: Walk through Amazon Robot Example



A*: Summary



A*: Summary
A* uses both cost so far (“backward cost”) and (estimates of) cost to go 
(“forward cost”)

A* is optimal with admissible / consistent heuristics

Heuristic design is key: often use relaxed problems


