
Plan

Last time:
▪ Tree search vs graph search
▪ BFS, DFS, iterative deepening search, uniform cost search

Today:
▪ Heuristics
▪ Greedy search
▪ A* search
▪ Optimality

▪ More on heuristics

Informed Search

Instructors: Tuomas Sandholm and Vincent Conitzer

Slide credits: CMU AI, http://ai.berkeley.edu

Breadth-First Search (BFS) Properties
What nodes does BFS expand?
▪ Processes all nodes above shallowest solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

How much space does the frontier take?
▪ Has roughly the last tier, so O(bs)

Is it complete?
▪ s must be finite if a solution exists, so yes!

Is it optimal?
▪ Only if costs are all the same (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

…

Uniform Cost Search (UCS) Properties
What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution
▪ If that solution costs C* and step costs are at least ε , then

the “effective depth” is roughly C*/ε
▪ Takes time O(bC*/ε) (exponential in effective depth)

How much space does the frontier take?
▪ Has roughly the last tier, so O(bC*/ε)

Is it complete?
▪ Assuming best solution has a finite cost and minimum step

cost is positive, yes!

Is it optimal?
▪ Yes! (Proof via A*)

b

C*/ε “tiers”
c ≤ 3

c ≤ 2
c ≤ 1

Uniform Cost Issues

Strategy:
▪ Explore (expand) the lowest path cost

on frontier

The good:
▪ UCS is complete and optimal!

The bad:
▪ Explores options in every “direction”
▪ No information about goal location

We’ll fix that today!

Start Goal

…

c ≤ 3

c ≤ 2

c ≤ 1

function GRAPH-SEARCH(problem) returns a solution, or failure

 initialize the explored set to be empty

 initialize the frontier as a priority queue using some metric as the priority

 add initial state of problem to frontier with initial metric = 0

 loop do

 if the frontier is empty then

 return failure

 choose a node and remove it from the frontier

 if the node contains a goal state then

 return the corresponding solution

 add the node state to the explored set

 for each resulting child from node

 if the child state is not already in the frontier or explored set then

 add child to the frontier

 else if the child is already in the frontier with worse metric then

 replace that frontier node with child

Uninformed vs Informed Search

Today

Informed Search
▪ Heuristics
▪ Greedy Search
▪ A* Search

Search Heuristics
A heuristic is:
▪ A function that estimates how close a state is to a goal

▪ Designed for a particular search problem

▪ Examples: Manhattan distance, Euclidean distance for
pathing

10

5

11.2

Example: Euclidean distance to Bucharest

h(state) 🡪 value

Effect of heuristics

Guide search towards the goal instead of all over the place

Start GoalStart Goal

UninformedInformed

Greedy Search

Expand the node that seems closest…(order frontier by h)

What can possibly go wrong?

h=193

h= 253

h=100

h=0

h=176

Sibiu-Fagaras-Bucharest =
 99+211 = 310
Sibiu-Rimnicu Vilcea-Pitesti-Bucharest =
 80+97+101 = 278

1000000

Greedy Search (An aside: greedy search is not a greedy algorithm.
The latter, viewed through the lense of search algorithms, is just one branch of a tree.)

Greedy Search

Strategy: expand a node that seems closest to a
goal state, according to h

Problem 1: it chooses a node even if it’s at the
end of a very long and winding road

Problem 2: it takes h literally even if it’s
completely wrong

…
b

A* Search

A* Search

UCS Greedy

A*

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)

Greedy orders by goal proximity, or forward cost h(n)

A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1
1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

 initialize the explored set to be empty

 initialize the frontier as a priority queue using g(n) as the priority

 add initial state of problem to frontier with priority g(S) = 0

 loop do

 if the frontier is empty then

 return failure

 choose a node and remove it from the frontier

 if the node contains a goal state then

 return the corresponding solution

 add the node state to the explored set

 for each resulting child from node

 if the child state is not already in the frontier or explored set then

 add child to the frontier

 else if the child is already in the frontier with higher g(n) then

 replace that frontier node with child

function A-STAR-SEARCH(problem) returns a solution, or failure

 initialize the explored set to be empty

 initialize the frontier as a priority queue using f(n) = g(n) + h(n) as the priority

 add initial state of problem to frontier with priority f(S) = 0 + h(S)

 loop do

 if the frontier is empty then

 return failure

 choose a node and remove it from the frontier

 if the node contains a goal state then

 return the corresponding solution

 add the node state to the explored set

 for each resulting child from node

 if the child state is not already in the frontier or explored set then

 add child to the frontier

 else if the child is already in the frontier with higher f(n) then

 replace that frontier node with child

A* Search Algorithms
A* Tree Search

▪ Same tree search algorithm but with a frontier that is a priority
queue using priority f(n) = g(n) + h(n)

A* Search Algorithms
A* Tree Search

▪ Same tree search algorithm but with a frontier that is a priority
queue using priority f(n) = g(n) + h(n)

A* Graph Search

▪ Same as UCS graph search algorithm but with a frontier that is a
priority queue using priority f(n) = g(n) + h(n)

UCS vs A* Contours

Uniform-cost expands equally in all
“directions”

A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

Start Goal

Start Goal

Greedy Uniform Cost A*

Comparison

Is A* Optimal?

What went wrong?

Actual bad goal cost < estimated good goal cost

We need estimates to be less than actual costs!

A

GS

1 3

h = 6

h = 0

5

h = 7

Admissible Heuristics

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

 0 ≤ h(n) ≤ h*(n)
where h*(n) is the true cost to a nearest goal

Example:

Coming up with admissible heuristics is most of
what’s involved in using A* in practice.

15

Optimality of A* Tree Search

A* Tree Search

S

A

C

G

1

3

1

3

h=2

h=4

h=1

h=0

S (0+2)

A (1+4)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Optimality of A* Tree Search

Assume:

A is an optimal goal node

B is a suboptimal goal node

h is admissible

Claim:

A will be chosen for exploration (popped off the frontier) before B

…

A
B

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B
1. f(n) is less than or equal to f(A)

f(n) = g(n) + h(n) Definition of f-cost

f(n) ≤ g(A) Admissibility of h

…

g(A) = f(A) h = 0 at a goal

A
B

n

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B
1. f(n) is less than or equal to f(A)
2. f(A) is less than f(B)

…

A
B

n

g(A) < g(B) Suboptimality of B

f(A) < f(B) h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B
1. f(n) is less than or equal to f(A)
2. f(A) is less than f(B)
3. n is explored before B

All ancestors of A are explored before B

A is explored before B

A* search is optimal

…

A
B

n

f(n) ≤ f(A) < f(B)

Next:
Optimality of A* Graph Search

Poll 1: A* Graph Search

S

A

C

G

1

3

1

3

h=2

h=4

h=1

h=0

What paths does A* graph search consider
during its search?

A) S, S-A, S-C, S-C-G

C) S, S-A, S-A-C, S-A-C-G

D) S, S-A, S-C, S-A-C, S-A-C-G

B) S, S-A, S-C, S-A-C, S-C-G

Poll 1: A* Graph Search

S

A

C

G

1

3

1

3

h=2

h=4

h=1

h=0

Which paths does A* graph search consider
during its search?

A) S, S-A, S-C, S-C-G

C) S, S-A, S-A-C, S-A-C-G

D) S, S-A, S-C, S-A-C, S-A-C-G

B) S, S-A, S-C, S-A-C, S-C-G

A* Graph Search

S

A

C

G

1

3

1

3

h=2

h=4

h=1

h=0

What does the resulting graph search
tree look like?

S
A

C

G

S
A

C

G

A)

B)

C)

S
A

C

G

A* Graph Search Gone Wrong?

S

A

C

G

1

3

1

3

h=2

h=4

h=1

h=0

S (0+2)

A (1+4) C (3+1)

G (6+0)

State space graph Search tree

Simple check against explored set blocks C.

Fancy check allows new C if cheaper than old
but requires recalculating C’s descendants.
Can we avoid this if the heuristic has good properties?

Admissibility of Heuristics
Main idea: Estimated heuristic values ≤ actual costs

▪Admissibility:

heuristic value ≤ actual cost to goal

h(A) ≤ actual cost from A to G

3

A

C

G

h=4

1

Consistency of Heuristics
Main idea: Estimated heuristic costs ≤ actual costs

▪Admissibility:

heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

▪Consistency:

“heuristic step cost” ≤ actual cost for each step

h(A) – h(C) ≤ cost(A to C)

triangle inequality

h(A) ≤ cost(A to C) + h(C)

Consequences of consistency:

▪ The f value along a path never decreases

▪A* graph search is optimal

A

C

G

h=4
h=1

1

h=2

Optimality of A* Graph Search

Sketch: consider what A* does with a
consistent heuristic:

▪Fact 1: In tree search, A* expands nodes
in increasing total f value (f-contours)

▪Fact 2: For every state s, nodes that
reach s optimally are explored before
nodes that reach s suboptimally

▪Result: A* graph search is optimal

…

f ≤ 3
f ≤ 2

f ≤ 1

Optimality

Tree search:
▪A* is optimal if heuristic is admissible
▪UCS is a special case (h = 0)

Graph search:
▪A* optimal if heuristic is consistent
▪UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

Creating Heuristics

Creating Admissible Heuristics
Most of the work in solving hard search problems optimally is in
coming up with admissible heuristics

Often, admissible heuristics are solutions to relaxed problems, where
new actions are available

15366

Example: 8 Puzzle

What are the states?

How many states?

What are the actions?

How many actions from the start state?

What should the step costs be?

Start State Goal StateActions

8 Puzzle I

Heuristic: Number of tiles misplaced

Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

8

Average nodes expanded when
the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A*TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II
What if we had an easier 8-puzzle
where any tile could slide any
direction at any time, ignoring
other tiles?

Total Manhattan distance

Why is it admissible?

h(start) = 3 + 1 + 2 + … = 18

Average nodes expanded when
the optimal path has…
…4
steps

…8
steps

…12
steps

A*TILES 13 39 227

A*MANHATTAN 12 25 73

Start State Goal State

Combining heuristics
Dominance: h

a
 ≥ h

c
 if

 ∀n h
a
(n) ≥ h

c
(n)

▪ Roughly speaking, larger is better as long as both are admissible
▪ The zero heuristic is pretty bad (what does A* do with h=0?)
▪ The exact heuristic is pretty good, but usually too expensive!

What if we have two heuristics, neither dominates the other?
▪ Form a new heuristic by taking the max of both:

 h(n) = max(h
a
(n), h

b
(n))

▪ Max of admissible heuristics is admissible and dominates both!

In-Class Activity

Q1: Practice creating heuristics and running Greedy and A* search

Q2: Walk through Amazon Robot Example

A*: Summary

A*: Summary
A* uses both cost so far (“backward cost”) and (estimates of) cost to go
(“forward cost”)

A* is optimal with admissible / consistent heuristics

Heuristic design is key: often use relaxed problems

