
Warm-up as You Walk In

2
1

3
4

1

Assign Red, Green, or Blue to each node
Neighbors must be different

Sudoku

1) What is your brain doing to solve these?
2) How would you solve these with search (BFS, DFS, etc.)?

1

Plan
Last Time
§ Adversarial search

§ Minimax
§ Evaluation functions
§ Pruning
§ Expectimax

Today
§ Constraint Satisfaction Problems

AI: Representation and Problem Solving
Constraint Satisfaction Problems (CSPs)

Instructors: Tuomas Sandholm and Nihar Shah
Slide credits: CMU AI, http://ai.berkeley.edu

5

What is Search For?

• Planning: sequences of actions
• The path to the goal is the important thing
• Paths have various costs, depths
• Heuristics give problem-specific guidance

• Identification: assignments to variables
• The goal itself is important, not the path
• All paths at the same depth (for some formulations)

Are the warm-up assignments (i.e., sudoku)
planning or identification problems?

6

Constraint Satisfaction Problems
CSP is a special class of search problems

§ Mostly identification problems
§ Have specialized algorithms for them

Standard search problems:
§ State is an arbitrary data structure
§ Goal test can be any function over states

Constraint satisfaction problems (CSPs):
§ State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
§ Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

7

Why study CSPs?

§ Assignment problems: e.g., who teaches what class
§ Timetabling problems: e.g., which class is offered when and where?
§ Hardware configuration
§ Transportation scheduling
§ Factory scheduling
§ Circuit layout
§ Fault diagnosis
§ … lots more!

§ Sometimes involve real-valued variables…

Many real-world problems can be formulated as CSPs

8

Varieties of CSPs and Constraints

9

Example: Map Coloring

• Variables:
• Domains:
• Constraints: adjacent regions must have different colors

• Solutions are assignments satisfying all constraints, e.g.:

Implicit:

Explicit:

10

Constraint Graphs

11

Constraint Graphs

§ Binary CSP: each constraint relates (at most) two
variables

§ Binary constraint graph: nodes are variables, arcs
show constraints

§ General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

12

Example: N-Queens

• Formulation 1:
• Variables:
• Domains:
• Constraints

13

Example: N-Queens

• Formulation 2:
• Variables:

• Domains:

• Constraints:

Implicit:

Explicit:

14

Example: Cryptarithmetic

• Variables:

• Domains:

• Constraints:

15

Example: Sudoku

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region
(or can have a bunch
of pairwise inequality
constraints)

• Variables: Each (open) square

• Domains: {1,2,…,9}

• Constraints:

16

Varieties of CSPs

• Discrete Variables
• Finite domains

• Size dmeans O(dn) complete assignments
• E.g., Boolean CSPs, including Boolean satisfiability (NP-

complete)
• Infinite domains (integers, strings, etc.)

• E.g., job scheduling, variables are start/end times for each job
• Linear constraints solvable, nonlinear undecidable

• Continuous variables
• E.g., start/end times for Hubble Telescope observations
• Linear constraints solvable in polynomial time

We will cover today

We will cover in a later lecture (linear programming)

17

Varieties of Constraints

• Varieties of Constraints
• Unary constraints involve a single variable (equivalent

to reducing domains), e.g.:

• Binary constraints involve pairs of variables, e.g.:

• Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

Focus of today

• Preferences (soft constraints):
• E.g., red is better than green
• Often representable by a cost for each variable assignment
• Gives constrained optimization problems

18

Solving CSPs

19

Standard Search Formulation

• Standard search formulation of CSPs

• States defined by the values assigned
so far (partial assignments)
• Initial state: the empty assignment, {}
• Successor function: assign a value to an

unassigned variable
• Goal test: the current assignment is

complete and satisfies all constraints

• We’ll start with the straightforward,
naïve approach, then improve it

→Can be any unassigned variable

20

Question: Search for CSPs

Should we use BFS or DFS?

21

Depth First Search

• At each node, assign a value
from the domain to the
variable
• Check feasibility (constraints)

when the assignment is
complete

22

Demo – Naïve Search

23

Backtracking Search

24

Backtracking Search

• Backtracking search is the basic uninformed algorithm for solving CSPs
• Backtracking search = DFS + two improvements

• Idea 1: One variable at a time
• Variable assignments are commutative

• [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assign value to a single variable at each step

• Idea 2: Check constraints as you go
• Consider only values which do not conflict previous assignments
• May need some computation to check the constraints
• “Incremental goal test”

• Can solve n-queens for n » 25 25

Backtracking Example

26

Backtracking Search

27

Backtracking Search

28

Backtracking Search

29

Backtracking Search

No need to check constraints for a complete assignment

30

Backtracking Search

Checks consistency at each assignment

31

Backtracking Search

• Backtracking = DFS + variable-ordering + fail-on-violation
• What are the decision points?

32

Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?
• In what order should its values be tried?

• Structure: Can we exploit the problem structure?

33

Not going to cover!

Filtering

34

Filtering: Keep track of domains for unassigned variables and cross off
bad options

Forward checking: A simple way for filtering
• After a variable is assigned a value, check related constraints and

cross off values of unassigned variables which violate the
constraints
• Failure detected if some variables have no values remaining

Filtering: Forward Checking

35

• Filtering: Keep track of domains for unassigned variables and cross off bad options
• Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

WA
SA

NT
Q

NSW

V

T

36

• Filtering: Keep track of domains for unassigned variables and cross off bad options
• Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
most two variables): nodes are variables, edges show constraints 37

• Filtering: Keep track of domains for unassigned variables and cross off bad options
• Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

38

• Filtering: Keep track of domains for unassigned variables and cross off bad options
• Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

FAIL – variable with no possible values
39

Demo – Backtracking with Forward Checking

40

• Limitations of simple forward checking: propagates information from assigned to
unassigned variables, but doesn't provide early detection for all failures
• NT and SA cannot both be blue! Why didn’t we detect this yet?

• Constraint propagation: reason from constraint to constraint

Filtering: Constraint Propagation

41

Consistency of A Single Arc

• An arc X ® Y is consistent if for every x in the tail there is some y in the head which
could be assigned without violating a constraint

• Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists
• Forward checking: Only enforce 𝑋 → 𝑌, ∀ 𝑋, 𝑌 ∈ 𝐸 and 𝑌 newly assigned

(Remove values from the tail!)

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
most two variables): nodes are variables, edges show constraints 42

Consistency of A Single Arc

• An arc X ® Y is consistent if for every x in the tail there is some y in the head which
could be assigned without violating a constraint

• Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists
• Forward checking: Only enforce 𝑋 → 𝑌, ∀ 𝑋, 𝑌 ∈ 𝐸 and 𝑌 newly assigned

43

How to Enforce Arc Consistency of Entire CSP

• A simplistic algorithm: Cycle over the pairs of variables, enforcing arc-consistency,
repeating the cycle until no domains change for a whole cycle

• AC-3 (short for Arc Consistency Algorithm #3): A more efficient algorithm ignoring
constraints that have not been modified since they were last analyzed

WA
SA

NT
Q

NSW

V

T

44

AC-3: Enforce Arc Consistency of Entire CSP

Constraint Propagation!

45

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->WA
NT->WA

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

46

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

WA
SA

NT
Q

NSW

V

T

47Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

WA
SA

NT
Q

NSW

V

T

48Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

WA
SA

NT
Q

NSW

V

T

49Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the top!

WA
SA

NT
Q

NSW

V

T

50

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the top!

WA
SA

NT
Q

NSW

V

T

51

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

WA
SA

NT
Q

NSW

V

T

52Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:

WA
SA

NT
Q

NSW

V

T

53Remember: Delete from the tail!

Poll 1: After assigning Q to Green,
what gets added to the Queue?

A: NSW->Q, SA->Q, NT->Q
B: Q->NSW, Q->SA, Q->NT

Queue:

WA
SA

NT
Q

NSW

V

T

54

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->Q
SA->Q
NSW->Q

WA
SA

NT
Q

NSW

V

T

55Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT

WA
SA

NT
Q

NSW

V

T

56Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NSW->Q
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

WA
SA

NT
Q

NSW

V

T

57Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

WA
SA

NT
Q

NSW

V

T

58Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

WA
SA

NT
Q

NSW

V

T

59Remember: Delete from the tail!

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

!!!

WA
SA

NT
Q

NSW

V

T

60Remember: Delete from the tail!

• Backtrack on the assignment of Q
• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment
• What’s the downside of enforcing arc consistency?

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

!!!

WA
SA

NT
Q

NSW

V

T

61Remember: Delete from the tail!

Limitations of Arc Consistency

• After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not

know it)

• Arc consistency only checks local
consistency conditions

• Arc consistency still runs inside a
backtracking search! What went

wrong here?

62

Backtracking Search with AC-3

• Where do you run AC-3?

AC-3(𝑐𝑠𝑝)

63

Demo – Backtracking with AC-3

64

Complexity of a single run of AC-3

Recall that the whole backtracking algorithm with AC-3 will call AC-3 many times 65

Complexity of a single run of AC-3

• An arc is added after a removal of
value at a node

• 𝑛 nodes in total, each has ≤ 𝑑
values

• Total times of removal: 𝑂 𝑛𝑑

66

Complexity of a single run of AC-3

• After a removal, ≤ 𝑛 arcs added
• Total times of adding arcs: 𝑂(𝑛$𝑑)

• An arc is added after a removal of
value at a node

• 𝑛 nodes in total, each has ≤ 𝑑
values

• Total times of removal: 𝑂 𝑛𝑑

67

Complexity of a single run of AC-3

• After a removal, ≤ 𝑛 arcs added
• Total times of adding arcs: 𝑂(𝑛$𝑑)

• An arc is added after a removal of
value at a node

• 𝑛 nodes in total, each has ≤ 𝑑
values

• Total times of removal: 𝑂 𝑛𝑑

• Check arc consistency per arc: 𝑂(𝑑$)

Complexity of a single run of AC-3 is at most 𝑂(𝑛$𝑑%)
(Not required) Zhang&Yap (2001) show that its complexity is 𝑂(𝑛$𝑑$)

68

Ordering

69

Backtracking Search

• Backtracking = DFS + variable-ordering + fail-on-violation
• What are the decision points?

70

Question for the class

• Would it be better to branch on the most constrained or the least
constrained variable next?

Most constrained variable heuristic

• Choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV) heuristic

Most constraining variable heuristic
• Choose the variable with the most constraints on remaining variables
• A good idea is to use it as a tie-breaker among most constrained

variables:

Least constraining value heuristic
• Given a variable to assign, choose the least constraining value:

• the one that rules out the fewest values in the remaining variables
• Note that it may take some computation to determine this! (E.g., rerunning filtering)

• Why least rather than most?

• Combining these heuristics makes 1000 queens feasible

Demo – Coloring with a Complex Graph

Compare
• Backtracking with Forward Checking
• Backtracking with AC-3
• Backtracking + Forward Checking +

Minimum Remaining Values (MRV)
• Backtracking + AC-3 + MRV + LCV

75

How to deal with non-binary CSPs?

• Variables:

• Domains:

• Constraints:

76

Constraint graph for non-binary CSPs

• Variable nodes: nodes to represent the variables
• Constraint nodes: auxiliary nodes to represent the constraints
• Edges: connects a constraint node and its corresponding variables

Constraints:

77

Solve non-binary CSPs

• Naïve search?
• Yes!

• Backtracking?
• Yes!

• Forward Checking?
• Need to generalize the original FC operation
• (nFC0) After a variable is assigned a value, find all constraints with only one

unassigned variable and cross off values of that unassigned variable which
violate the constraint

• There exist other ways to do generalized forward checking

78

Solve non-binary CSPs

• (Bonus material, not required)
• AC-3? Need to generalize the definition of AC and enforcement of AC
• Generalized arc-consistency (GAC)

• A non-binary constraint is GAC if for every value for a variable there exist
consistent value combinations for all other variables in the constraint

• Reduced to AC for binary constraints
• Enforcing GAC

• Simple schema: enumerate value combination for all other variables
• O(𝑑&) on 𝑘-ary constraint on variables with domains of size 𝑑

• There are other algorithms for non-binary constraint propagation, e.g., (i,j)-
consistency [Freuder, JACM 85]

79

Summary: CSPs

• CSPs are a special kind of search problem:
• States are partial assignments
• Goal test defined by constraints

• Basic solution: backtracking search

• Speed-ups:
• Ordering
• Filtering
• Structure

80

Additional Resources (Not required)

• References
• Zhang, Yuanlin, and Roland HC Yap. "Making AC-3 an optimal algorithm."

In IJCAI, vol. 1, pp. 316-321. 2001.
• Freuder, Eugene C. "A sufficient condition for backtrack-bounded

search." Journal of the ACM (JACM) 32, no. 4 (1985): 755-761.

81

