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1 Inference Conceptual Review
1. When would we want to use inference?

Inference is used to calculate some useful quantity from a joint probability distribution. For example,
we can use it in speech recognition (the example given in class). Here, we could answer a question
such as what is the most probable next word given the audio for the next word and the fact that
the first word is “artificial". In this case, inference tells us which words were most likely to be said
in the audio clip.

2. Suppose we are given binary random variables Q, H, E (query, hidden, evidence).
We want to query P (q | e).

H Q E

(a) Enumeration
Perform inference on a joint distribution. Use the Bayes net above to break down joint into
CPT factors.

Note: You may use a proportionality constant α in your answer.

Inference on a joint distribution:
P (q | e) = αP (q, e)

= α
∑

h∈(h1,h2)
P (q, h, e)

Using Bayes net to break down joint in to CPT factors:
P (q | e) = α

∑
h∈(h1,h2)

P (h)P (q | h)P (e | q)

= α[P (h1)P (q | h1)P (e | q) + P (h2)P (q | h2)P (e | q)]

(b) Variable Elimination
Rewrite your answer to enumeration by moving summations inwards as far as possible.

Note: You may use a proportionality constant α in your answer.

P (q | e) = αP (e | q)
∑

h∈(h1,h2)
P (h)P (q | h)

= αP (e | q)[P (h1)P (q | h1) + P (h2)P (q | h2)]

(c) Based on 2a and 2b, why is variable elimination more efficient than enumeration?
We sum entries from the joint distribution (these entries are obtained from a Bayes Net by
multiplying conditional probabilities) in order to do inference by enumeration. This involves
multiple repeated sub-expressions. We can move the summations inwards as far as possible in
order to eliminate repeated computation. This is called variable elimination and is thus more
efficient.
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2 Inference
Realizing that students aren’t particularly fond of reading the textbook, the 281 course staff have developed
a software that automatically scans the textbook and outputs key points for each individual chapter.
However, since the development of the software requires time and computational resources, the 281 staff
decides to offer a free one month trial to students, after which a paid subscription is necessary to keep
using the software. The following network and variables are used to represent the problem:

• Discount(D): +d if a discount is offered, −d otherwise
• Enjoys(E): +e if a student enjoys the software, −e otherwise
• Cost(C): +c if the software cost is < 20, −c otherwise
• Recommends(R): +s if the student recommends the software to a friend, −s otherwise
• Buys(B): +b if the student buys a software subscription, −b otherwise

D P (D)
+d 0.7
−d 0.3

E P (E)
+e 0.1
−e 0.9

C D E P (C | D,E)
+c +d +e 0.2
−c +d +e 0.8
+c +d −e 0.3
−c +d −e 0.7
+c −d +e 0.9
−c −d +e 0.1
+c −d −e 0.5
−c −d −e 0.5

R E P (R | E)
+r +e 0.8
−r +e 0.2
+r −e 0.5
−r −e 0.5

B C P (B | C)
+b +c 0.7
−b +c 0.3
+b −c 0.5
−b −c 0.5

1. How can we represent the probability that a student buys and recommends the software using the
conditional probabilities at each node?
P (+b,+r) =

∑
c,d,e P (+b|c)P (c|d, e)P (d)P (e)P (+r|e)

This sum is equivalent to summing out the hidden variables in the joint distribution:
∑

c,d,e P (d, e, c,+r,+b).

2. The staff has surveyed students and collected data on whether the students enjoyed the software or
not. With this information, we want to perform inference on a joint distribution where the query
variable is Buys (B).
(a) How can we represent the probability expression in terms of conditional probabilities from the

network?
P (B|E) = αP (B,E) = α

∑
d,c,r P (B,E, d, c, r) = P (E)α

∑
d,c,r P (d)P (c|d,E)P (B|c)P (r|E)

Note: Equation 13.9 on page 493 of the TB goes into detail about why we use α. In short, when
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we are calculating conditional probabilities, α acts as a normalization constant. However, we
can proceed with calculating the conditional probabilities even without knowing the value of α
because relative proportions remain the same without normalization (e.g. relative proportions
of P (+b|E) and P (−b|E) remain the same without knowing the exact value of α = 1/P (E)).

(b) What are the hidden and evidence variable(s)?
The hidden variables are D,C,R, and the evidence variable is E.

3. Using the probability expression from the previous part, we want to compute the query B given
evidence that the student enjoys the software. Assume the variable ordering is in alphabetical order.
(a) How many factors are there, and what are the dimensions of each factor?

Our expression is: P (B|+ e) = αP (+e)
∑

r,d,c P (d)P (c|d,+e)P (B|c)P (r|+ e)

= αP (+e)
∑

r P (r|+ e)
∑

d P (d)
∑

c P (c|d,+e)(B|c)

Each conditional probability corresponds to an individual factor, so there are 5 factors total.
The factor for P (d) and P (r|+ e) each have dimension 2× 1, the factors for P (c|d,+e) and
P (B|c) each have dimension 2× 2, and the factor for P (+e) is a one-element vector.

(b) Run the variable elimination algorithm to eliminate repeated computations for the expression
P (B|+ e), and fill in the factor table as necessary for each variable eliminated.

Eliminating C:
D B f1(D,B)
+d +b
−d +b
+d −b
−d −b

Eliminating D:
B f2(B)
+b
−b

All factors: P (D), P (+e), P (C|D,+e), P (B|C), P (R|+ e)
• Choose C: The relevant factors are P (C|D,+e), P (B|C). We sum out C to get f1(D,B) =∑

c P (C = c|D,+e)P (B|C = c).

Expression: P (B|+ e) = αP (+e)
∑

d,r P (D = d)P (R = r|+ e)× f1(D,B)
• Choose D: We sum out the relevant factors P (D) and f1(D,B) to get f2(B) =

∑
d f1(D =

d,B)P (d).

Expression: P (B|+ e) = αP (+e)
∑

r P (R = r|+ e)× f2(B)
• Choose R: We sum out the relevant factor P (R|+ e) to get

∑
r P (R = r|+ e) = 1. We

discard this variable since it is irrelevant and no other factors depend on it.

Expression: P (B|+ e) = αP (+e)× f2(B)

Eliminating C:
D B f1(D,B)
+d +b 0.54
−d +b 0.68
+d −b 0.46
−d −b 0.32

Eliminating D:
B f2(B)
+b 0.582
−b 0.418

(c) How does the resulting expression change if the variable ordering is instead in reverse alphabet-
ical order? Similarly, fill in the factor table as necessary for each variable eliminated.
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Eliminating D:
C f2(C)
+c
−c

Eliminating C:
B f3(B)
+b
−b

• Choose R: We sum out relevant factor P (R|+ e) to get
∑

r P (R = r|+ e) = 1. We can
discard this variable since it is irrelevant.

• Choose D: We sum out relevant factors P (D), P (C|D,+e) to get f2(C) =
∑

d P (C|D =
d,+e)× P (D = d).

Expression: P (B|+ e) = αP (+e)
∑

c P (B|c)× f2(C = c)
• Choose C: We sum out relevant factors P (B|c) and f2(C) to get f3(B) =

∑
c P (B|C =

c)× f2(C = c).

P (B|+ e) = αP (+e)f3(B)

Eliminating D:
C f2(C)
+c 0.41
−c 0.59

Eliminating C:
B f3(B)
+b 0.582
−b 0.418

(d) How do the two orderings compare with respect to time and space complexity?
When the terms were ordered in alphabetical order, the largest factor had 2 variables. When
the terms were ordered in reverse alphabetical order, the largest factor had 1 variable. Since the
size of the largest factor determines the space/time complexity, the second ordering performs
better.

(e) Describe a heuristic that could be useful in determining a variable ordering to minimize the
size of the largest factor.
Potential ideas:

• Eliminate whichever variable minimizes the size of the next factor to be constructed.
• Eliminate the variable with the fewest dependent variables
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3 Candy Sampling
1. In the year 2020, the Oompa Loompas at Charlie’s Chocolate Factory have decided that they want

to try a new automated way of sampling their candies for quality assurance. However, they have
spilled chocolate sauce on their only copy of the user manual! Help out the Oompa Loompas by
filling in the blanks below with the names of the four different types of sampling methods we’ve
discussed in lecture, and then match each one to the corresponding image, probability distribution,
and algorithm from the tables below.

Sampling Method Name Image and Distribution (A-D) Algorithm (1-4):

Sampling Method Name Image and Distribution (A-D) Algorithm (1-4):
Prior Sampling A 2

Rejection Sampling B 4

Likelihood Weighting C 1

Gibbs Sampling D 3
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Name: Images and Corresponding Probability Distributions:

(A)

P(Q, E)

(B)

P(Q | e)

(C)

P(Q, e)

(D)

P(Q | e)
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Name: Algorithms:

(1)

(2)

(3)

(4)
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4 Sampling Practice
1. Compared to other sampling methods (rejection, likelihood weighting, Gibbs), what kind of informa-

tion can prior sampling not use (that other methods can)?
Other methods can compute probabilities with fixed evidence, while the network for prior sampling
has no evidence associated.

2. How does rejection sampling work on a high level, and what is its biggest/immediate weakness?
It generates samples from the given prior distribution, rejects all samples that do not match the evi-
dence, and then derives the probability (# times the desired value appears in the remaining samples).

Its biggest weakness is potential inefficiency when evidence is rare. Most samples would then
be rejected, so all this information would be thrown away despite being calculated.

The diagram below describes a person’s ice-cream eating habits based on the weather. The nodes Wi

stand for the weather on a day i, which can either be s (sunny) or r (rainy). The nodes Ii represent
whether the person ate ice-cream on day i, which can either be t (true) or f (false).

W1 P (W1)
s 0.6
r 0.4

I W P (I|W )
t s 0.9
f s 0.1
t r 0.2
f r 0.8

W2 W1 P (W2|W1)
s s 0.7
r s 0.3
s r 0.5
r r 0.5

Assume we generate the following six samples given the evidence I1 = t and I2 = f using Likelihood
Weighted Sampling:

(W1, I1,W2, I2) = < s, t, r, f >,< r, t, r, f >,< s, t, r, f >,< s, t, s, f >,< s, t, s, f >,< r, t, s, f >

Using these samples, we will complete the following table:

(W1, I1,W2, I2) Count/N w Joint
s, t, s, f 2/6 0.09 0.03
s, t, r, f /6
r, t, s, f /6
r, t, r, f /6

1. What is the weight of the sample (s, t, r, f) above? Recall that the weight given to a sample in
likelihood weighting is:

w =
∏

Evidence variables e
P (e|Parents(e)).

In this case, the evidence is I1 = t, I2 = f . The weight of the first sample is therefore

w = Pr(I1 = t|W1 = s) · Pr(I2 = f |W2 = r) = 0.9 · 0.8 = 0.72

2. What is the estimate of P(s, t, r, f) given the samples?
The estimate of the joint probability is simply Count/N ∗ w = 2/6 ∗ 0.72 = 0.24.

3. Compute the rest of the entries in the table. Use the estimated joint probabilities to estimate
P (W2 = r|I1 = t, I2 = f).
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(W1, I1,W2, I2) Count/N w Joint
s, t, s, f 2/6 0.09 0.03
s, t, r, f 2/6 0.72 0.24
r, t, s, f 1/6 0.02 0.003
r, t, r, f 1/6 0.16 0.027

To compute the probabilities, we sum out variables as usual:
P(W2 = r|I1 = t, I2 = f) = P(I1 = t,W2 = r, I2 = f) / P(I1 = t, I2 = f)
We sum over W1 using the rows from the table:
P (W2 = r, I1 = t, I2 = f) =

∑
w1
P (W1 = w1, I1 = t,W2 = r, I2 = f) = 0.24 + 0.027 = 0.267

Since all the rows in the table have I1 = t, I2 = f , the probability is just the sum of all the joint
probabilities.
P(I1 = t, I2 = f) = 0.03 + 0.24 + 0.003 + 0.027 = 0.3
So P(W2 = r|I1 = t, I2 = f) = 0.267 / 0.3 = 0.89.

4. What is a weakness of likelihood weighing sampling? How does Gibbs sampling work, and how does
it address this limitation?
Likelihood weighing only conditions on upstream evidence (so evidence only influences the choice of
downstream variables).

Gibbs sampling starts with an arbitrary instantiation of a complete sample (consistent with evidence),
and then samples on one variable at a time, conditioned on all the rest, while keeping evidence
consistent. This way, both upstream and downstream variables condition on evidence.
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