AI: Representation and Problem Solving

Bayes Nets I

Instructors: Nihar Shah and Tuomas Sandholm
Slide credits: CMU AI and ai.berkeley.edu

Example: COVID modeling

What is $P($ URT elipthelial infection = yes \mid dry cough=yes, productive cough=no, anosmia=yes)?

Simpler example: Grade prediction

What is $\mathrm{P}($ grade $=\mathrm{A} \mid \mathrm{SAT}=1550)$?

https://uol.de/en/lcs/probabilistic-programming/webchurch-and-openbugs/example-6a-bayesian-network-student-model-with-evidence

Bayes nets

- A Bayes net (Bayesian network) is a way to model relationships between various variables
- Goal is to obtain some marginal or conditional distributions
o e.g., P(infected) or P(infected | cough)

Probability overview...

281 Pizzeria!

You pick one slice uniformly at random.
What is the probability of getting a slice with:

1) No mushrooms
2) Spinach and no mushrooms
3) Spinach, when asking for slice with no mushrooms

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

281 Pizzeria!

You pick one slice uniformly at random. What is the probability of getting a slice with:

- Mushrooms
- Spinach
- No spinach
- No spinach and mushrooms
- No spinach when asking for no mushrooms
- No spinach when asking for mushrooms
- Spinach when asking for mushrooms
- No mushrooms and no spinach

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Probability notation

- Upper case letters (e.g., A) to denote random variables
- For a random variable A taking values $\left\{a_{1}, a_{2}, a_{3}\right\}$

$$
p(A)=\left(\begin{array}{l}
0.1 \\
0.5 \\
0.4
\end{array}\right)
$$

represents the set of probabilities for each value that A can take on (this is a function mapping values of A to numbers that sum to one)

- We use lower case letters like a to denote a specific value of A (i.e., for above example $\left\{a_{1}, a_{2}, a_{3}\right\}$), and $p(A=a)$ or just $p(a)$ refers to a number (the corresponding entry of $p(A)$)

Discrete Probability Distributions

For each random variable

- Discrete outcomes
- Disjoint outcomes
- Accounts for entire event space
- Not always binary

Discrete Random Variables (and their domains)
$A \in\left\{a_{1}, a_{2}, a_{3}\right\}$
$B \in\{+b,-b\}$
$C \in\{+c,-c\}$

Probability notation

Given two random variables: B with values in $\{+b,-b\}$ and C with values in $\{+c,-c\}$:

- $p(\mathrm{~B}, C)$ refers to the joint distribution, i.e., a set of 6 possible values for each setting of variables, i.e., a function mapping $(+b,+c),(+b,-c),(-b,+c), \ldots$ to corresponding probabilities
- $p(+b,-c)$ is a number: probability that $\mathrm{B}=+b$ and $C=-c$
- $p(B, c)$ is a set of 2 values, the probabilities for all values of B for the given value $\mathrm{C}=c$, i.e., it is a function mapping $+b,-b$ to numbers (note: not probability distribution, it will not sum to one) Why?

Probability notation

- Three random variables: $A \in\left\{a_{1}, a_{2}, a_{3}\right\}, B \in\{+b,-b\}, C \in\{+c,-c\}$

○ $P(\mathrm{~B}=+b, C)=\sum_{a \in\left\{a_{1}, a_{2}, a_{3}\right\}} P(A=a, \mathrm{~B}=+b, C)$

- Also written as $P(+b, C)=\sum_{a \in\left\{a_{1}, a_{2}, a_{3}\right\}} P(a,+b, C)$

Joint probability distribution

Table representing all values
$A \in\{+a,-a\}$
$B \in\{+b,-b\}$

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{P}(\mathbf{A}=\mathbf{a}, \mathbf{B}=\mathbf{b}, \mathbf{C}=\mathbf{c})$
+a	$+b$	$+c$	
+a	$+b$	$-c$	
+a	$-b$	$+c$	
+a	$-b$	$-c$	
-a	$+b$	$+c$	
-a	$+b$	$-c$	
-a	$-b$	$+c$	
-a	$-c$		

Discrete probability distributions

- Joint distribution $P(M, S, R)$

$$
\begin{aligned}
& \text { Discrete Random Variables } \\
& \text { (and their domains) } \\
& M \in\{+m,-m\} \\
& S \in\{+s,-s\} \\
& R \in\{+r,-r\}
\end{aligned}
$$

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Marginalization

- For random variables B, C if you have joint distribution $p(B, C)$, how do you get the marginal probabilities $p(B), p(C)$?
$\circ p(B)=\sum_{c \in\{+c,-c\}} p(\mathrm{~B}, C=c)$
o $p(C)=\sum_{b \in\{+b,-b\}} p(\mathrm{~B}=\mathrm{b}, \mathrm{C})$
$\circ p(+b)=\sum_{c \in\{+c,-c\}} p(+\mathrm{b}, c)=p(+b,+c)+p(+b,-c)$

Marginalization is summing out a subset of random variables from a joint distribution to obtain a distribution of the remaining subset

Discrete probability distributions

Marginal distribution
E.g., what is the probability that chosen slice has no spinach?

$$
P(-s)
$$

Marginalization from table

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{P}(\mathbf{A}=\mathbf{a}, \mathbf{B}=\mathbf{0}, \mathbf{C}=\mathbf{c})$
+a	$+b$	$+c$	$A \in\{+a,-a\}$
+a	$+b$	$-c$	
+a	$-b$	$+c$	$B \in\{+b,-b\}$
+a	$-b$	$-c$	
-a	$+b$	$+c$	
-a	$+b$	$-c$	
-a	$-b$	$+c$	
-a	$-c$		

What is $p(B)$?
Sum rows that share the same value of B

Conditional probability

Given that the chosen slice has roasted onion, what is the probability it has mushrooms and no spinach?

$$
P(+\boldsymbol{m},-\boldsymbol{s} \mid+r)
$$

We restrict our attention to satisfying the "given" condition, and then normalize the values so that they sum to 1 (form a distribution)

$$
P(+m,-s \mid+r)=\frac{P(+m,-s,+r)}{\stackrel{P(+m,+s,+r)+P(+m,-s,+r)+P(-m,+s,+r)+P(-m,-s,+r>}{ }} P(+r)
$$

Conditional probability

The conditional probability $p(B \mid C=+c)$ (" B given $C=+c$ ") is defined as

$$
p(B \mid C=+c)=\frac{p(B, C=+c)}{p(C=+c)}
$$

- $p(+b \mid C=+c)=\frac{p(+b,+c)}{p(+c)}$
- $p(-b \mid C=+c)=\frac{p(-b,+c)}{p(+c)}$

Conditional probability from table

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{P}(\mathbf{A}=\mathbf{a}, \mathbf{B}=\mathbf{b}, \mathbf{C}=\mathbf{c})$
+a	$+b$	$+c$	$A \in\{+a,-a\}$
+a	$+b$	$-c$	
+a	$-b$	$+c$	$C \in\{+b,-b\}$
+a	$-b$	$-c$	
-a	$+b$	$+c$	
-a	$+b$	$-c$	
-a	$-b$	$+c$	
-a	$-b$	$-c$	

What is $p(A=+a, B=+b \mid C=+c)$?
We restrict our attention to rows that satisfy the "given" condition, and then normalize the values so that they sum to 1 (form a distribution)

Question

Which of the following probability tables sum to one?
i. $P(A \mid b)$
ii. $P(A, b, C)$
iii. $P(A, C \mid b)$
iv. $P(a, c \mid b)$

More practice

What is the probability of getting a slice with....

Answer queries from joint distribution

You can answer all of these questions:

$$
P(M \mid+s) \quad P(M \mid-\mathrm{s})
$$

$P(M)$	$P(M, S)$
+m 8/20	$+m+s$
-m	$+m-s$
$P(S)$	$-m+s$
+s	$-m-s$
$-S$	

$P(S \mid+m)$		$P(S \mid-m)$
+s		+s
-s	1/2	-s

Bayes rule

Suppose you are given $p(C \mid B)$ along with $p(B)$ and $p(C)$. How do you get $p(B \mid C)$?

Hint: Think about the equations of conditional probability

$$
p(\mathrm{~B} \mid \mathrm{C})=\frac{p(\mathrm{~B}, C)}{p(C)} \quad p(\mathrm{C} \mid \mathrm{B})=\frac{p(\mathrm{~B}, C)}{p(B)}
$$

$$
\mathbf{p}(\mathbf{B} \mid \mathbf{C})=\frac{\mathbf{p}(\mathbf{C} \mid \mathbf{B}) \mathbf{p}(\mathbf{B})}{\mathbf{p}(C)}
$$

How to answer queries?

- Joint distributions are the best! Joint
- Allow us to answer all marginal or conditional queries
- However...
- Often we don't have the joint table. Only know some set of conditional probability tables (CPTs)

Only know some set of conditional probability tables

E.g., know P(dry cough|URT elipthelial infection, Pul. capillary leakage), P (anosmia and/or ageusia | Infection of olfactory epithelium), etc.

Want to answer questions like:
What is P(elipthelial infection = yes / dry cough=yes, productive cough=no, anosmia=yes) ?

Answering queries from CPTs

$P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C) P(E \mid A, B, C, D)$

Joint distribution from conditionals

1. Product rule

- Can you write $P(A, B)$ in terms of $P(A \mid B)$ and $P(B)$?
- $P(A, B)=P(A \mid B) P(B)$

Joint distribution from conditionals

1. Product rule

- $P(A, B)=P(A \mid B) P(B)$
- $P(A, B)=P(B \mid A) P(A)$

Joint distribution from conditionals

1. Product rule

- $P(A, B)=P(A \mid B) P(B)$
- $P(A, B)=P(B \mid A) P(A)$

2. Three random variables

- We know $\mathrm{P}(\mathrm{A}, \mathrm{B})=P(A) P(B \mid A)$
- What about writing $P(A, B, C)$ in terms of $P(A, B)$ and $P(C \mid A, B)$
- Hint: Think of (A, B) as if it was a single variable, and C as a second variable
- Product rule: $\mathrm{P}((\mathrm{A}, \mathrm{B}), \mathrm{C})=P((A, B)) P(C \mid(A, B))$

Joint distribution from conditionals

1. Product rule

- $P(A, B)=P(A \mid B) P(B)$
- $P(A, B)=P(B \mid A) P(A)$

2. Three random variables

- Product rule: $\mathrm{P}(A, B, \mathrm{C})=P(A, B) P(C \mid A, B)$

3. More generally, Chain rule
$\circ P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$

Answering queries from CPTs: Example

- Major ϵ \{CS, not CS\}, Year ϵ \{sophomore, not sophomore)
- If you pick a random student in the class, probability that they are a sophomore is 0.8
- If you pick a random sophomore in the class, probability that they are a CS major is 0.5
- If you pick a random non-sophomore in the class, probability that they are a CS major is 0.6
- What is the probability that if I pick a random CS major, they are a sophomore?
- What is the probability that if I pick a random student, they are a CS major?
- We are given P(Year), P(Major|Year=sophomore), P(Major|Year=not sophomore)
- Construct P(Major, Year)
- $P($ Major $=C S)=P($ Major=CS, Year=sophomore $)+P($ Major=CS, Year=not sophomore $)$
- P(Year=sophomore|Major=CS)=P(Year=sophomore, Major=CS)/P(Major=CS)

Answering queries from CPTs: Problem

Conditional Probability Tables and Chain Rule

$P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C) P(E \mid A, B, C, D)$

- If there are n variables taking d values each
- \boldsymbol{d}^{n} entries!!

Sometimes, distributions have simpler structure

$P(A, B, C, D, E)=P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C) P(E \mid A, B, C, D)$

- Suppose $P(E \mid A, B, C, D)=P(E \mid A, B)$ and $P(D \mid A, B, C)=P(D \mid A, B)$
- "Conditional independence" (more on this soon)

E.g., P(dry cough|URT elipthelial infection, Pul. capillary leakage, virus enters URT) $=P($ dry cough \mid URT elipthelial infection, Pul. capillary leakage)

Sometimes, distributions have simpler structure

$$
P(A, B, C, D, E)=P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C) P(E \mid A, B, C, D)
$$

- Suppose $P(E \mid A, B, C, D)=P(E \mid A, B)$ and $P(D \mid A, B, C)=P(D \mid A, B)$
- "Conditional independence" (more on this soon)
- Then $P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C) P(E \mid A, B, C, D)$
$=P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B) P(E \mid A, B)$
- Needs less data to estimate conditionals (e.g., $P(E \mid A, B)$ is easier to estimate than $P(E \mid A, B, C, D))$
- Needs less computation and storage to answer other queries

But what is this "Independence"?

I roll two fair dice...

- What is the probability that the first roll is 5 ?
- What is the probability that the second roll is 5 ?
- What is the probability that both rolls are 5 ?
- If the first roll is 5 , what is the probability that the second roll is 5 ?
$\circ P\left(\right.$ Roll $_{1}=5$, Roll $\left._{2}=5\right)=P\left(\right.$ Roll $\left._{1}=5\right) P\left(\right.$ Rol $\left._{2}=5\right)=1 / 6 \times 1 / 6=1 / 36$
$\circ P\left(\right.$ Roll $_{2}=5 \mid$ Rol $\left._{1}=5\right)=P\left(\right.$ Rol $\left.{ }_{2}=5\right)=1 / 6$
- Independence and conditional independence!

Independence

Two random variables X and Y are independent if

$$
\forall x, y \quad P(x, y)=P(x) P(y)
$$

- This says that their joint distribution factors into a product of two simpler distributions

○ Notation: $X \Perp Y$
o Combine with product rule $P(x, y)=P(x \mid y) P(y)$ we obtain another form:

$$
\forall x, y \quad P(x \mid y)=P(x) \quad \text { or } \quad \forall x, y P(y \mid x)=P(y)
$$

Example: Independence

$\circ \mathrm{n}$ fair, independent coin flips:

$P\left(X_{1}\right)$	$P\left(X_{2}\right)$	$P\left(X_{n}\right)$	
0.5	H 0.5	H	0.5
0.5	0.5	T	0.5

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

joint distribution is simply the product

Question

- Are T and W independent?

Conditional independence

- X and Y are independent if $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})=\mathrm{P}(\mathrm{X})$
$\circ \mathrm{X}$ and Y are conditionally independent given Z if
$\circ \mathrm{P}(\mathrm{X}, \mathrm{Y} \mid \mathrm{Z})=\mathrm{P}(\mathrm{X} \mid \mathrm{Z}) \mathrm{P}(\mathrm{Y} \mid Z)$
$\circ \mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Z})=\mathrm{P}(\mathrm{X} \mid \mathrm{Z})$
- Notation: $X \Perp Y \mid Z$

Conditional independence

- P(Toothache, Cavity, (p)Robe)

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- $\mathrm{P}(+r$ | +toothache, +cavity) $=\mathrm{P}(+r$ | +cavity $)$
- The same independence holds if I don't have a cavity:

○ $P(+r \mid+$ toothache, - cavity $)=P(+r \mid$-cavity $)$

- Probe is conditionally independent of Toothache given Cavity:
$\circ P(R \mid T, C)=P(R \mid C)$

Conditional independence

Equivalent statements:

- P(Toothache | Probe , Cavity) $=\mathrm{P}$ (Toothache | Cavity)
- $P($ Toothache, Probe | Cavity $)=P$ (Toothache | Cavity) P (Probe | Cavity)

Have we seen conditional independence in previous lectures?

MDPs

"Markov" generally means that given the present state, the future and the past are independent

For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$
\begin{aligned}
& P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}, S_{t-1}=s_{t-1}, A_{t-1}, \ldots S_{0}=s_{0}\right) \\
& \quad=
\end{aligned}
$$

$$
P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}\right)
$$

Andrev Markov (1856-1922)

Probability Tools Summary

1. Definition of conditional probability $\quad P(A \mid B)=\frac{P(A, B)}{P(B)}$
2. Product Rule

$$
P(A, B)=P(A \mid B) P(B)
$$

3. Bayes' theorem

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

4. Chain Rule

$$
P\left(X_{1}, \ldots, X_{N}\right)=\prod_{n=1}^{N} P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

Summary of Independence Rules

- Independence

If A and B are independent, then:

$$
\begin{aligned}
& P(A, B)=P(A) P(B) \\
& P(A \mid B)=P(A) \\
& P(B \mid A)=P(B)
\end{aligned}
$$

- Conditional independence If A and B are conditionally independent given C , then:

$$
\begin{aligned}
& P(A, B \mid C)=P(A \mid C) P(B \mid C) \\
& P(A \mid B, C)=P(A \mid C) \\
& P(B \mid A, C)=P(B \mid C)
\end{aligned}
$$

Poll

I want to know if I have come down with a rare strain of flu (occurring in only $1 / 10,000$ people). There is an "accurate" test for the flu: if I have the flu, it will tell me I have 99% of the time, and if I do not have it, it will tell me I do not have it 99% of the time. I go to the doctor and test positive. What is the probability I have this flu?

$$
\begin{aligned}
& (A) \approx 99 \% \\
& (B) \approx 10 \% \\
& (C) \approx 1 \% \\
& (D) \approx 0.1 \%
\end{aligned}
$$

