
Designing Agents
An agent is an entity that perceives

and acts.

Characteristics of the percepts and
state, environment, and action
space dictate techniques for
selecting actions

This course is about:
§ General AI techniques for a

variety of problem types
§ Learning to recognize when and

how a new problem can be
solved with an existing
technique

Ag
en

t

?

Sensors

Actuators

Environm
ent

Percepts

Actions

Example: An agent controls the elevator in a 10-story building

On each floor, the doors can be open or closed. The elevator can also
be ``moving'' between floors. How many states could the agent be in?

Single-agent or Multiagent?
Discrete or Continuous states?
Static or Dynamic environment?
Deterministic or Stochastic actions?
Fully observable or partially observable states?

Example 2
Hopscotch is a game where 10 squares are drawn
and labeled 1-10. There is also a “start state” to
stand on to throw a stone. A player throws the stone
and then hops the squares in order, avoiding the one
with the stone in it. Other players watch.
Consider the states where two players – scotcher
and observer - and the stone are situated in the
middle of the game. Ignore the state where the
player is holding the stone, but do consider when
they have not started jumping yet. Assume the game
is played on a flat surface.
How many states are there in hopscotch?
Continuous or discrete states?

Start State

AI: Representation and Problem Solving
Agents and Search

Instructors: Tuomas Sandholm and Nihar Shah
Slide credits: CMU AI, http://ai.berkeley.edu

Today

Reflex vs Planning Agents

Search Problems

Uninformed Search Methods
§ Depth-First Search

§ Breadth-First Search

§ Uniform-Cost Search

Designing Agents
An agent is an entity that perceives

and acts.

Characteristics of the percepts and
state, environment, and action
space dictate techniques for
selecting actions

Ag
en

t

?

Sensors

Actuators

Environm
ent

Percepts

Actions

Reflex Agents

Reflex agents:
§ Choose actions based on current/historic state
§ Do not consider the future consequences of

their actions
§ May have memory or a model of the world’s

current state
§ Consider how the world IS

Can a reflex agent be rational?

Agents that Plan Ahead

Planning agents:
§ Decisions based on predicted consequences of actions
§ Must have a transition model: how the world evolves

in response to actions
§ Must formulate a goal
§ Consider how the world WOULD BE

Spectrum of deliberativeness:
§ Generate complete, optimal plan offline, then execute
§ Generate a simple, greedy plan, start executing, replan

when something goes wrong

Search Problems
A search problem consists of:

§ A state space

§ For each state, a set
Actions(s) of allowable actions

§ A transition model Result(s,a)

§ A step cost function c(s,a,s’)

§ A start state and a goal test

A solution is a sequence of actions (a plan) which transforms
the start state to a goal state

N

E

{N, E}
1

1

Example: Traveling in Romania
State space:
§ Cities

Actions:
§ Go to adjacent city

Transition model
§ Result(A, Go(B)) = B

Step cost
§ Distance along road link

Start state:
§ Arad

Goal test:
§ Is state == Bucharest?

Solution?
Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

State Space Graphs and Search Trees

State Space Graphs

State space graph: A mathematical
representation of a search problem
§ Nodes are (abstracted) world configurations
§ Arcs represent transitions resulting from actions
§ The goal test is a set of goal nodes (maybe only one)

In a state space graph, each state occurs only
once!

We can rarely build this full graph in memory (it’s
too big), but it’s a useful idea

More Examples
R

L
S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

S

a b

G G ab

G a Gb

∞

Tree Search vs Graph Search

function TREE_SEARCH(problem) returns a solution, or failure

 initialize the frontier as a specific work list (stack, queue, priority queue)
 add initial state of problem to frontier
 loop do
 if the frontier is empty then
 return failure
 choose a node and remove it from the frontier
 if the node contains a goal state then
 return the corresponding solution

 for each resulting child from node
 add child to the frontier

function GRAPH_SEARCH(problem) returns a solution, or failure
 initialize the explored set to be empty
 initialize the frontier as a specific work list (stack, queue, priority queue)
 add initial state of problem to frontier
 loop do
 if the frontier is empty then
 return failure
 choose a node and remove it from the frontier
 if the node contains a goal state then
 return the corresponding solution
 add the node state to the explored set
 for each resulting child from node
 if the child state is not already in the frontier or explored set then
 add child to the frontier

Poll 1
What is the relationship between these sets of states
after each loop iteration in GRAPH_SEARCH?
(Loop invariants!!!)

A
Explored Never Seen

Frontier

B
Explored Never Seen

Frontier

C
Explored Never Seen

Frontier

Poll 1
function GRAPH-SEARCH(problem) returns a solution, or failure
 initialize the explored set to be empty
 initialize the frontier as a specific work list (stack, queue, priority queue)
 add initial state of problem to frontier
 loop do
 if the frontier is empty then
 return failure
 choose a node and remove it from the frontier
 if the node contains a goal state then
 return the corresponding solution
 add the node state to the explored set
 for each resulting child from node
 if the child state is not already in the frontier or explored set then
 add child to the frontier

A Note on Implementation
Nodes have

state, parent, action, path-cost

1

23

45

6

7

81

23

45

6

7

8

Node

STATE

PARENT

ACTION = Right
PATH-COST = 6

A child of node by action a has
state = result(node.state,a)
parent = node
action = a
path-cost = node.path_cost +

step_cost(node.state, a, self.state)

Extract solution by tracing back parent pointers, collecting actions

Graph Search
This graph search algorithm overlays a tree on a graph
The frontier states separate the explored states from never seen states

Images: AIMA, Figure 3.8, 3.9

BFS vs DFS

Walk-through BFS Graph Search

S

G

d

b

p q

c

e

h

a

f

r

Walk-through DFS Graph Search

S

G

d

b

p q

c

e

h

a

f

r

Depth-First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

BFS vs DFS

When will BFS outperform DFS?

When will DFS outperform BFS?

Search Algorithm Properties

Search Algorithm Properties
Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?
Space complexity?

Cartoon of search tree:
§ b is the branching factor
§ m is the maximum depth
§ solutions at various depths

Number of nodes in entire tree?
§ 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes
b2 nodes

bm nodes

m tiers

Search Algorithm Properties
Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?
Space complexity?

Cartoon of search tree:
§ b is the branching factor
§ m is the maximum depth
§ solutions at various depths

Number of nodes in entire tree?
§ 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes
b2 nodes

bm nodes

m tiers

Are these the properties for BFS or DFS?

§ Takes O(bm) time

§ Uses O(bm) space on frontier

§ Complete with graph search & finite number of
states

§ Not optimal unless all goals are in the same level
(and the same step cost everywhere)

Think about it…

…
b 1 node

b nodes
b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b 1 node

b nodes
b2 nodes

bm nodes

m tiers

What nodes does DFS expand?
§ Some left prefix of the tree.
§ Could process the whole tree!
§ If m is finite, takes time O(bm)

How much space does the frontier take?
§ Only has siblings on path to root, so O(bm)

Is it complete? (always find a solution)
§ m could be infinite, so only if there are finitely

many possible states and we prevent cycles
(graph search)

Is it optimal? (solution is “best”)
§ No, it finds the “leftmost” solution, regardless of

depth or cost

Breadth-First Search (BFS) Properties

What nodes does BFS expand?
§ Processes all nodes above shallowest solution
§ Let depth of shallowest solution be s
§ Search takes time O(bs)

How much space does the frontier take?
§ Has roughly the last tier, so O(bs)

Is it complete?
§ s must be finite if a solution exists, so yes!

Is it optimal?
§ Only if costs are all the same (more on costs later)

…
b 1 node

b nodes
b2 nodes

bm nodes

s tiers

bs nodes

Iterative Deepening

…
b

Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
§ Run a DFS with depth limit 1. If no solution…
§ Run a DFS with depth limit 2. If no solution…
§ Run a DFS with depth limit 3. …..

Isn’t that wastefully redundant?
§ Generally most work happens in the lowest level

searched, so not so bad!

Iterative Deepening

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Strategy: expand a
deepest node first to a
max depth, iteratively
increase the depth

Implementation:
Frontier is a LIFO stack

Uniform Cost Search

function GRAPH_SEARCH(problem) returns a solution, or failure
 initialize the explored set to be empty
 initialize the frontier as a specific work list (stack, queue, priority queue)
 add initial state of problem to frontier
 loop do
 if the frontier is empty then
 return failure
 choose a node and remove it from the frontier
 if the node contains a goal state then
 return the corresponding solution
 add the node state to the explored set
 for each resulting child from node
 if the child state is not already in the frontier or explored set then
 add child to the frontier

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure
 initialize the explored set to be empty
 initialize the frontier as a priority queue using node path_cost as the priority
 add initial state of problem to frontier with path_cost = 0
 loop do
 if the frontier is empty then
 return failure
 choose a node and remove it from the frontier
 if the node contains a goal state then
 return the corresponding solution
 add the node state to the explored set
 for each resulting child from node
 if the child state is not already in the frontier or explored set then
 add child to the frontier
 else if the child is already in the frontier with higher path_cost then
 replace that frontier node with child

Walk-through UCS

S

A

B

C

D

G

1

4

2
4

1

3

Summary
- Reflex vs Planning Agents
 - Modeling state based on the problem you’re trying to solve
 - Tree vs Graph Search
 - BFS, DFS, UCS
 - Branching factor, Search space (size of frontier)
 - Completeness of search is whether it will always find A solution
 - Optimality of search is whether it always finds the BEST solution

Extra slides below on search properties and iterative deepening

Breadth-First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO queue

Uniform Cost (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a cheapest
node first:

Frontier is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties
What nodes does UCS expand?
§ Processes all nodes with cost less than cheapest solution!
§ If that solution costs C* and arcs cost at least e , then the

“effective depth” is roughly C*/e
§ Takes time O(bC*/e) (exponential in effective depth)

How much space does the frontier take?
§ Has roughly the last tier, so O(bC*/e)

Is it complete?
§ Assuming best solution has a finite cost and minimum arc

cost is positive, yes!

Is it optimal?
§ Yes! (Proof next lecture via A*)

b

C*/e “tiers”
c £ 3

c £ 2
c £ 1

Uniform Cost Issues
Remember:
§ UCS explores increasing cost contours

The good:
§ UCS is complete and optimal!

The bad:
§Explores options in every “direction”
§No information about goal location

We’ll fix that soon!

Start Goal

…

c £ 3
c £ 2

c £ 1

