15-281 AI: Representation and Problem Solving Reinforcement Learning I

Instructors: Nihar Shah and Tuomas Sandholm

Carnegie Mellon University

Slide credits: CMU AI and ai.berkeley.edu

Recall Markov Decision Processes

• An MDP is defined by:

- \circ A set of states $s \in S$
- \circ A set of actions $a \in A$
- A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
- o A reward function R(s, a, s')

All of this information is known beforehand

Reinforcement Learning (RL)

○ RL is defined by: ○ A set of states s ∈ S ○ A set of actions a ∈ A ○ A transition function T(s, a, s') ○ Probability that a from s leads to s', i.e., P(s' | s, a)

• A reward function R(s, a, s')

Then what is the difference with MDPs?

MDPs vs. Reinforcement Learning

MDPs

• You know the rewards and transitions (i.e., the model of the world) beforehand

Reinforcement Learning

 You don't know rewards and transitions beforehand

• E.g., a prior rover etc. mapped the entire terrain which you can use now

 E.g., the robot is deployed in an environment that is completely unseen before

MDPs vs. Reinforcement Learning

MDPs

- You know the rewards and transitions (i.e., the model of the world) beforehand
- Find policy to maximize total reward
- Run our MDP solvers offline
- Only deploy the optimal policy

Reinforcement Learning

- You don't know rewards and transitions beforehand
- Still assume the world is an MDP
- Do not know how the world works
- Find policy to maximize total reward
- Need to take actions in the world to understand the world

DeepMind Atari (©Two Minute Lectures)

Example: Learning to Walk

Initial

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – initia]

Example: Learning to Walk

Training

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – traini

Example: Learning to Walk

Finished

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – finish

Reinforcement Learning

We don't know T and R! How do we find policies?

We need to estimate quantities by trying out

At time step t,

- Take action *a*_t
- End up in new state s_{t+1}
- Observe reward = $R(s_t, a_t, s_{t+1})$

Data: $s_0, a_1, R_1, s_1, a_2, R_2, s_2, a_3, R_3, s_3, \dots$

Passive vs Active RL

• Passive RL

- o Suppose policy π being used is already given to you
- Only worry about how to learn from experience
- Agent does **not** control the policy π of taking actions

• Active RL

o Agent has to decide how to collect experience

Today: Passive RL

• Let π denote the policy being used

- One may like to learn the value obtained from this policy:
 - $\circ V^{\pi}(s)$ = expected reward starting at state s and always following π
 - $Q^{\pi}(s, a)$ =expected reward stating at s, taking action a now, and following π thereafter
 - One may like to learn the optimal policy: π^* or $V^*(s)$ or $Q^*(s, a)$

Data: s_0 , a_1 , R_1 , s_1 , a_2 , R_2 , s_2 , a_3 , R_3 , s_3 , ... • Data collected via a policy π

Today: Policy evaluation

• For the policy π being used in the passive RL setting, how to estimate V^{π} ?

• (Next lecture: How do we compute an optimal policy)

Monte-Carlo estimation

Collect a bunch of samples and take their average value

- Suppose we want to compute the expected age of people in the US
- **Strategy:** Sample N people at random. Suppose their ages are $a_1, a_2, ..., a_N$. Now "estimate" the expected age to be $E[A] \approx \frac{1}{N}(a_1 + a_2 + ..., a_N)$

Reinforcement learning approaches

O Model based RL

• $\hat{R}(s, a, s') = \text{mean}(\text{rewards obtained from state s taking})$ action a and moving to s'

Reinforcement learning approaches

O Model based RL

- o First estimate T(s, a, s') and R(s, a, s')
- o Then use methods from MDP

○ Model free RL

- o Could be wasteful to estimate T(s, a, s') and R(s, a, s')
- o Estimate V^{π} and Q^{π} directly
- Estimate *Q*^{*} directly (policy extraction is trivial)

Policy evaluation

• For the policy π being used in the passive RL setting, how to estimate V^{π} ?

Rest of lecture: Three methods (progressively improving):

- Direct policy evaluation
- "Better" policy evaluation
- Temporal difference learning

Direct policy evaluation

• Estimate V^{π} as follows

• Every time you visit a state, write down what the total reward across time turned out to be

• Average those samples

• Monte-carlo estimates using samples of utility

Direct policy evaluation

 Problem: This does not utilize the MDP structure, and can be wasteful

But, if we were to exploit the MDP structure: $V^{\pi}(x) = r + \gamma V^{\pi}(y)$

"Better" policy evaluation

• Recall value iteration (for given policy π) $V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$

Can we do this without T, R but just via samples?
Consider each time you are in state s and take action π(s)

 $sample_{1} = R(s, \pi(s), s_{1}') + \gamma V_{k}^{\pi}(s_{1}')$ $sample_{2} = R(s, \pi(s), s_{2}') + \gamma V_{k}^{\pi}(s_{2}')$ \dots $sample_{n} = R(s, \pi(s), s_{n}') + \gamma V_{k}^{\pi}(s_{n}')$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_i$$

Challenges with "better" policy estimation

$$sample_{1} = R(s, \pi(s), s_{1}') + \gamma V_{k}^{\pi}(s_{1}')$$

$$sample_{n} = R(s, \pi(s), s_{n}') + \gamma V_{k}^{\pi}(s_{n}')$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

- Need to wait for n samples of $(s,\pi(s))$ for the update
- Any update to a different state V^π(s') in the meantime will use a stale estimate of V^π(s)
- Update for $V^{\pi}(s)$ may be using stale estimates of $V^{\pi}(s')$

Reinterpreting sample average
$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

• Suppose we have average over *n* samples, and see a new sample, how do we update?

$$V_{k+1}^{\pi}(s) = \frac{n}{n+1} V_{k+1}^{\pi}(s) + \frac{1}{n+1}$$
 sample

• Interpolating between current estimate and new sample

Temporal Difference learning

• **Main idea:** Update V(s) each time we experience a transition (s, a, s')

Sample of V^{π} **(s):** *sample* = $R + \gamma V^{\pi}(s')$

Update $V^{\pi}(s)$: $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$

• Decreasing learning rate (α) towards zero leads to convergence