
AI: Representation and Problem Solving
Markov Decision Processes

Instructors: Nihar Shah and Tuomas Sandholm
Slide credits: CMU AI and ai.berkeley.edu

The relationship between actions & consequences
is not deterministic, but is stochastic (random)

Example: Grid World

§ A maze-like problem
§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ 80% of the time, the action North takes the agent North

(if there is no wall there)
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have

been taken, the agent stays put

§ The agent receives rewards each time step
§ Reward depends on agent’s state and action
§ Can be positive, zero or negative

§ Goal: maximize sum of rewards

Grid World Actions
Deterministic Grid World Stochastic Grid World

Markov Decision Processes

An MDP is defined by:
§ A set of states s Î S
§ A set of actions a Î A
§ A transition function T(s, a, s’)
§ Probability that a from s leads to s’, i.e., P(s’| s, a)

§ A reward function R(s, a, s’)

All of this information is known beforehand

What is Markov about MDPs?

“Markov” generally means that given the present state, the future
and the past are independent

For Markov decision processes, “Markov” means action outcomes
depend only on the current state

Andrey Markov
(1856-1922)

Goal: Maximize sum of rewards
Finite time horizon setting:
• Consider MDP for T time steps
• Rewards summed over the time steps
• Want to choose actions that maximize expected reward
 E ∑!"#$ Reward	at	time	t

Markov Decision Processes

What actions will yield the highest expected
reward?

Suppose you choose the action “up”. Then suppose:
• There is an 80% chance you go up, and get a reward of +2
• There is a 10% chance you go left, and get a reward of -1
• There is a 10% chance you go right, and get a reward of -1
• The expected reward in this step under this action is 0.8*(+2) + 0.1*(-1) + 0.1*(-1) = 1.4

Want to choose actions that maximize total reward across
many time steps (not just in the current time step)

MDP Search Trees

a

s

sʼ

s, a

Transition: T(s,a,sʼ) = P(sʼ|s,a)

s is a state

R(s,a,sʼ)

Policies

In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

For MDPs, we want an optimal policy
§ A policy p gives an action for each state
§ An optimal policy is one that maximizes

expected utility if followed

Solution method 1: Expectimax search

Suppose the MDP has only 1 state and will run only
for 1 time step. If you were to take Left, what is the
expected reward?

A) 12
B) 8
C) 7
D) 4

48 8 6 12 6

1/4
1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

12

Suppose the MDP has only 1 state and will run only
for 1 time step. If you were to take Center, what is
the expected reward?

A) 12
B) 8
C) 7
D) 4

48 8 6 12 6

1/4
1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

12

Suppose the MDP has only 1 state and will run only
for 1 time step. If you were to take Right, what is the
expected reward?

A) 12
B) 8
C) 7
D) 4

48 8 6 12 6

1/4
1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

12

Suppose the MDP has only 1 state and will run only
for 1 time step. Which action should we choose?

A) Left
B) Center
C) Right
D) Cannot determine

48 8 6 12 6

1/4
1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

12

Solution method 1: Expectimax search

• Starting from the start state, expand the tree to depth k, for some chosen k
• Previous example was for depth 1
• Here is an example for depth 2…

1/2 1/2 1

Left Right

4 1012

1/2
1/2

1

Left Right

4 1012

Left Right

1

14

1

9

Left Right

1

4

1

9

Solution method 1: Expectimax search

• Starting from the start state, expand the tree to depth k, for some chosen k

• Move up the tree, recursively computing the reward obtained
• Compute expectations at nodes and max at nodes

1/2 1/2 1

Left Right

4 912

1/2
1/2

1

Left Right

4 912

Left Right

1

14

1

9

Left Right

1

4

1

9

8 9
14 9

4 9

9 14 9

19.5 18

function EXPECTIMAX(node, depth):

 if depth = 0:
 return 0

 if node is a MAX node (denoted as s):
 value = -∞
 for each possible action a:
 value = max(value, EXPECTIMAX((s,a) , depth - 1))
 return value

 else if node is an EXPECTATION node (denoted as (s,a)):
 value = 0
 for each child of node s’, with probability given by the transition T(s,a,s’):
 value += T(s,a,s’) * (R(s,a,s’) + EXPECTIMAX(s’, depth))
 return value

Goal: Maximize sum of rewards
Finite time horizon setting:
• Consider MDP for T time steps
• Rewards summed over the time steps
• Want to choose actions that maximize expected reward
 E ∑!"#$ Reward	at	time	t

Will the optimal choice of actions depend on time?
If you are in a state s at time 1 versus in the state s at time 10,
can the optimal action be different??

1/2 1/2 1

Left Right

4 1012

1/2
1/2

1

Left Right

4 1012

Left Right

1

14

1

9

Left Right

1

4

1

9

same state

1/2 1/2 1

Left Right

4 912

1/2
1/2

1

Left Right

4 912

Left Right

1

14

1

9

Left Right

1

4

1

9

8 9
14 9

4 9

9 14 9

19.5 18

different
optimal
actions

same state

Goal: Maximize sum of rewards
Finite time horizon setting:
• Consider MDP for T time steps
• Rewards summed over the time steps
• Want to choose actions that maximize expected reward
 E ∑!"#$ Reward	at	time	t

Will the optimal choice of actions depend on time?
If you are in a state s at time 1 versus in the state s at time 10,
can the optimal action be different?? YES

Goal: Maximize sum of rewards
Finite time horizon setting:
• Consider MDP for T time steps
• Rewards summed over the time steps
• Want to choose actions that maximize expected reward
 E ∑!"#$ Reward	at	time	t

Challenges
• Optimal action depends on time step
• Need to compute it separately for each time step…
• Computational cost + headache

• May not know horizon T in advance

Goal: Maximize sum of rewards
Infinite time horizon setting:
• Want to choose actions that maximize expected reward
 E ∑!"#% Reward	at	time	t

Goal: Maximize sum of rewards
Infinite time horizon setting:
• Want to choose actions that maximize expected reward
 E ∑!"#% Reward	at	time	t

This can be infinite for many choices of actions…
Infinity vs. infinity?

Challenge

Discounting

It’s reasonable to maximize the sum of rewards
It’s also reasonable to prefer rewards now to rewards later
One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Goal: Maximize sum of rewards
Infinite time horizon setting with discounted rewards:
Want to choose actions that maximize expected reward
 E ∑!"#% 	𝛾! 	 Reward	at	time	t
for some 𝛾 in (0,1)

If you are in some state s at some time t1
versus

if you are in that state s at some time t2

Does the optimal action need to differ?

Goal: Maximize sum of rewards

E "
!"#

$

	𝛾!	 Reward	at	time	t

Does the optimal action need to differ with time?

1. Markov property means that the MDP evolution does not change with time

2. What about optimal actions? Let’s look at future reward starting at t1 or t2

Finite horizon: Future reward = E ∑!"t1
% 	Reward	at	time	t vs. E ∑!"t2

% 	Reward	at	time	t
Infinite horizon with discounted reward:
E ∑!"t1

$ 	𝛾!	 Reward	at	time	t = E ∑!"1
$ 	𝛾!	 Reward	at	time	t (via change of variables)

vs. E ∑!"t2
$ 	𝛾!	 Reward	at	time	t = E ∑!"1

$ 	𝛾!	 Reward	at	time	t

Time invariant!!

Policies

In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

For MDPs, we want an optimal policy
§ A policy p gives an action for each state
§ An optimal policy is one that maximizes

expected utility if followed
§Action depends only on the state

you are in, and not on when
§Policy p:S→A

Solution method 2: Value iteration

Optimal Quantities
§ The value (utility) of a state s:

V*(s) = expected total reward starting in s
and acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected total reward starting

out having taken action a from state s
and (thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Optimal Quantities
§ The value (utility) of a state

s:
V*(s) = expected total

reward starting in s and
acting optimally

§ The value (utility) of a q-
state (s,a):
Q*(s,a) = expected total

reward starting out
having taken action a
from state s and
(thereafter) acting
optimally

§ The optimal policy:
p*(s) = optimal action from

state s

Bellman equations

for every state s

Optimal Quantities
§ The value (utility) of a state

s:
V*(s) = expected total

reward starting in s and
acting optimally

§ The value (utility) of a q-
state (s,a):
Q*(s,a) = expected total

reward starting out
having taken action a
from state s and
(thereafter) acting
optimally

§ The optimal policy:
p*(s) = optimal action from

state s

Question: If you have
Q*, how to get V*?

Optimal Quantities
§ The value (utility) of a state

s:
V*(s) = expected total

reward starting in s and
acting optimally

§ The value (utility) of a q-
state (s,a):
Q*(s,a) = expected total

reward starting out
having taken action a
from state s and
(thereafter) acting
optimally

§ The optimal policy:
p*(s) = optimal action from

state s

Question: If you have
Q*, how to get p*?

p*(s) = arg

Optimal Quantities
§ The value (utility) of a state

s:
V*(s) = expected total

reward starting in s and
acting optimally

§ The value (utility) of a q-
state (s,a):
Q*(s,a) = expected total

reward starting out
having taken action a
from state s and
(thereafter) acting
optimally

§ The optimal policy:
p*(s) = optimal action from

state s

Question: If you have
V*, how to get Q*?

Optimal Quantities
§ The value (utility) of a state

s:
V*(s) = expected total

reward starting in s and
acting optimally

§ The value (utility) of a q-
state (s,a):
Q*(s,a) = expected total

reward starting out
having taken action a
from state s and
(thereafter) acting
optimally

§ The optimal policy:
p*(s) = optimal action from

state s

Question: If you have
V*, how to get p*?

p*(s) = arg

“Policy extraction”

Solution method 2: Value iteration

If we can estimate V*, we can find the optimal policy

Key idea:
• Initialize V* (either a guess or set it to 0)
• Keep updating the guess using the equation above

Solution method 2: Value iteration

Start with initial guess of the value function V, e.g., V(s) = 0 for all s

Given vector of V(s) values, do one iteration of expectimax for each state:

Repeat

Solution method 2: Value iteration
Example on the board

Solution method 2: Value iteration

Start with initial guess of the value function V, e.g., V(s) = 0 for all s

Given vector of V(s) values, do one iteration of expectimax for each state:

Repeat

Complexity of each iteration:
 O(S2A)

Theorem: will converge to unique optimal values

Convergence

How do we know the Vk vectors are going to converge?

Proof sketch: Suppose rewards are bounded in [RMIN , RMAX]
§ For any state Vk and Vk+1 can be viewed as depth k+1

expectimax results in nearly identical search trees
§ The difference is that on the bottom layer, Vk+1 has actual

rewards while Vk has zeros
§ That last layer is at best all RMAX
§ It is at worst RMIN
§ But everything is discounted by γk that far out
§ So Vk and Vk+1 are at most γk max|R| different
§ So as k increases, the values converge

