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Hidden Markov Models
o In many applications, the true state is not 

observed directly

o Hidden Markov models (HMMs)
o Underlying Markov chain over states X
o You observe evidence E at each time step
o Xt is a single discrete variable; Et may be continuous 

and may consist of several variables
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Filtering

P(XT|e1:T)=?
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Robot Localization

o We know the map, but not the robot’s 
position

o Observations are some sensor readings
o Another challenge: State space and 

readings are typically continuous (works 
basically like a very fine grid) and so we 
cannot store P(X)



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi][Dieter Fox, et al.]



What about our current algorithms?

Previous lecture: Exact inference X1 X2 X3

E1 E2 E3
P(Xt|e1:t) = 𝛼	𝑃 𝑒!|𝑋! ∑"!"# 𝑃 𝑋!|𝑥!#$ 	𝑃 𝑥!#$|	𝑒$:!#$ 	

PredictUpdateNormalize

Computational cost per time step: 
O(|X|2) where |X| is the number of states

O(|X|2) is infeasible for models with many state variables



What about our current algorithms?

Want to compute P(X|E). What algorithm 
have we learnt for this?

o Likelihood weighted sampling!
o For t in 1,2,….

o Draw xt~ P(Xt|Xt-1=xt-1) 
o w=w*P(et|xt)

o Take many such samples (say, N samples) and 
consider their weighted average

o Fails – number of samples needed grows 
exponentially with T

oWhy??!! 0
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Failure of likelihood weighted sampling

o Want to compute P(X|E=e), 
so want samples which have 
high probability of E=e

8

o We sample from P(Xt|Xt-1) 

Mismatch!

• Values of X which have high probability in 
P(Xt|Xt-1)  may have low probability of 
evidence E=e, i.e., low P(E=e|X=sample)

• As t increases, samples eventually have very 
low probability of E=e



Particle Filtering

Filtering: P(XT|e1:T)=?
X2
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New algorithm: Particle filtering

o Builds on likelihood weighted sampling

Idea #1! 
o Recall that the probability distribution of the samples are based on 

P(Xt|Xt-1). 
o But we are interested in samples with high probability of 

P(E=e|X)
o What captures this distribution? 

o The weights!   (w=w*P(et|xt))
o Let’s use weights to somehow create a distribution to draw the 

samples from… (but how?)



New algorithm: Particle filtering

Idea #2! 
o Let’s use weights to somehow create a distribution to draw the samples 

from… (but how?)
o For any sample, we have one weight. How can we really use that as a 

distribution?
o We are actually drawing N samples. This set of N weights can approximate a 

distribution!
o Don’t draw samples one at a time, but instead in parallel. 

o First draw N samples from P(X1)
o Set weights for all N samples
o Then move on to X2 for all N samples, and so on.

o But how are we using it as a distribution?



New algorithm: Particle filtering

Idea #3 (the algorithm)! 
o For each of the N samples, draw next state Xt from P(Xt|Xt-1)
o Set weights for all N samples according to P(Et|Xt)  
o Denote the N samples as s1,s2,…,sN and their respective weights as w1,w2,...,wN

o Normalize the weights: wi ←
&$

∑%&#
' &%

o Resample each of the N samples
oFor each i ϵ 1,…,N:

oDraw 𝑠̃𝑖 at random: 𝑠̃𝑖 = sj with probability wj across j=1,…,N
oSet all weights to 1

o Repeat for Xt+1 and so on



Robot Localization

o We know the map, but not the robot’s 
position

o Observations are some sensor readings
o Another challenge: State space and 

readings are typically continuous (works 
basically like a very fine grid) and so we 
cannot store P(X)



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi][Dieter Fox, et al.]



Particle Filter Localization (Laser)

[Video: global-floor.gif][Dieter Fox, et al.]



Summary: Particle Filtering
Particles: track samples of states rather than an explicit distribution

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Propagate forward
based on transition function

Weight based on 
observation function

Resample using 
weighted particles

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,3)  w=.4
    (2,2)  w=.4

(New) 
Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)



Question
If we only have one particle which of these steps are unnecessary?

Select all that are unnecessary.
A. Propagate forward
B. Weight
C. Resample
D. None of the above

Propagate forward Weight Resample



Question
If we only have one particle which of these steps are unnecessary?

Select all that are unnecessary.
A. Propagate forward
B. Weight
C. Resample
D. None of the above

Propagate forward Weight Resample

Unless the weight is zero, in which case, you’ll 
want to resample from the beginning L



Robot Mapping
o SLAM: Simultaneous Localization And 

Mapping
o We do not know the map or our location
o State consists of position AND map!
o Main techniques: Kalman filtering (Gaussian 

HMMs) and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi][Sebastian Thrun, et al.]



Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi][Dirk Haehnel, et al.]



SLAM

https://www.irobot.com/

https://www.irobot.com/


In Class Activity
Given the following starting particles, transition model, and e1 and e2 observed at 
time 1 and time 2, estimate P(X2|e1,e2).
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In Class Activity
Given the following starting particles, transition model, and e1 and e2 observed at 
time 1 and time 2, estimate P(X1|e1).
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In Class Activity
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Given the following starting particles, transition model, and e1 and e2 observed at 
time 1 and time 2, estimate P(X1|e1).
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In Class Activity
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Given the following starting particles, transition model, and e1 and e2 observed at 
time 1 and time 2, estimate P(X1|e1).
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In Class Activity
Given the particles at T=1, transition model, and e2 observed at time 2, estimate 
P(X2|e1,e2).
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In Class Activity
Given the particles at T=1, transition model, and e2 observed at time 2, estimate 
P(X2|e1,e2).
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In Class Activity
Given the particles at T=1, transition model, and e2 observed at time 2, estimate 
P(X2|e1,e2).
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