
15-281: AI: Representation and Problem Solving

Recitation 4

Spring 2024

February 9

1 Missing in the Mountains

The 15-281 Course Staff decided to climb the Rocky Mountains together over Winter Break. On their way
back down from the mountains, they realize they left Simrit at the top of the tallest mountain! They have
no idea where on the mountain they are or which mountain they are on, and are worried about how they will
find Simrit before lecture. Help the 281 Staff remember all of the local search algorithms they have learned
so they can save Simrit!

2

1 3

4

5

6

Down

1. A variant of hill-climbing where you conduct a series of searches from randomly generated starting
states until the goal is found.

2. A local search technique where you uniformly randomly choose a neighbor to move to.

3. A type of greedy local search where you move uphill to local maxima.

Across

4. A local search technique where you allow for downhill moves but make them rarer as time goes on.

5. A variant of hill-climbing where you generate successors randomly (one by one) until a better one is
found.

6. A variant of hill climbing in which you choose a move randomly from the uphill moves, with the
probability of a move being chosen dependent on the “steepness” (amount of improvement from making
that move).

1

15-281: AI: Representation and Problem Solving

Recitation 4

Spring 2024

February 9

R

R A H

S I M U L A T E D A N N E A L I N G

N D L

D O L

F I R S T C H O I C E M C

M W L

R A I

E L M

S K B

T I

A N

R G

S T O C H A S T I C

2

15-281: AI: Representation and Problem Solving

Recitation 4

Spring 2024

February 9

2 Map Coloring with Local Search

Recall the various local search algorithms presented in lecture. Local search differs from previously discussed
search methods in that it begins with a complete, potentially conflicting state and iteratively improves it by
reassigning values. We will consider a simple map coloring problem, and will attempt to solve it with hill
climbing.

(a) How is the map coloring problem defined (In other words, what are variables, domain and constraints of
the problem)? How do you define states in this coloring problem?

• Variables: WA, NT, SA, Q, NSW, V, T (States in Australia)

• Domain: Green, Red, Blue

• Constraints: Adjacent countries can’t have the same color assignment. e.g: Implicit: WA ̸= NT
Explicit: (WA, NT) ∈ (red, blue), (red, green), (blue, red), (blue, green), (green, red), (green, blue)

• Problem state: a full coloring of the map (i.e., color assignments to all variables).

(b) Given a complete state (coloring), how could we define a neighboring state?

A neighboring state could be a full coloring of the graph with a different color assignment to only one variable.

(c) What could be a good heuristic be in this problem for local search? What is the initial value of this
heuristic?

The heuristic could be the number of variable pairs that have conflicting colors. In the initial state, the
following 3 pairs (WA-NT, Q-SA, SA-V) are conflicting, so the heuristic h = 3. (Note: there could be other
possible heuristics for this problem.)

(d) Use hill climbing to find a solution based on the coloring provided in the graph.

3

15-281: AI: Representation and Problem Solving

Recitation 4

Spring 2024

February 9

Let h be our heuristic value.
In the original graph, we have 3 coloring conflicts as stated in (c). Depending on the search order, the
assignment order might be different and the searched path lengths as well as coloring can also vary. We
represent the coloring of states in a list with the following order: [WA, NT, Q, SA, NW, V, T]. Below are
two examples of potential search paths.

• Step 1: h = 3. Conflicts are WA-NT, Q-SA, SA-V. We start with WA-NT. Coloring NT with Green
would resolve the WA-NT conflict. Coloring: [B, G, R, R, G, R, G]

• Step 2: h = 2. Conflicts are Q-SA, SA-V. We can pick SA-Q pair and assign Blue to SA, which would
resolve SA-Q and SA-V conflicts but will add coloring conflict for WA-SA pair. Still, it decreases the
number of conflicts and is a better neighboring state. Coloring: [B, G, R, B, G, R, G]

• Step 3: h = 1. Conflict is just WA-SA pair. We can simply assign WA with Red to resolve this conflict,
where we completed the search and found a solution to the problem. Coloring: [R, G, R, B, G, R, G]

We got pretty lucky in the search above and found a solution in 3 steps. However, local search may not
always resolve conflicts optimally. Below is an example where it has to resolve the conflicts with more steps.

• Step 1: h = 3. Conflicts are WA-NT, Q-SA, SA-V. We start with WA-NT. Coloring WA with Green
would resolve the WA-NT conflict. Coloring: [G, B, R, R, G, R, G]

• Step 2: h = 2. Conflicts are Q-SA, SA-V. We can resolve both of these conflicts by assigning Blue to
SA, which will lead us to a better neighboring state with only one conflict: NT-SA. Coloring: [G, B,
R, B, G, R, G]

• Step 3: h = 1. Conflicts are NT-SA. However, looking at all possible assignments to both of these
two states, we see that no matter what color we assign to either one of them, we can’t find a better
neighboring state. Therefore the current iteration of hill climbing would end and we would restart
from the initial state if we are applying random-restart hill climbing. An alternative is to use simulated
annealing, which would allow us to sometimes move to states of higher heuristic value in order to escape
local minima.

We see that in the second search, we need more steps to complete search. There are other possible search
steps sequences depending on the choice on the order of conflicts to resolve, and the color assignment when
resolving each conflict.

(e) How is local search different from tree search?

Tree search has a frontier while local search does not. Local search also never backtracks if it gets stuck.

4

15-281: AI: Representation and Problem Solving

Recitation 4

Spring 2024

February 9

3 Local Search Discussion Questions

Consider the state space above in the context of local search. Recall that our goal is to find the state that
maximizes the objective.

1. Consider the points A, B, C, D, E, and F on the graph.

(a) Which of the points on the graph are on a shoulder? Which of those points are local maximums?

A, B, and C are on a shoulder. A and B are local maximums, but C is not.

A is considered a local maximum since it does not have a neighbor with better objective value.
We can use the same reasoning for B.

C is not considered a local maximum because it has a neighbor to the right with a better objective
value.

(b) Which of the points on the graph are a ”flat” local maximum?

B and F are on a ”flat” local maximum.

(c) What is the difference between a shoulder and a ”flat” local maximum?

The key difference between a ”flat” local maximum and a shoulder is that there is no uphill exit
from a flat local maximum, whereas from a shoulder, uphill progress is technically possible from
one of the endpoints of the shoulder.

2. Let’s take a look at simulated annealing. Simulated Annealing is quite similar to hill climbing.

• Instead of picking the best move, it picks a random move.

• If the move improves the situation, the move is always accepted.

5

15-281: AI: Representation and Problem Solving

Recitation 4

Spring 2024

February 9

• Otherwise, it accepts the move with some probability less than 1

(a) How does the sign of ∆E reflect the ”badness” of a move?

∆E is negative for a ”bad” move.

(b) In simulated annealing, we control the temperature T . How does the value of T impact the
probability with which we choose a ”bad” move?

0.5in Recall that the probability of choosing a “bad move” is 1
e|∆E|/T since ∆E is negative for a

bad move. For smaller values of T , our denominator is larger, so the probability of choosing a bad
move is low. For larger values of T , our denominator is smaller, so the probability of choosing a
bad move is high.

3. Mark True or False for each of the following statements.

(a) Regular hill climbing is optimal (i.e., will always find the global maximum)

False. Regular hill climbing, a.k.a. greedy local search, is not optimal since it may choose a local
optima as the solution.

(b) Random restart hill climbing is optimal when given an infinite amount of time.

True. Random restart hill climbing is optimal since it will eventually restart at an initial state
that allows it to find the global optimum.

(c) Simulated annealing allows for downward moves according to some fixed constant temperature T.

False. Simulated annealing allows for downhill moves according to a decreasing temperature T in
order to make them rarer as time goes on.

(d) Simulated annealing is generally less time efficient than random walk.

False. Simulated annealing combines the efficiency of hill climbing with the completeness of
random walk, making it generally much faster than random walk on its own.

(e) A random walk algorithm is more likely to choose a better neighbor than a worse one.

False. A random walk search does not consider the optimality of the neighbors at all.

6

15-281: AI: Representation and Problem Solving

Recitation 4

Spring 2024

February 9

4 Algorithms for Solving Linear Programming

In lecture, we went through two algorithms for solving linear programming programs - vertex enumeration
and the hill climbing algorithm.

Consider this linear programming problem. The goal is to minimize the cost, and the cost vector (red)
is perpendicular to the blue and red lines.

1. Briefly describe both algorithms and explain how they differ. (hint: use terms such as vertices, inter-
sections and neighbors).

Vertex enumeration: Find all vertices of feasible region (feasible intersections), check objective value.

Hill climbing: Start with an arbitrary vertex. Iteratively move to a best neighboring vertex until
no better neighbor is found.

Intersection is found by solving a pair of constraints (although some constraint pairs might not in-
tersect). A neighboring intersection differs by only one constraint.

2. Run the hill climbing algorithm starting from point B. Now try running the algorithm starting from
point C. How do their solutions differ?

Starting from point B returns a solution of point E, while starting from point C returns a solution of
point D. Notice that points E and D are equally optimal.

Starting from point B, we have neighboring vertices point A and C. Point A is chosen as it is better.
From point A, we have neighboring vertices point E and B. Point B is worse than point A, and point E is
better point A. From point E, we have neighboring vertices point A and D. Point A is worse than point
E, and point D is equally optimal. Thus, no better neighbor is found and the algorithm returns point E.

7

15-281: AI: Representation and Problem Solving

Recitation 4

Spring 2024

February 9

Starting from point C, we have neighboring vertices point B and D. Point D is chosen as it is bet-
ter. From point D, the neighboring vertices A and C are either worse or equal to point D. Thus, no
better neighbor is found and the algorithm returns point D.

8

15-281: AI: Representation and Problem Solving

Recitation 4

Spring 2024

February 9

5 Cargo Plane: Linear Programming Formulation

A cargo plane has three compartments for storing cargo: front, center and rear. These compartments have
the following limits on both weight and space:

Compartment Weight capacity (tons) Space capacity (cubic metres)
Front 10 6800
Centre 16 8700
Rear 8 5300

The following four cargoes are available for shipment on the next flight:

Cargo Weight (tons) Volume (cubic metres/ton) Profit ($/ton)
C1 18 480 310
C2 15 650 380
C3 23 580 350
C4 12 390 285

Any proportion of these cargos can be accepted. The objective is to determine how much of each cargo C1,
C2, C3 and C4 should be accepted and how to distribute each among the compartments so that the total
profit for the flight is maximised. Formulate the above problem as a linear program (what is the objective
and the constraints?). Think about the assumptions you are making when formulating this problem as a
linear program.

Variables:
We need to decide how much of each of the four cargos to put in each of the three compartments. Hence

let xi,j be the number of tonnes of cargo i (i=1,2,3,4 for C1, C2, C3 and C4 respectively) that is put into
compartment j (j=1 for Front, j=2 for Center and j=3 for Rear) where xi,j ≥ 0; i = 1, 2, 3, 4; j = 1, 2, 3.

(Note here that we are explicitly told we can split the cargos into any proportions (fractions) that we
like.)
Constraints:

1. We cannot pack more of each of the four cargos than we have available.

x1,1 + x1,2 + x1,3 ≤ 18

x2,1 + x2,2 + x2,3 ≤ 15

x3,1 + x3,2 + x3,3 ≤ 23

x4,1 + x4,2 + x4,3 ≤ 12

2. The weight capacity of each compartment must be respected.

x1,1 + x2,1 + x3,1 + x4,1 ≤ 10

x1,2 + x2,2 + x3,2 + x4,2 ≤ 16

x1,3 + x2,3 + x3,3 + x4,3 ≤ 8

3. The volume (space) capacity of each compartment must be respected.

480x1,1 + 650x2,1 + 580x3,1 + 390x4,1 ≤ 6800

480x1,2 + 650x2,2 + 580x3,2 + 390x4,2 ≤ 8700

480x1,3 + 650x2,3 + 580x3,3 + 390x4,3 ≤ 5300

Objective: The objective is to maximise total profit, i.e.
maximise 310(x1,1 +x1,2 +x1,3)+ 380(x2,1 +x2,2 +x2,3)+ 350(x3,1 +x3,2 +x3,3)+ 285(x4,1 +x4,2 +x4,3)

The basic assumptions are:

9

15-281: AI: Representation and Problem Solving

Recitation 4

Spring 2024

February 9

1. that each cargo can be split into whatever proportions/fractions we desire

2. that each cargo can be split between two or more compartments if we so desire

3. that the cargo can be packed into each compartment (for example if the cargo was spherical it would
not be possible to pack a compartment to volume capacity, some free space is inevitable in sphere
packing)

4. all the data/numbers given are accurate

Something also to note is that we can also solve this linear programming problem using one of the various
tools available online. One in particular you may find interesting is Google’s OR-tools (Click here!). If you
want to see an example of this being used, we have written up a solution to this recitation problem, which
can be found at this link: Linear Programming code. We do not require that you learn how to use these
tools, but it is a cool resource if you want to check it out! On all homeworks and exams, you will be expected
to solve it by hand if we ask you to.

If you were to put this linear program into standard form, what would be the dimensions of A,b, c,x?

There are 12 variables, so dimx = 12 × 1 and dim c = 12 × 1. There are 10 constraints, so dimb = 10 × 1
and since each constraint involves 12 variables, dimA = 10× 12. Note that while A has 120 elements, most
of them will be 0 as each constraint only involves a few of the variables, making it a sparse matrix.

Now consider a simpler problem. There is a cargo plane with a single compartment with limit on 20 tons
weight and 2400 cubic meters limit on space. You want to use this cargo plane to transport boxes of oranges
and pineapples to sell in a market overseas.

Your goal is to maximize the number of gold pieces under following constraints:

• The market only allows each person to sell 14 boxes.

• 1 box of oranges has weight 1 ton and volume of 100 cubic meters.

• 1 box of pineapples has weight 2 tons and volume of 300 cubic meters.

• You earn 5 gold pieces for 1 box of oranges.

• You earn 12 gold pieces for 1 box of pineapples.

We will now formulate and solve the LP.

1. Write the LP in inequality form.

2. Graph the constraints, cost vector, and at least 3 cost contours. Indicate the feasible region.

3. What is the optimal number of boxes of oranges and pineapples? How much gold does this earn?

Formulating problem as linear programming formulation, we have have following cost function and constraints
where box of orange is x1 and box of pineapples is x2.

Minimize − 5x1 − 12x2 where

−x1 ≤ 0

−x2 ≤ 0

x1 + x2 ≤ 14

x1 + 2x2 ≤ 20

100x1 + 300x2 ≤ 2400

10

https://developers.google.com/optimization/introduction/python
 https://www.cs.cmu.edu/~15281/recitations/rec4/linprog.py

15-281: AI: Representation and Problem Solving

Recitation 4

Spring 2024

February 9

Putting this problem in inequality form we have:

min
x

c⊤x s.t. Ax ≤ b

where

c = [−5 − 12]⊤

x = [x1 x2]
⊤

b = [0 0 14 20 2400]

A =

−1 0
0 −1
1 1
1 2

100 300

We can solve these constraints by either drawing a graph and find intersection of constraints, or through sys-
tems of equations. Below is the graph of constraints with the cost vector labelled. Remember the cost vector
points in the direction of increasing cost. (Solution: 9 boxes of oranges, 5 boxes of pineapples, 105 gold pieces)

Below is the graph with the cost contours (in black). Each of the contours represent a line of equal cost
(labelled next to it) and are perpendicular to the cost vector. Subsequently, we can also use the contour lines
to see that the one with cost = -105 is the last one to intersect the feasible region in the direction away from
where the cost vector is pointing (since we want to minimize cost). The intersection point is (9,5) as we saw
from the solution in the above image. Remember this cost is in terms of the standard form LP where we
converted the maximization to a minimization. So, we must flip the resulting cost to be positive and get a
result of 105 gold pieces.

11

15-281: AI: Representation and Problem Solving

Recitation 4

Spring 2024

February 9

12

	Missing in the Mountains
	Map Coloring with Local Search
	Local Search Discussion Questions
	Algorithms for Solving Linear Programming
	Cargo Plane: Linear Programming Formulation

