
15-411/15-611 Compiler Design

Spring 2025 with Seth Copen Goldstein and Ben Titzer

http://www.cs.cmu.edu/~411

1

http://www.cs.cmu.edu/~411

Compilers at 60K

2

What is a Compiler?

Compilerprogram program

executable form

Interpreterprogram RESULT!

executable form

What did I forget?

15-411 3© Goldstein 2020

“A” Compiler is a misnomer

∙ Multiple sources compiled into .o files
∙ Linker combines .o files into .exe file
∙ Loader combines .exe file (with .so) into a

runnable application

∙ But, we will mostly ignore this in class.

15-411 4© Goldstein 2020

Implications
∙ Must recognize legal (and illegal) programs
∙ Must generate correct code
∙ Must manage storage of all variables (and code)
∙ Must agree with target on format for object code
Big step up from assembly language—use higher level

notations

Better View of a Compiler
Source
code

Target
code

Compiler

Errors

∙ Compilers transform specifications
∙ Interpreters execute specifications
− (without generating new target code)

∙ E.g.: C++ is usually compiled
Python is usually interpreted
Java/JavaScript are JIT-compiled

∙ Many common issues
∙ 411 mainly focuses on compilers.

Executors

Compilerprogram program Interpreterprogram RESULT!

15-411 6© Goldstein 2020

Why take this class?

∙ Compilers design and construction
combines:
− theory
− algorithms
− AI
− systems
− architecture
− software engineering

15-411 7© Goldstein 2020

Compilers Are Everywhere

∙ FTP daemon
∙ Web browsers
∙ perl, sed, awk, emacs, bc
∙ excel, tex
∙ web servers (e.g., asp)
∙ databases (query opt)
∙ virtual machines
∙ ?

15-411 8© Goldstein 2020

Compilers are Essential
Performance Gains Due to Compiler (gcc)

15-411 9© Goldstein 2020

Compilers are Essential
Virtual machines employ JITs for dramatic speedups

15-411 10© Goldstein 2020

Compilers Are Fun

∙ Many very hard problems
− Many (if not most) are NP-hard
− So, what to do?

∙ Applies theory and practice
∙ Modern architectures depend on

compilers: Compiler writers drive
architectures!
∙ You can see the results

15-411 11© Goldstein 2020

∙ Correctness
∙ Performance of translated program
− Predictably small and fast code

∙ Scalability of compiler
− Fast compile time
− Separate (incremental, parallel) compilation

∙ Easy to modify
∙ Aids programmer
− good compile time error messages
− support for debugger

What makes a good compiler?

15-411 12© Goldstein 2020

Compilers at 30K

13

A Simple Example

∙ What does this mean? Is it valid?
∙ How do we determine its meaning:
− break into words
− convert words to sentences
− interpret the meaning of the sentences

x := a * 2 + b * (x * 3)

15-411 14© Goldstein 2020

Lexical Analysis

∙ Group characters into tokens
∙ Eliminate unnecessary characters from

the input stream
∙ Use regular expressions to specify and

DFAs to implement.
∙ E.g., lex

id<x> assign id<a> times int<2> plus id
times lparen id<x> times int<3> rparen

15-411 15© Goldstein 2020

x := a * 2 + b * (x * 3)

Syntactic Analysis

∙ Group tokens into sentences
∙ Eliminate unnecessary tokens from

the input stream
∙ Use context-free grammars to

specify and push down automata to
implement
∙ E.g., bison

id<x> assign id<a> times int<2> plus id
times lparen id<x> times int<3> rparen

:
=

x

*

+

a 2

*

b *

x 3

15-411 16© Goldstein 2020

x := a * 2 + b * (x * 3)

Semantic Analysis

∙ Determines meaning of sentence.
∙ What are the types of the variables

(x, a, b)?
∙ Constants (2, 3)?
∙ Operators (*, +)
∙ Is it legal to read and write x?
∙ Use attributed grammars, symbol

tables, …

id<x> assign id<a> times int<2> plus id
times lparen id<x> times int<3> rparen

:
=

*

+

2

*

*

x

a b

x 3

intb
inta
intx

15-411 17© Goldstein 2020

x := a * 2 + b * (x * 3)

Translation
∙ Interface between front-end and back-end
∙ Many different types of IRs
− Hierarchical
− Linear
− Tree based
− Triple based

:
=

*

+

2

*

*

x

a b

x 3

intb
inta
intx

15-411 18© Goldstein 2020

Instruction Selection
∙ Translates IR into target instruction set
∙ Choose instructions (smul or sll)
∙ Choose operand modes
− immediate constants (2 or 3)
− load immediates
− addressing modes

∙ Complex instructions
∙ Types of branches
∙ Use tree grammars &

 dynamic programming

:
=

*

+

2

*

*

x

a b

x 3

intb
inta
intx

15-411 19© Goldstein 2020

Instruction Selection

:
=

*

+

2

*

*

x

a b

x 3

intb
inta
intx

r1 ← load M[fp+x]

r2 ← loadi3

r3 ← mul r1, r2
r4 ← load M[fp+b]

r5 ← mul r3, r4
r6 ← load M[fp+a]

r7 ← sll r6, 1

r8 ← add r6, r5
 store M[fp+x] ← r8

15-411 20© Goldstein 2020

Optimizations

r1 ← load M[fp+x]
r2 ← loadi3
r3 ← mulr1, r2
r4 ← load M[fp+b]
r5 ← mulr3, r4
r6 ← load M[fp+a]
r7 ← sllr6, 1
r8 ← addr7, r5
 store M[fp+x] ← r8

∙ Improves the code by some
metric:
− code size
− register usage
− speed
− power consumption

∙ Types of optimizations:
− Basic block (peephole)
− Global (loop hoisting)
− Interprocedural (leaf functions)
− Whole program (inlining of

methods)
∙ Uses: flow analysis, etc.

15-411 21© Goldstein 2020

Metrics Matter

r1 ← load M[fp+x]
r4 ← load M[fp+b]
r6 ← load M[fp+a]
r2 ← loadi3
r1 ← mulr1, r2
r1 ← mulr1, r4
r6 ← sllr6, 1
r1 ← addr6, r1
 store M[fp+x] ← r1

r1 ← load M[fp+x]
r2 ← loadi3
r1 ← mulr1, r2
r2 ← load M[fp+b]
r1 ← mulr1, r2
r2 ← load M[fp+a]
r2 ← sllr2, 1
r1 ← addr1, r2
 store M[fp+x] ← r1

Registers: 2
Cycles:14

Registers: 4
Cycles:9

Assume load takes 3 cycles, mul takes 2 cycles

15-411 22© Goldstein 2020

Register Allocation

r1 ← load M[fp+x]
r4 ← load M[fp+b]
r6 ← load M[fp+a]
r2 ← loadi3
r1 ← mulr1, r2
r1 ← mulr1, r4
r6 ← sllr6, 1
r1 ← addr6, r1
 store M[fp+x] ← r1

∙ Assign variables to registers
and/or memory locations
∙ Decisions are crucial!
∙ Take into account
− specialized registers

(fp, sp, mul on x86)
− calling conventions
− number and type
− lifetimes

∙ graph coloring and linear scan
are the most commonly-used
algorithms

15-411 23© Goldstein 2020

Compilers at 45K

24

Compilers

∙ A compiler translates a programming language (source language) into
executable code (target language)

∙ Quality measures for a compiler

‣ Correctness (Does the compiled code work as intended?)

‣ Code quality (Does the compiled code run fast?)

‣ Efficiency of compilation (Is compilation fast?)

‣ Usability (Does the compiler produce useful errors and warnings?)

25

Organizing a Compiler

∙ Split work into different compiler phases !!

∙ Phases transform one program representation into another

∙ Every phase has a clear role, some more complex than others

∙ Phases can be between different types of program representations

∙ Phases can be on the same program representation

26

front-end

back-end

Example phases of a compiler

Lex Semantics Translation

Instruction
selection

Register
allocation

Code
generationOptimization

Order of these may vary
15-411 27© Goldstein 2020

Parse

Many representations

Lex Parse Semantics Translation

Instruction
selection

Register
allocation

Code
generationOptimization

tokens

Abstract syntax tree

AST+symbol tables

Intermediate Representation (tree)

Code
Triples

15-411 28© Goldstein 2020

Traditional Two-pass Compiler

Implications
∙ Use an intermediate representation (IR)
∙ Front end maps legal source code into IR
∙ Back end maps IR into target machine code
∙ Supports independence between source and target
Typically, front end is O(n) or O(n log n), while back end

is NP-hard

Source
code

Front
End

Errors

Machine
code

Back
End

IR

Without IR

SML

Sparc

x86

MIPS

PPC

ARM

Java

C

OCaml

C#

n×m compilers!

With IR

Java

SML

C

OCaml

C#

Sparc

x86

MIPS

PPC

ARM

vs n+m compilers

IR

P.S. No compiler has a truly universal IR (so far).

Traditional Three-pass Compiler

Code Improvement (or Optimization)
∙ Analyzes IR and rewrites (or transforms) IR
∙ Primary goal is to improve program (“optimize”)
− Execution time space, power consumption, …

∙ Must preserve “meaning” of the code
− Correct behavior, output of the program

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

Compilers is a “Mature” Field

∙ Compiler History

‣ 1943: Plankalkül, first high-level language (Konrad Zuse)

‣ 1951: Formules, first self-hosting compiler

‣ 1952: A-0, term ‘compiler’ (Grace Hopper)

‣ 1957: FORTRAN, first commercial compiler (John Backus; 18 PY)

‣ 1962: Lisp, self-hosting compiler and GC (Tim Hart and Mike Levin)

∙ Compilers today

‣ Modern compilers are complex (gcc has 7.5M LOC)

‣ There is still a lot of compiler research (LLVM, verified compilation, …)

‣ There is still a lot of compiler development in industry (guest lecture?)

33

1957: The FORTRAN Automatic Coding System

∙ Six passes in a fixed order
∙ Generated good code

Assumed unlimited index registers
Code motion out of loops, with ifs and gotos
Did flow analysis & register allocation

Classic Compilers

Front
End

Front End Middle End Back End

Index
Optimiz’n

Code
Merge

bookkeeping

Flow
Analysis

Register
Allocat’n

Final
Assembly

1969: IBM’s FORTRAN H Compiler

∙ Used low-level IR (quads), identified loops with
dominators
∙ Focused on optimizing loops (“inside out” order)

Passes are familiar today

∙ Simple front end, simple back end for IBM 370

Classic Compilers

Front
End

Middle End Back End

Scan
&

Parse

Find
Busy
Vars

Loop
Inv
Code
Mot’n

OSR Reg.
Alloc.

Final
Assy.

Reassoc

(consts)

Copy
Elim.

CSE
Build
CFG
&

DOM

1975: BLISS-11 compiler (Wulf et al., CMU)

∙ The great compiler for the PDP-11
∙ Seven passes in a fixed order
∙ Focused on code shape & instruction selection

LexSynFlo did preliminary flow analysis
Final included a grab-bag of peephole optimizations

Classic Compilers

Middle
End

Back EndFront
End

Lex-
Syn-
Flo

Delay TLA Rank Pack Code Final

Register allocation

1980: IBM’s PL.8 Compiler

∙ Many passes, one front end, several back ends
∙ Collection of 10 or more passes

Repeat some passes and analyses
Represent complex operations at 2 levels
Below machine-level IR

Classic Compilers

Front
End

Middle End Back End

Multi-level IR has
become common
wisdom

*

Dead code elimination
Global cse
Code motion
Constant folding
Strength reduction
Value numbering
Dead store elimination
Code straightening
Trap elimination
Algebraic reassociation

1986: HP’s PA-RISC Compiler

∙ Several front ends, an optimizer, and a back end
∙ Four fixed-order choices for optimization

(9 passes)
∙ Graph-coloring allocator, instruction scheduler,

peephole optimizer

Classic Compilers

Front
End

Middle End Back
End

Middle End

Fortran
77

C & C++

Java

C/Fortran

Alpha

x86

Front End Back End

1999: The SUIF Compiler System

Another classically-built compiler
∙ 3 front ends, 3 back ends
∙ 18 passes, configurable order
∙ Two-level IR (High SUIF, Low SUIF)
∙ Intended as research infrastructure

Data dependence analysis
Scalar & array privitization
Reduction recognition
Pointer analysis
Affine loop transformations
Blocking
Capturing object definitions
Virtual function call elimination
Garbage collection

SSA construction
Dead code elimination
Partial redundancy elimination
Constant propagation
Global value numbering
Strength reduction
Reassociation
Instruction scheduling
Register allocation

Classic Compilers

Logisitics

40

Course Staff – Seth Copen Goldstein

∙ Office hours: Wed 1pm-3pm 7111GHC or zoom (link on piazza)

∙ Research

‣ Concurrent Systems (Parallel, Distributed, …)

‣ Architecture/Compilers

‣ Monetary Systems (BoLT) & Future of Work

‣ Web3

∙ Teaching

‣ 15-411/611 Compiler Design

‣ 15-319/619 Cloud Computing

‣ 15-213 Introduction to Computer Systems
41

Course Staff – Ben L. Titzer

∙ Office hours: Tue 2pm - 4pm

∙ Research

‣ Virtual machine design (Wizard Research Engine)

‣ All things WebAssembly

‣ Systems programming languages (Virgil)

∙ SG Teaching

‣ 17-363 Programming Language Pragmatics (with Aldrich)

‣ 17-770 Virtual Machines and Managed Languages

42

Communication and Resources

● Lecture: Tue/Thu 9:30-10:50am at DH A302

● Recitation

● Website: http://www.cs.cmu.edu/~411

● Piazza: You should be on already

● Gradescope: Enrollment code on Piazza

● Lecture notes: Will be available after the lecture

● Textbook: Andrew Appel - Modern Compiler Implementation in ML

43

A: Fri 1:00pm GHC 4102

B: Fri 2:00pm BH 235A

C: Fri 4:00pm WEH 5312

D: Fri 1:00pm GHC 4301

http://www.cs.cmu.edu/~411

The Essential TAs!

44

Name

∙ Something about yourself

∙ Languages Prefer

45

Picture

Kyle Booker

∙ Senior in CS
∙ I play in a rock band

∙ OCaml & Rust

46

Picture

Stephen Nah

∙ Senior in CS
∙ I play the drums!

∙ Rust

47

Ziqi Liu

∙ First-year MSCS; undergrad at CMU
∙ Very into volleyball

∙ OCaml

48

Picture

Iván Burgert

∙ Senior in CS
∙ I’m from Argentina

∙ OCaml (working on learning Rust!)

49

Alex Knox

∙ Senior in CS
∙ I play the bagpipe :)

∙ OCaml

50

Other Textbooks

51

What will you learn?

52

∙ How to structure compilers

∙ Applied algorithms and data structures

‣ Context-free grammars and parsing

‣ Static single assignment form

‣ Data flow analysis and type checking

‣ Chordal graph coloring and register allocation

∙ Focus on sequential imperative programming language
Not functional, parallel, distributed, object-oriented, ...

∙ Focus on code generation and optimization
Not error messages, type inference, runtime system, ...

Compiler Design

53

Focus of the Course

‣ Correctness (Does the compiled code work as intended?)

‣ Code quality (Does the compiled code run fast?)

‣ Efficiency of compilation (Is compilation fast?)

‣ Usability (Does the compiler produce useful errors and warnings?)

54

Software Engineering

∙ Implementing a compiler is a substantial software project

‣ Building, organizing, testing, debugging, specifying, …

∙ Understanding and implementing high-level specifications

∙ Satisfying performance constraints

∙Make (and reevaluate) design decision

‣ Implementation language and libraries

‣ Data structures and algorithms

‣ Modules and interfaces

∙ Revise and modify your code

We won’t discuss this
much in lecture.

Compilers are perfect
to practice software

engineering.

55

Learning Goals I

∙ Distinguish the main phases of a state-of-the-art compiler

∙ Understand static and dynamic semantics of an imperative language

∙ Develop parsers and lexers using parser generators

∙ Perform semantic analysis

∙ Translate abstract syntax trees to intermediate representations and
static single assignment form

∙ Analyze the dataflow in an imperative language

∙ Perform standard compiler optimizations

`

56

Learning Goals II

∙ Allocate registers using a graph-coloring algorithm

∙ Generate efficient assembly code for a modern architecture

∙ Understand opportunities and limitations of compiler optimizations

∙ Appreciate design tradeoffs and how representation affects
optimizations

∙ Develop complex software following high-level specifications

`

57

How will this work?

58

Your Responsibilities

‣ Lecture notes are only supplementary material

∙ 5 Labs: you will impl. compilers for subsets of C0 to x86-64 assembly

‣ Lab1-4: each worth 100 points (total 400 points)

‣ Code review after Lab 3: 60 points

‣ Lab 5: 200 points + 100 points for report

∙ 4 Assignments: you will complete four problem sets that help you
understand the material presented in the lectures

‣ Assignments 1-4: each 60 points (total 200 points)

With a partner
or individual.

Individual.

No exams.∙ Attend lectures

59

Labs — Overview

∙ Labs (700 points)

‣ Lab 1: tests and compiler for L1 (straight-line code)

‣ Lab 2: tests and compiler for L2 (conditionals and loops)

‣ Lab 3: tests and compiler for L3 (functions)

‣ Lab 4: tests and compiler for L4 (memory)

‣ Lab 5: compiler and paper (optimizations)

∙ Code review (60 points)

‣ You show your code for Lab 3 and get feedback

‣ We expect that every team member is familiar with all components

‣ We expect that every team member contributes equally

Auto graded.

TA graded.

60

 TA graded.

Support for 411/611 Comes From …

Helps to

∙ Improve the grading infrastructure

∙ Pay for AWS cost

61

Source Language: C0

Subset of C

∙ Small

∙ Safe

∙ Fully specified

∙ Rich enough to be representative and interesting

∙ Small enough to manage in a semester

62

Target Language

x86-64 architecture

∙Widely used

∙ Quirky, but you can choose the instructions you use

∙ Low level enough you can get a taste of the hardware

Runtime system

∙ C0 uses the ABI (Application Binary Interface) for C

∙ Strict adherence (internally, and for library functions)

63

Finding a partner for the labs

I strongly suggest you work in
teams of two.

64

Labs — Finding a Partner

There are two options

1. You fill out a questionnaire and we suggest a partner (staff selection)

‣ Suggestion is not binding but it’s expected that you team up

2. You team up with somebody yourself (self selection)

‣ Like in previous iterations of the course

Don’t panic.

Register your team on of before
Monday 1/20.

65

Option 1: Staff Selection

∙ You fill out a questionnaire about

‣ Your plans and goals for the class

‣ Your strengths and work style

‣ And your time constraints

∙We suggest a partner with complementary strengths and similar
plans/goals

∙ You meet with your partner and (hopefully) decide to team up

∙ Advantages:

‣ You will get a partner who is a good match

‣ You will likely meet somebody new

‣ Prepares you for working in a software company

Until Thursday

Friday

Until Monday 1/20

66

Option 1: Example Questions we Ask

∙What programming language would you prefer to use?

∙ Are you more interested in theory or in building systems?

∙ Are you familiar with x86 assembly?

∙ How much time would be so much that you would rather drop?

∙ How much effort do you plan to invest in Compilers, on average?

∙What grade are you aiming for in Compilers?

∙ Do you prefer to collaborate when writing code?

67

Option 2: Self Selection

∙ Pick your partner carefully!

∙ Have an honest discussion about your goals and expectations

‣ What grades you are willing to accept?

‣ How much time will you spend?

‣ What times of day you work best?

∙ Find somebody who’s a good match

∙ Go through the questionnaire and compare your answers

That’s not necessarily your
best friend.

Consider switching to Option 1 if
there are mismatches.

68

Labs — Picking a Programming Language

∙ You can freely choose a programming language to use

∙ It has been suggested that you use a typed functional language

‣ Writing a compiler is a killer app for functional programming

‣ Most teams used OCaml last year

∙We provide starter code for the following languages

‣ SML, OCaml, Haskell, and, Rust

‣ Also, but not recommended: C++ and Java

∙When picking a language also consider the availability of parser
generators and libraries

69

Logistics
∙ Assignments are submitted via Gradescope

∙ Labs are submitted via GitHub (on Gradescope)

‣ Get a GitHub account and fill out a google form to register your team

‣ Receive your group name

‣ Receive an invitation to join your group on GitHub

‣ Submit your code by pushing to your repository

‣ Local development is available using docker containers

∙ Auto grading with Gradescope

‣ Your compiler is tested against the test cases of other groups

‣ And test cases from previous years

‣ You can submit as often as you like

‣ Best submission before the deadline counts
70

Gradescope Caveats
∙ You have to give Gradescope permissions to see your
15-411-s25-<groupname> repo

∙ You can submit as often as you like, but …

‣ Wait for each submission to complete

‣ If it takes awhile, that is not because Gradescope hung

‣ Submitting multiple times before previous completes will slow things
down for everyone

71

Advice

● Labs are difficult and take time

○ Plan ahead!

○ Set up meetings with lab partners

○ Talk to us and others about design decisions

● Don’t start the compiler after the tests

● Errors carry over to the next lab

● Submit early and often

● Compilers are complex

○ That’s part of the fun

● Consider rewrites

72

Workload Over the Semester

Light

High

Ridiculous

Ludicrous

Plaid

Workload*

* scale from the movie Spaceballs.

The scale is a joke but the relative
workload is about right.

73

This Year’s Theme - Pixar Characters

74

Deadlines and Academic Integrity

∙ Deadlines are midnight (after class); being late results in a late day

‣ You have five (5) late days for the labs (see details online)

‣ You have three (3) late days for the assignments (details online)

∙ Talk to Ben or me or your undergrad advisor if you cannot make a
deadline for personal reasons (religious holidays, illness, …)

∙ Don’t cheat! (details online)

‣ Use code only from the standard library, add to Readme

‣ Don’t use code from other teams, earlier years, etc.

‣ If in doubt talk to the instructor

‣ The written assignments need to be completed individually (1 person)

75

Things you Should Use

∙ Debugger

∙ Profiler

∙ Test programs

∙ Standard library

∙ Lecture notes

∙ Textbooks

76

Well-Being

∙ This is only a course!

‣ Take care of yourself

‣ Watch out for others

‣ Come speak to us. We really do care.

∙ Get help if you struggle or feel stressed

‣ If you or anyone you know experiences any academic stress, difficult
life events, or feelings like anxiety or depression seek support

‣ Counseling and Psychological Services (CaPS) is here to help:
Phone: 412-268-2922
Web: http://www.cmu.edu/counseling/

77

Who should take this course?

78

15-411 in the Curriculum

∙ 15-213 Introduction to Computer Systems

∙ 15-411 Compiler Design

‣ How are high-level programs translated to machine code?

∙ 15-410 Operating System Design and Implementation

‣ How is the execution of programs managed?

∙ 15-441 Computer Networks

‣ How do programs communicate?

∙ 15-417 HOT Compilation

‣ How to compile higher-order typed languages?

Prerequisite

System
requirement

79

Things you Should Know (Learn)

∙ C0 programming language

‣ The source language

∙ x86-64 assembly

‣ The target language

∙ Functional programming

‣ Recommended?

∙ Git version control

‣ For submitting labs

80

Reminder: inductive definitions

See: Bob Harper’s “Practical
Foundations for Programming

Languages”

One of the Topics of this week’s recitation

81

