Lecture Notes on
Register Allocation

15-411: Compiler Design
Frank Pfenning, Rob Simmons, André Platzer, and Jan Hoffmann

Lecture 2 & 3
January 16, 2025

1 Introduction

In this lecture we discuss register allocation, which is one of the last steps in a com-
piler before code emission. Its task is to map the potentially unbounded numbers of
variables or “temps” in pseudo-assembly to the actually available registers on the
target machine. If not enough registers are available, some values must be saved to
and restored from the stack, which is much less efficient than operating directly on
registers. Register allocation is therefore of crucial importance in a compiler and
has been extensively studied. Register allocation is also covered thoroughly in
the textbook [App98, Chapter 11], but the algorithms described there are compli-
cated and difficult to implement. We present here a different algorithm for register
allocation based on chordal graph coloring due to Hack [Hac07], and Pereira and
Palsberg [PP05]. Pereira and Palsberg have demonstrated that this algorithm per-
forms well on typical programs even when the interference graph is not chordal.
The fact that we target the x86-64 family of processors also helps, because it has 16
general registers so register allocation is less “crowded” than for the x86 with only
8 registers (ignoring floating-point and other special purpose registers).

Most of the material below is based on Pereira and Palsberg [PPO5]!, where
further background, references, details, empirical evaluation, and examples can be
found.

2 Spilling Temps

After instruction selection, we have a program that uses a potentially large number
of temps and potentially some specific registers, like %eax and %edx, that are used

! Available at http://www.cs.ucla.edu/~palsberg/paper/aplas05.pdf

LECTURE NOTES JANUARY 16, 2025

http://www.cs.ucla.edu/~palsberg/paper/aplas05.pdf

Register Allocation L2 & 3.2

in the idiv and ret instructions. Our goal is to turn that program into an equivalent
program that uses as few temps as possible. We reduce the number of temps we
use by reusing temps in different computations. (We’d also like to reuse %eax and
’edx as much as possible).

If we can transform a program into another program that uses %eax, %edx, and
no more than 13 other temps, then register allocation is trivial: we can arbitrarily
assign those 13 temps to the 13 other general-purpose x86-64 registers (don’t mess
with %rsp). At that point, there is very little distance between our two-address code
language and x86-64 assembly: if tg gets assigned to %r14d and ¢1, gets assigned to
%esi, then this two-address code instruction:

t12 < t12 — tg
can be written as this x86-64 instruction:
SUBL %ri14d, %esi

For some programs, the 15 general-purpose x86-64 registers will not suffice. In
that case we need to save some temporary values. In our runtime architecture, the
stack is the obvious place. One convenient way to achieve this is to assign stack slots
instead of registers to some of the temps: we say that those temps have spilled onto
the stack. If the temps ¢ ...t5 are the temps we assign to be stored on the stack,
then after we push the callee-save registers we should subtract 20 from the stack
pointer, making room for the (not yet initialized) temps.

memory that belongs
to the calling function...

return addr, stored by
call, used by ret When you enter main(), %rsp points here
——

caller’s %r15

caller’s %r14

caller’s %r13

caller’s %r12

caller’s %rbp
After pushing callee-save registers

onto the stack

caller’s %rbx (which you can do in any order),
%rsp points here, 48 bytes lower

—

t5
t4 To save space for 5 four-byte temps
to be spilled onto the stack

(they could be spilled in any order),

t3

2 decrement the stack pointer %rsp by 20
t1 subg $20, S%rsp
—

LECTURE NOTES JANUARY 16, 2025

Register Allocation L2 & 3.3

Once we have assigned as many temps as possible to registers, and assigned
remaining temps to stack slots, it is easy to rewrite the code using temps that are
spilled if we reserve a register in advance for moves to and from the stack when
necessary. For example, if %r11 on the x86-64 is reserved to implement save and
restore when necessary, then

t3 < t3 4112

where t3 is assigned to stack offset 8 as in the example above and t15 is assigned to
%edi, can be rewritten to

%hrild <« 8(%rsp)
%rild — %rild + %edi
8(%rsp) <« Y%riid

Sometimes, this is unnecessary because some operations can be carried out di-
rectly with memory references. So the assembly code for the above could be shorter

ADDL Yedi, 8(Y%rsp)

although it is not clear whether and how much more efficient this might be than a
3-instruction sequence

MOVL 8(%rsp), ’%riild
ADDL Y%edi, %riid
MOVL %riid, 8(%rsp)

We recommend generating the simplest uniform instruction sequences for spill
code. It will probably be necessary to dedicate at least one register to spilling:
x86-64 does not allow instructions like ADDL 4 (%rsp), 16(%rsp) that manipulate
two memory addresses simultaneously, so to implement ¢5 < t5+t3 in the example
above, we would need a spare register and several instructions:

MOVL 16(%rsp), %riid
ADDL 4(%rsp), %rilid
MOVL %ri1id, 16(%rsp)

3 Building the Interference Graph

Two variables need to be assigned to two different registers if they need to hold
two different values at some point in the program. This question is undecidable
in general for programs with loops, so in the context of compilers we reduce this
to liveness. A variable is said to be live at a given program point if it will be used
in the remainder of the computation. Again, we will not be able to accurately pre-
dict at compile time whether this will be the case, but we can approximate liveness

LECTURE NOTES JANUARY 16, 2025

Register Allocation L2 & 3.4

through a particular form of dataflow analysis discussed in the next lecture. If we
have (correctly) approximated liveness information for variables then two vari-
ables cannot be in the same register wherever their live ranges overlap, because
they may both be used at the same time.

In our simple straight-line expression language, this is relatively easy. We tra-
verse the program backwards, starting at the last line. We note that the return
register, %eax, is live after the last instruction. If a variable is live on one line, it is
live on the preceding line unless it is assigned to on that line. And a variable that
is used on the right-hand side of an instruction is live for that instruction.?

As an example, we consider the simple straight-line computation of the fifth
Fibonacci number, in our pseudo-assembly language. We list with each instruction
the variables that are live before the line is executed. These are called the variables
live-in to the instruction.

live-in
1 — 1
i) — 1 1
T3 — T2+ a1 T2,T1
T4 <— X3+ 22 xr3, T2
5 — T4+t 23 T4,T3
heax <+ x5 5
ret fheax return register

The nodes of the interference graph are the variables and registers of the program.
There is an (undirected) edge between two nodes if the corresponding variables
interfere and should be assigned to different registers. There are never edges from
a node to itself, because, at any particular use, variable z is put in the same register
as variable z. We distinguish two forms of instructions.

* For ant < s1 @ sy instruction we create an edge between ¢ and any different
variable t; # t live after this line, i.e., live-in at the successor. ¢t and ¢; should
be assigned to different registers, because otherwise the assignment to ¢ could
destroy the proper contents of ¢;.

¢ For at < sinstruction (move) we create an edge between ¢ and any variable
t; live after this line different from ¢ and s. We omit the potential edge between
t and s because if they happen to be assigned to the same register, they still
hold the same value after this (now redundant) move. Of course, there may
be other occurrences of ¢ and s which force them to be assigned to different
registers.

*Note that we do not always have to put the same variable in the same register at all places,
but could possibly choose different registers for the same variables at different instructions (given
suitable copying back and forth). But SSA already takes care of this issue as we will see later.

LECTURE NOTES JANUARY 16, 2025

Register Allocation L2 & 3.5

For the above example, we obtain the following interference graph.

I R

Here, the register %eax is special, because, as a register, it is already predefined
and cannot be arbitrarily assigned to another register. Special care must be taken
with predefined registers during register allocation; see some additional remarks
in Section 7.

We could consider another condition, namely create an interference edge if two
variables have overlapping live ranges, that is, they are both live in to some line in
the program. This is overly conservative in that if we have a variable-to-variable
move (which frequently occurs as the result of translation or optimizations) then
both variables may be live at the next line and automatically be considered interfer-
ing. Instead, it is often actually beneficial if they are assigned to the same register
because this means the move becomes redundant. So it is not the fact that both
variables are live at the same point, but that they are live at the same program
point and must hold different values which creates the interference.

4 Register Allocation via (Greedy) Graph Coloring

Once we have constructed the interference graph, we can pose the register allo-
cation problem as follows: construct an assignment of K colors (representing K
registers) to the nodes of the graph (representing variables) such that no two con-
nected nodes are of the same color. We will refer to the colors by number: @, @,
3), ...(K). The designated registers are treated as pre-colored nodes in the graph
whose colors we can’t change. In the examples below, we will associate the register
%eax with the color (1) and associate the register %edx with the color (2).

Unfortunately, the problem whether an arbitrary graph is K-colorable is NP-
complete for K > 3. Chaitin [Cha82] proved that for any graph G there exists some
program which has G as its interference graph.

Sometimes you will see the statement that this proof shows that optimal register
allocation is also NP-complete. In other words, one cannot hope for a theoretically
optimal and efficient register allocation algorithm that works on all machine pro-
grams. However, there are a few caveats that we should keep in mind. First, it is
undecidable if two variables interfere. So if G is the interference graph of a program
depends on the approximation that we pick. Second, register allocation with graph
coloring requires that we use one register for one temp throughout the program.
However, it is also possible to use multiple registers for one temp (splitting live
ranges) and ending up with fewer required registers. Similarly, in the context of a
compiler, we can rewrite the program using a compiler phase (such as translation
to SSA form) and arrive at an equivalent program that needs fewer registers.

A good formulation of register allocation as a decision problem would be as
follows. Given a program P and K registers. Is there an equivalent program P’ that

LECTURE NOTES JANUARY 16, 2025

Register Allocation L2 & 3.6

uses only the registers (but no temps or memory locations). For a Turing complete
language (for example, assembly with jumps) this problem is undecidable.

Fortunately, the situation is not so dire in practice. Strictly speaking, we don’t
need the best possible graph coloring. If we use too many colors, we will end up
using more stack space than necessary, an efficiency issue but not a correctness
issue. The simplest greedy algorithm might be good enough, at least as a first pass.
In the algorithm, A(G) is the number of colors that is used by the algorithm to color
the graph G. We write N (v) for the neighborhood of v, that is, the set of all adjacent
nodes.

Algorithm: Greedy coloring
Input: G = (V, E) and ordered sequence vy, ..., v, of nodes.
Output: Assignment col : V- — {0,...,A(G)}.
Fori < 1tondo
Let ¢ be the lowest color not used in N (v;)
Set col(v;) + ¢

The ordered sequence makes all the difference here. For our original example,
if we pick the ordering x1, x2, x3, 24, x5, we will end up with an optimal 2-coloring
using greedy coloring:

o o © O

T5 1

9 Y%eax

T3

© @

This graph coloring would cause us translate our original program into:

Tq

%eax < 0

%hedx < 1

fheax < hedx + jeax
%edx < heax + fhedx
fheax < %edx + jeax
fheax « eax

ret heax

Ignoring for a moment the peculiar use of registers in a program that is not in 2-
address code, it should be apparent that some optimization is possible. Some are
immediate, such as removing the redundant move of a register to itself. We will
discuss another optimization, called register coalescing, later.

For any graph, there is some ordering for which the greedy algorithm produces
the optimal coloring, though we certainly shouldn’t expect to easily find such an or-
der efficiently. On some graphs, greedy graph coloring behaves quite badly, though

LECTURE NOTES JANUARY 16, 2025

Register Allocation L2 & 3.7

on the graph from our first example, we cannot force greedy graph coloring to do
too badly: the ordering x1, x4, 2, x3, x5 is an example of a pessimal ordering and
results in the following 3-coloring:

o o0 o O

T2 %eax

Ts5 Ea

® O

This still represents taking a program that used 6 destinations (x1, z2, x3, 4, x5, and
eax) and turning it into a program that uses 3 (/ieax, %edx, and whatever register
we map color (3) to), a significant improvement.

T4

5 Chordal Graphs

It’s not possible® to efficiently come up with optimal orderings for greedily color-
ing arbitrary graphs. However, most programs have interference graphs with a
particular form, called chordal. For chordal graphes, it is possible to efficiently find
an optimal ordering. Moreover, using the algorithms designed for chordal graphs
behaves well in practice even if the graph is not quite chordal, which will just lead
to unnecessary spilling, not incorrectness. Finally, the algorithms needed for col-
oring chordal graphs are quite easy to implement compared, for example, to the
complex algorithm in Appel’s textbook.

An undirected graph is chordal if every cycle with 4 or more nodes has a chord,
that is, an edge not part of the cycle connecting two nodes on the cycle. Consider
the following three examples:

a——— b a———— b a———b a b
> N
_ ¢ — ¢ d—c¢ c
not chordal chordal not chordal chordal

Only the second and fourth are chordal (how many cycles need to be checked for
chords?). In the other two, the cycle abcd does not have a chord. In both cases, the
effect of the non-chordality is that a and c as well as b and d, respectively, can safely
use the same color, unlike in the chordal case.

3Assuming that P # NP, at least.

LECTURE NOTES JANUARY 16, 2025

Register Allocation L2 & 3.8

All the interference graphs we’ve looked at so far are chordal! Creating a non-
chordal interference graph requires us to re-use temps in a somewhat unusual way,
as in the following program and corresponding chordal graph:

a<+ 0
b+1
c+a-+b

d+b+c a b c d

a+ctd \ /

b« 7 v
d<—a+V

%eax «+ V' +d

ret %eax

This coding pattern is uncommon enough that Pereira and Palsberg [PP05]
noted that something like 95% of the programs occurring in practice have chordal
interference graphs already. Furthermore, note that the graph above, with a cycle
of length 5, requires 3 colors. If we replaced the assignments to a and d in the lower
part of the program (and the corresponding uses on the last 3 lines) with ¢’ and
d’, we would have an equivalent program with this interference graph, which only
requires two colors:

a b c d %eax

a v d

Such a transformation is also called splitting live ranges (see Section 9.2). Inter-
estingly, allocating more temps led to us needing fewer registers! In a few weeks,
we will see why we might want, in general, to transform programs into static single
assignment (SSA) form. That transformation will have the effect of automatically
rewriting the program above with a’ and d, giving it the 2-colorable interference
graph. Hack observed that all SSA programs are chordal [Hac07]. Therefore, if we
transform our programs into SSA form, we can be sure that our interference graph
will be chordal.

6 Simplicial Elimination Ordering

A node v in a graph is simplicial if its neighborhood forms a clique, that is, all neigh-
bors of v are connected to each other, hence all need different colors. An ordering
v1,..., 0, of the nodes in a graph is called a simplicial elimination ordering if every
node v; is simplicial in the subgraph vy, ..., v;. Interestingly, a graph has a simpli-
cial elimination ordering if and only if it is chordal. The proof of this statement is
not trivial.

LECTURE NOTES JANUARY 16, 2025

Register Allocation L2 & 3.9

If we use a simplicial elimination ordering in the greedy graph coloring algo-
rithm then we will not make suboptimal decisions by pretending that all previously
occurring neighbors need to be assigned different colors. It is not difficult, to prove
by induction that a simplicial elimination ordering leads to an optimal greedy col-
oring and that the minimal number of colors needed for every subgraph that arises
is the size of the largest clique. (More generally, chordal graphs are so-called perfect
graphs.)

We can find a simplicial elimination ordering using maximum cardinality search,
which can be implemented to run in O(|V| + |E|) time (so at most quadratic in
the size of the program). The algorithm associates a weight wt(v) with each vertex
which is initialized to 0 updated by the algorithm. The weight w(v) represents
how many neighbors of v have been chosen earlier during the search. We write
again N (v) for the neighborhood of v. The proof that maximum cardinality search
returns a simplicial elimination ordering for a graph G if and only if G is chordal is
not straightforward.

If the graph is not chordal, the algorithm will still return some ordering, al-
though it will not be simplicial. Such an ordering from a non-chordal graph can
still be used correctly in the coloring phase (because any ordering will do), but that
ordering will not guarantee that only the minimal numbers of colors will be used.
Essentially, for non-chordal graphs, generating an elimination ordering in the way
described here amounts to pretending that all nodes of the neighborhood are in
conflict, which is conservative but suboptimal. For chordal graphs the assumption
is actually justified and the correctly allocated registers are also optimal.

Algorithm: Maximum cardinality search
Input: G = (V,E) with |V| =n
Output: A simplicial elimination ordering v, ..., v,
For all v € V set wt(v) < 0
Let W <V
Fori <~ 1tondo
Let v be a node of maximal weight in W
Set Vi <V
Forallu € W N N(v) set wt(u) < wt(u) + 1
Set W < W\ {v}

In our running example,

9 Yeax

x3 Ty

if we pick z; first, the weight of x5 will become 1 and has to be picked second,

LECTURE NOTES JANUARY 16, 2025

Register Allocation L2 & 3.10

followed by x3 and z4. Only z5 is left and will come last, ignoring here the node
heax which is already colored into a special register.
On the other hand, if we pick x; first in this interference graph

vy [fem

then both x2 and z3 will be given weight 1, and either one of them can be picked
second. Alternatively, if we picked x5 first in this graph, we would be forced to
pick x3 second but could then pick any of x;, x2, or 4 third.

Complexity It is not immediately clear how the algorithm can be implemented
to achieve a running time linear on |V| 4+ |E|. In the original paper by Tarjan and
Yannakakis, the algorithm is described a slightly different. Instead of maintaining
a weight for each vertex, we use an array of buckets B so that B[i] contains all
vertices of weight i. At the beginning, all vertices are in bucket B[0]. We also
maintain a counter c that indicates the largest non-empty bucket. We then pick
a vertex from bucket B[c] and if it is empty we decrement ¢ and look at the next
bucket until we find something (and if not then we terminate). After we picked a
vertex, we move all neighbors of that vertex to a higher bucket. So for instance, if
we picked v and u is a neighbor of v in bucket B[i] then we move u to B[i + 1].

In the formulation above, we could say that we donothaveamap V' — {1, ..., K'}
but rather an array W of size K that contains the doubly linked lists of vertices of
that weight. Depending on the representation we use, we also need pointers to find
the position of vertices in the lists to move them around in constant time.

€5 T

AN

T3

Tq

7 Precolored Nodes

Some instructions on the x86-64, such as integer division IDIV, require their argu-
ments to be passed in specific registers and return their results also in specific reg-
isters. There are also call and ret instructions that use specific registers and must
respect caller-save and callee-save register conventions. We will return to the issue
of calling conventions later in the course. When generating code for a straight-line
program as in the first lab, some care must be taken to save and restore callee-save
registers in case they are needed.

First, for code generation, the live range of the fixed registers should be limited
to avoid possible correctness issues and simplify register allocation.

Second, for register allocation, we can construct an elimination ordering as if
all precolored nodes were listed first. This amounts to the initial weights of the
ordinary vertices being set to the number of neighbors that are precolored before
the maximum cardinality search algorithm starts. The resulting list may or may not

LECTURE NOTES JANUARY 16, 2025

Register Allocation L2 & 3.11

be a simplicial elimination ordering, but we can nevertheless proceed with greedy
coloring as before.

8 Summary

Register allocation is an important phase in a compiler. It uses information about
the interference of destinations to map an unbounded number of temps to a finite
number of registers, spilling temporaries onto stack slots if necessary. The algo-
rithm described here is due to Hack [Hac07] and Pereira and Palsberg [PP05]. It
is simpler than the one described by Appel [App98, Chapter 11] and appears to
perform comparably. We have covered the algorithm backwards. In an implemen-
tation, we would proceed through the following steps:

1. Build the interference graph (we will learn how to do this in the next lecture).
2. Order the nodes using maximum cardinality search.

3. Color the graph greedily according to the elimination ordering.

4. Spill if more colors are needed than registers available.

Variants such as a separate spilling pass before coloring are described in the refer-
ences above can further improve the efficiency of the generated code. On chordal
graphs, which come from SSA programs and often arise directly, register alloca-
tions is polynomial and efficient in practice.

9 Optimizations

There are several optimizations that can be performed during register allocation.
They are not required to generate correct code but can improve performance. We
will talk more about optimizations later in the course. For now, we briefly dis-
cuss two coalescing and splitting live ranges which are dual optimizations that have
somewhat conflicting goals.

9.1 Coalescing

Coalescing is a technique for reducing code size at the expense of putting more
stress on the register allocation. Consider a program and its corresponding conflict
graph. Assume we have a move instruction ¢ < s in the code so that there is no
edge between s and ¢ in the conflict graph. Consequently, s and ¢ can be assigned
the same register or memory location.

The idea if coalescing is to merge (coalesce) the nodes s and ¢ in the conflict
graph by creating a new node that has all the edges of s and ¢. The color that gets

LECTURE NOTES JANUARY 16, 2025

Register Allocation L2 & 3.12

assigned to the new node during register allocation is then considered the color
of s and ¢. In this way, we force the register allocation to assign the same register
to both temps. Now the instruction ¢t < s becomes a self move that can be safely
removed from the program.

The prize that we pay for coalescing is that the coloring of the interference
graph becomes more difficult as the graph becomes denser. It is possible that co-
alescing results in using additional colors during the coloring phase and in addi-
tional spills. In general, it is hard to decide when coalescing is possible without
additional spills. As a rule of thumb, coalescing works well in programs that re-
quire only few registers. Appel’s textbook contains strategies that can be used to
decide when coalescing does not result in additional spills. However, these strate-
gies are tight to specific algorithms for register allocation in the sense that they do
not result in additional spills only if you use a particular algorithm.

9.2 Splitting Live Ranges

Splitting live ranges is the dual strategy to coalescing. We insert additional moves
to make the interference graph less dense and register allocation easier. The idea is
that the cost of the additional move is offset by the gains of reduced spilling.

While coalescing combines notes in the interference graphs, splitting live ranges
splits a node into two. Transforming a program to SSA form can be seen as a form
of splitting live ranges. We introduce a new name for a temp and in this way create
a new node in the interference graph. Transforming a program to SSA form does
not necessarily introduce additional move instruction. But even if a program is in
SSA form, it is possible to further split live ranges.

Assume a temp ¢ is initialized at the beginning of the code and read at multiple
places throughout the code. Then t has potentially a long live range and inter-
feres with many other temps. To reduce the interference, we introduce a new move
instruction ¢’ < t somewhere in the live range of ¢ and rename ¢ to ¢’ in the instruc-
tions after the new move. The result in the interference graph is that the node ¢ is
split into two nodes ¢ and t’ that do not interfere. The edges of ¢ in the old graph
become the edges of ¢ and ¢’ in the new graph.

Similar as for coalescing, it is not immediately clear if splitting the live range
of a variable helps. It can for instance be the case that many edges in the original
graph get duplicated and become edges of ¢ and ¢'. This might then not reduce the
number of spills.

Questions

1. Why does register allocation take such a long time? It is polynomial isn’t it?

LECTURE NOTES JANUARY 16, 2025

Register Allocation L2 & 3.13

2. Given an optimal graph coloring, how would you construct an ordering such
that greedy graph coloring would re-create that coloring?

3. What is the minimum number of 3-address code instructions, ending with
ret %ieax, needed to make a non-chordal graph? What is the minimum num-
ber of 2-address code instructions?

4. Does it make a difference where start the construction of a simplicial elimina-
tion order?

5. Is register allocation for programs with mixed data types more difficult than
for programs with uniform types? Why or why not?

6. Why is chordality of a graph interesting for register allocation?

7. Why should one worry about allocating half registers of lower data width?
Isn’t accessing words out of double words etc. inefficient? Is accessing bytes
out of words inefficient?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

[Cha82] Gregory]J. Chaitin. Register allocation and spilling via graph coloring.
In Proceedings of the Symposium on Compiler Construction, pages 98-105,
Boston, Massachusetts, June 1982. ACM Press.

[Hac07] Sebastian Hack. Register Allocation for Programs in SSA Form. PhD thesis,
Universitiat Karlsruhe, October 2007.

[PPO5] Fernando Magno Quintdo Pereira and Jens Palsberg. Register alloca-
tion via coloring of chordal graphs. In K.Yi, editor, Proceedings of the
Third Asian Symposium on Programming Languages and Systems (APLAS’05),
pages 315-329, Tsukuba, Japan, November 2005. Springer LNCS 3780.

LECTURE NOTES JANUARY 16, 2025

	Introduction
	Spilling Temps
	Building the Interference Graph
	Register Allocation via (Greedy) Graph Coloring
	Chordal Graphs
	Simplicial Elimination Ordering
	Precolored Nodes
	Summary
	Optimizations
	Coalescing
	Splitting Live Ranges

