1 Definitions

1. Conditional Probability: $P(A \mid B)=$

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

2. Product Rule: $P(A, B)=$

$$
P(A, B)=P(A \mid B) P(B)
$$

3. Bayes' Theorem: $P(A \mid B)=$
$P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$
4. Normalization: $P(A \mid B)=$

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}=\frac{P(A, B)}{\sum_{a} P(a, B)}
$$

5. Chain Rule: $P(A, B, C)=$

$$
P(A, B, C)=P(A \mid B, C) P(B \mid C) P(C)
$$

6. Law of Total Probability: [using only $P(B)$ and $P(A \mid B)$] $P(A)=$
$P(A)=\sum_{b \in B} P(A \mid b) P(b)$
For binary B :
$P(A)=P\left(A \mid b_{1}\right) P\left(b_{1}\right)+P\left(A \mid b_{2}\right) P\left(b_{2}\right)$
7. Independence: A, B independent, $P(A, B)=$

If A and B are independent, then $P(A, B)=P(A) P(B)$
8. Conditional Independence: If A and B are conditionally independent given C, then $P(A, B \mid C)=$ If A and B are conditionally independent given C, then $P(A, B \mid C)=P(A \mid C) P(B \mid C)$

2 Warm Up

(a) State the two ways to write the chain rule (conditional probability decomposition) for $P(A, B)$ $P(A) P(B \mid A)=P(B) P(A \mid B)$
(b) Rearrange the above equation to find $P(A \mid B)$

$$
P(A \mid B)=\frac{P(A) P(B \mid A)}{P(B)}
$$

(c) Find $P(a)$ in terms of the joint $P(a, b)$ for any $a \in A, b \in B$ (Hint: these are specific values, answer should include a sum)

$$
P(a)=\sum_{b \in B} P(a, b)
$$

(d) Find $P(b \mid a)$ in terms of the joint $P(a, b)$ for any $a \in A, b \in B$

$$
P(b \mid a)=\frac{P(a, b)}{\sum_{b^{\prime} \in B} P\left(a, b^{\prime}\right)}
$$

(e) Find $P(b \mid a)$ in terms of the distributions $P(b), P(a \mid b)$, for any $a \in A, b \in B$

$$
P(b \mid a)=\frac{P(a \mid b) P(b)}{\sum_{b^{\prime} \in B} P\left(a \mid b^{\prime}\right) P\left(b^{\prime}\right)}
$$

(f) Assume we had some fixed a and wanted to find each element of $P(b \mid a)$ (i.e. wanted to find $P(B \mid a)$). Would the numerator of the fraction in the previous question change for each value of b ? What about the denominator? How could you use this to do the calculation with less steps?

The numerator changes because the value of b changes. The denominator is constant because $P(a)$ will be the same for every value of b that we change. We can calculate all the numerators first, then normalize/equivalently compute the denominator at the end.
(g) Assume A is a random variable that can take 3 values, B is a random variable that can take 2 values, and C is a random variable that can take 1 value. What do the following probability tables sum to?
(a) $P(A \mid b)$
(b) $P(A \mid C)$
(c) $P(C \mid B)$
(d) $P(B \mid a)$
(e) $P(B \mid A)$
$P(A \mid b), P(A \mid C)$, and $P(B \mid a)$ sum to 1. $P(C \mid B)$ sums to 2 because B can take 2 values (b_{1} and b_{2}). $P\left(C \mid b_{1}\right)$ and $P\left(C \mid b_{2}\right)$ each sum to 1 , so if we add them, we get $2 . P(B \mid A)$ sums to 3 because A can take 3 values $\left(a_{1}, a_{2}\right.$, and $\left.a_{3}\right)$. Each of $P\left(B \mid a_{1}\right), P\left(B \mid a_{2}\right)$, and $P\left(B \mid a_{3}\right)$ sum to 1 , so the total sums to 3 .

3 Cake

Consider the above cake with 12 slices. Let s_{1} indicate a slice with no sprinkles and s_{2} be a slice with sprinkles. Let c_{1} indicate a slice with no candles and c_{2} be a slice with candles. Let S be a random variable indicating sprinkles and C be a random variable indicating candles. Calculate the following probabilities.

1. $P\left(C=c_{1}\right)$

By counting the number of slices that don't have candles, we can see that the probability of getting a slice with no candles is $4 / 12$.
2. $P\left(S=s_{1}, C=c_{2}\right)$

By counting the number of slices that don't have sprinkles but have candles, we can see that the probability of getting a slice with candles and no sprinkles is $4 / 12$.
3. $P\left(C=c_{2} \mid S=s_{1}\right)$

We first constrain our world to only include the slices that contain no sprinkles which is 6 slices. 4 of those slices contain candles, so this probability becomes $4 / 6$. Another way to calculate this probability is by using the definition of conditional probability, $P\left(C=c_{2} \mid S=s_{1}\right)=\frac{P\left(C=c_{2}, S=s_{1}\right)}{P\left(S=s_{1}\right)}=\frac{4 / 12}{6 / 12}=\frac{4}{6}$
4. $\sum_{s \in\left\{s_{1}, s_{2}\right\}} \sum_{c \in\left\{c_{1}, c_{2}\right\}} P(s, c)$
$P\left(s_{1}, c_{1}\right)+P\left(s_{1}, c_{2}\right)+P\left(s_{2}, c_{1}\right)+P\left(s_{2}, c_{2}\right)=1$. Because we are summing up all possible disjoint combinations of the given sample space, the answer is 1 .
5. $\sum_{c \in\left\{c_{1}, c_{2}\right\}} \sum_{s \in\left\{s_{1}, s_{2}\right\}} P(s \mid c)$
$P\left(s_{1} \mid c_{1}\right)+P\left(s_{2} \mid c_{1}\right)+P\left(s_{1} \mid c_{2}\right)+P\left(s_{2} \mid c_{2}\right)=2 / 4+2 / 4+4 / 8+4 / 8=2$. Intuitively, we are summing up two different complete probability distributions, $P\left(S \mid c_{1}\right)$ and $P\left(S \mid c_{2}\right)$: one world where there are no candles, and another world where there are definitely candles.
6. $\sum_{s \in\left\{s_{1}, s_{2}\right\}} \sum_{c \in\left\{c_{1}, c_{2}\right\}} P(c \mid s)$
$P\left(c_{1} \mid s_{1}\right)+P\left(c_{2} \mid s_{1}\right)+P\left(c_{1} \mid s_{2}\right)+P\left(c_{2} \mid s_{2}\right)=2 / 6+4 / 6+2 / 6+4 / 6=2$. Intuitively, we are summing up two different complete probability distributions, $P\left(C \mid s_{1}\right)$ and $P\left(C \mid s_{2}\right)$: one world where there is no sprinkles, and another world where there is definitely sprinkles.

4 Queries on a Large Joint Distribution

Consider binary (two outcomes) random variables A, B, C, D, and the following joint distribution table of all four variables.

A	B	C	D	$P(A, B, C, D)$
$+a$	$+b$	$+c$	$+d$	$12 / 64$
$+a$	$+b$	$+c$	$-d$	$4 / 64$
$+a$	$+b$	$-c$	$+d$	$2 / 64$
$+a$	$+b$	$-c$	$-d$	$2 / 64$
$+a$	$-b$	$+c$	$+d$	$8 / 64$
$+a$	$-b$	$+c$	$-d$	$4 / 64$
$+a$	$-b$	$-c$	$+d$	$2 / 64$
$+a$	$-b$	$-c$	$-d$	$4 / 64$
$-a$	$+b$	$+c$	$+d$	$6 / 64$
$-a$	$+b$	$+c$	$-d$	$3 / 64$
$-a$	$+b$	$-c$	$+d$	$4 / 64$
$-a$	$+b$	$-c$	$-d$	$6 / 64$
$-a$	$-b$	$+c$	$+d$	$2 / 64$
$-a$	$-b$	$+c$	$-d$	$1 / 64$
$-a$	$-b$	$-c$	$+d$	$3 / 64$
$-a$	$-b$	$-c$	$-d$	$1 / 64$

1. Calculate the following probabilities:
(a) $P(+c)$

Sum all the entries that contain $+c$ to get: $P(+c)=\sum_{a} \sum_{b} \sum_{d} P(a, b,+c, d)=40 / 64$
(b) $P(+a,-b)$

Sum all the entries that contain both $+a$ and $-b$ to get: $P(+a,-b)=\sum_{c} \sum_{d} P(+a,-b, c, d)=$ 18/64
(c) $P(-b \mid+a)$

1) Sum all entries with both $+a$ and $-b$ to get: $P(+a,-b)=\sum_{c} \sum_{d} P(+a,-b, c, d)=18 / 64$
2) Sum all entries with $+a$ to get: $P(+a)=\sum_{b} \sum_{c} \sum_{d} P(+a, b, c, d)=38 / 64$
3) Use definition of conditional probability to compute: $P(-b \mid+a)=\frac{P(+a,-b)}{P(+a)}=18 / 38$
(d) $P(-a,+b,-d)$

Sum all entries with $-a,+b$, and $-d$ to get: $P(-a,+b,-d)=\sum_{c} P(-a,+b, c,-d)==P(-a,+b,+c,-d)+$ $P(-a,+b,-c,-d)=9 / 64$
(e) $P(+c \mid-a,+b,-d)$

1) Find entry with $-a,+b,+c,-d$ to get: $P(-a,+b,+c,-d)=3 / 64$
2) Sum all entries with $-a,+b,-d$ to get: $P(-a,+b,-d)=\sum_{c} P(-a,+b, c,-d)=9 / 64$
3) Use definition of conditional probability to compute: $P(+c \mid-a,+b,-d)=\frac{P(-a,+b,+c,-d)}{P(-a,+b,-d)}=$ 3/9
(f) $P(+c,+d \mid+a,+b)$
4) Find entry with $+a,+b,+c,+d$ to get: $P(+a,+b,+c,+d)=12 / 64$
5) Sum all entries with $+a,+b$ to get: $P(+a,+b)=\sum_{c} \sum_{d} P(+a,+b, c, d)=20 / 64$
6) Use definition of conditional probability to compute: $P(+c,+d \mid+a,+b)=\frac{P(+a,+b,+c,+d)}{P(+a,+b)}=$ 12/20
2. What value do the following probability tables sum to?
(a) $P(B)$

The short answer is that we are considering the entries for all the possible values of B, so this should sum to 1 . You could calculate both entries in this table to convince yourself, $P(+b)$ and $P(-b)$.
(b) $P(+b \mid C,+d)$

Sadly, there is no shortcut here. The two entries in this table come from two different worlds that are unrelated: one world where $+c$ and $+d$ are given; and another world where $-c$ and $+d$ are given.

Important note: There is no real reason to add these numbers together in this strange probability table. This is primarily a counterexample to show that these do ${ }^{*}$ not* sum to one.

We compute these two values similar to the methods in the previous questions, and then add them together.
$P(+b \mid+c,+d)=\frac{P(+b,+c,+d)}{P(+c,+d)}=9 / 14$
$P(+b \mid-c,+d)=\frac{P(+b,-c,+d)}{P(-c,+d)}=6 / 11$ When we add these two values together, we get 1.1883.
(c) $P(C, D \mid+a,+b)$

The short answer is that we are considering all possible entries for a single world where $+a$ and $+b$ are given, so this should sum to 1 . You could calculate all four entries in this table to convince yourself, $P(+c,+d \mid+a,+b), P(+c,-d \mid+a,+b), P(-c,+d \mid+a,+b), P(-c,-d \mid+a,+b)$.

