1 Definitions

1. Conditional Probability: $P(A \mid B)=$
2. Product Rule: $P(A, B)=$
3. Bayes' Theorem: $P(A \mid B)=$
4. Normalization: $P(A \mid B)=$
5. Chain Rule: $P(A, B, C)=$
6. Law of Total Probability: [using only $P(B)$ and $P(A \mid B)$] $P(A)=$
7. Independence: A, B independent, $P(A, B)=$
8. Conditional Independence: If A and B are conditionally independent given C, then $P(A, B \mid C)=$

2 Warm Up

(a) State the two ways to write the chain rule (conditional probability decomposition) for $P(A, B)$
(b) Rearrange the above equation to find $P(A \mid B)$
(c) Find $P(a)$ in terms of the joint $P(a, b)$ for any $a \in A, b \in B$ (Hint: these are specific values, answer should include a sum)
(d) Find $P(b \mid a)$ in terms of the joint $P(a, b)$ for any $a \in A, b \in B$
(e) Find $P(b \mid a)$ in terms of the distributions $P(b), P(a \mid b)$, for any $a \in A, b \in B$
(f) Assume we had some fixed a and wanted to find each element of $P(b \mid a)$ (i.e. wanted to find $P(B \mid a)$). Would the numerator of the fraction in the previous question change for each value of b ? What about the denominator? How could you use this to do the calculation with less steps?
(g) Assume A is a random variable that can take 3 values, B is a random variable that can take 2 values, and C is a random variable that can take 1 value. What do the following probability tables sum to?
(a) $P(A \mid b)$
(b) $P(A \mid C)$
(c) $P(C \mid B)$
(d) $P(B \mid a)$
(e) $P(B \mid A)$

3 Cake

Consider the above cake with 12 slices. Let s_{1} indicate a slice with no sprinkles and s_{2} be a slice with sprinkles. Let c_{1} indicate a slice with no candles and c_{2} be a slice with candles. Let S be a random variable indicating sprinkles and C be a random variable indicating candles. Calculate the following probabilities.

1. $P\left(C=c_{1}\right)$
2. $P\left(S=s_{1}, C=c_{2}\right)$
3. $P\left(C=c_{2} \mid S=s_{1}\right)$
4. $\sum_{s \in\left\{s_{1}, s_{2}\right\}} \sum_{c \in\left\{c_{1}, c_{2}\right\}} P(s, c)$
5. $\sum_{c \in\left\{c_{1}, c_{2}\right\}} \sum_{s \in\left\{s_{1}, s_{2}\right\}} P(s \mid c)$
6. $\sum_{s \in\left\{s_{1}, s_{2}\right\}} \sum_{c \in\left\{c_{1}, c_{2}\right\}} P(c \mid s)$

4 Queries on a Large Joint Distribution

Consider binary (two outcomes) random variables A, B, C, D, and the following joint distribution table of all four variables.

$$
\begin{array}{ccccc}
A & B & C & D & P(A, B, C, D) \\
+a & +b & +c & +d & 12 / 64 \\
+a & +b & +c & -d & 4 / 64 \\
+a & +b & -c & +d & 2 / 64 \\
+a & +b & -c & -d & 2 / 64 \\
+a & -b & +c & +d & 8 / 64 \\
+a & -b & +c & -d & 4 / 64 \\
+a & -b & -c & +d & 2 / 64 \\
+a & -b & -c & -d & 4 / 64 \\
-a & +b & +c & +d & 6 / 64 \\
-a & +b & +c & -d & 3 / 64 \\
-a & +b & -c & +d & 4 / 64 \\
-a & +b & -c & -d & 6 / 64 \\
-a & -b & +c & +d & 2 / 64 \\
-a & -b & +c & -d & 1 / 64 \\
-a & -b & -c & +d & 3 / 64 \\
-a & -b & -c & -d & 1 / 64
\end{array}
$$

1. Calculate the following probabilities:
(a) $P(+c)$
(b) $P(+a,-b)$
(c) $P(-b \mid+a)$
(d) $P(-a,+b,-d)$
(e) $P(+c \mid-a,+b,-d)$
(f) $P(+c,+d \mid+a,+b)$
2. What value do the following probability tables sum to?
(a) $P(B)$
(b) $P(+b \mid C,+d)$
(c) $P(C, D \mid+a,+b)$
