SSA (1 of 2)

15-411/15-611 Compiler Design

Ben L. Titzer and Seth Goldstein January 28, 2025

Today

- Trivial SSA
- φ-functions
- Dominance
- Placement & Renaming
- Bonus SSA in practice?

SSA

- Static single assignment is an intermediate representation (IR) where every variable has only one definition
 - Single **static** definition
 - (Could be in a loop which is executed dynamically many times.)
- φ-functions used at CFG join points
- All definitions dominate uses
- Variable names don't matter; IR implementation is literally nodes in a graph that point to each other

Advantages of SSA

- Makes def-use-chains explicit
- Makes dataflow optimizations more robust
 - Easier to get right
 - Multiple optimizations can compose
 - Applies to more places
 - Improves register allocation
 - Makes building interference graphs easier
 - Easier register allocation algorithm
 - Decoupling of spill, color, and coalesce
- For most programs reduces space/time requirements
 - Smaller IR, faster optimizations

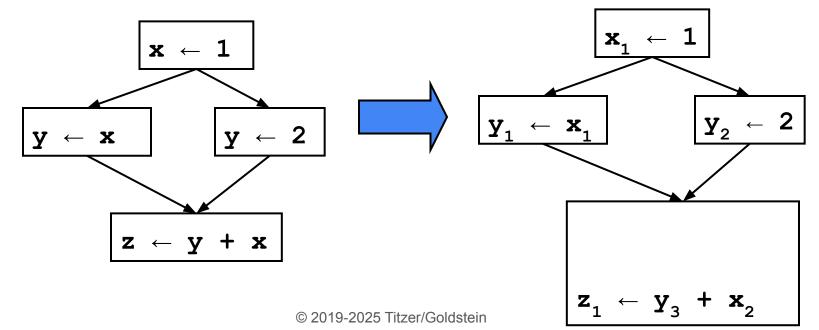
Implications of single definition

• Never have to worry about a variable being overwritten

- Before SSA, compilers had to worry about variable names and redefinitions
- A "node" in SSA IR represents a computation, rather than a storage location
- Improves pattern-matching optimizations
 - Constant propagation (y = 13; x + y \rightarrow x + 13)
 - Constant folding $(3 + 5 \rightarrow 8)$
 - Strength reduction (x + 0 \rightarrow x)
 - Algebraic simplification $(x + y x \rightarrow y)$
- Improves reasoning across control flow
- Think of it as a "bulk solution" to many forward dataflow problems

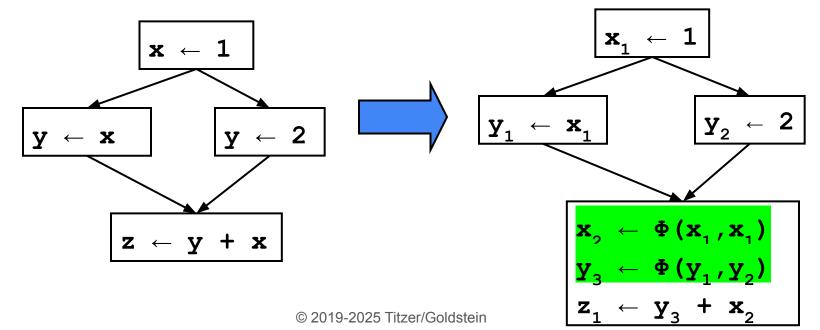
Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.



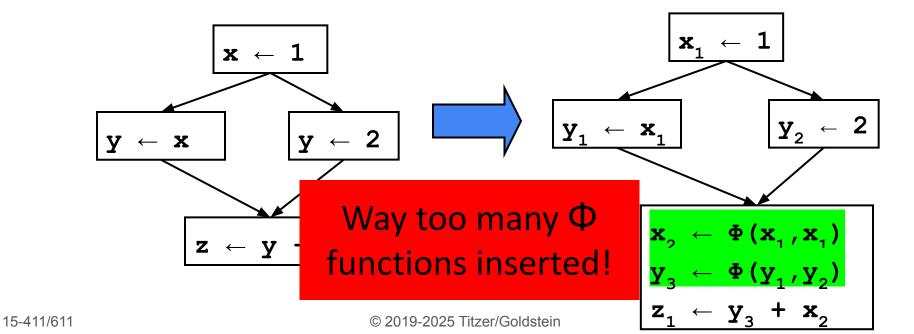
Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.



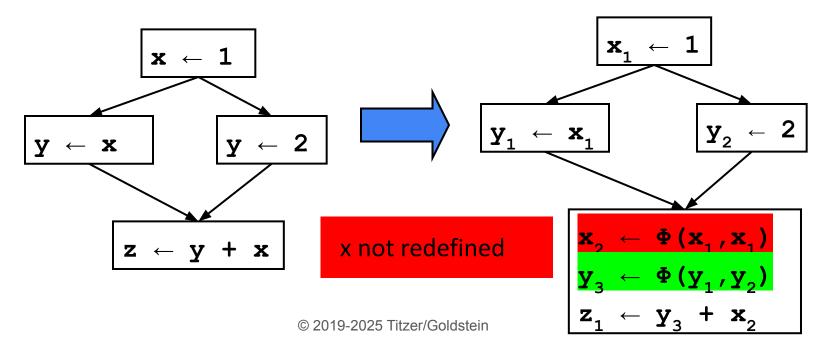
Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.



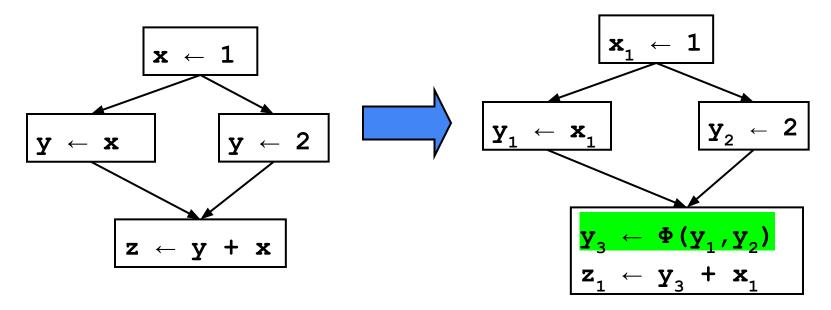
Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all variables with multiple outstanding defs.

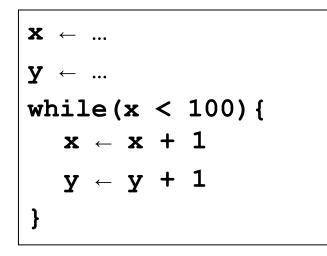


Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all variables with multiple outstanding defs.



- Introduce φ-functions to handle *joins* in CFG
- Loops have joins too!

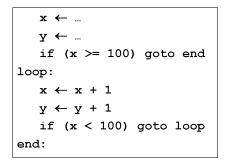


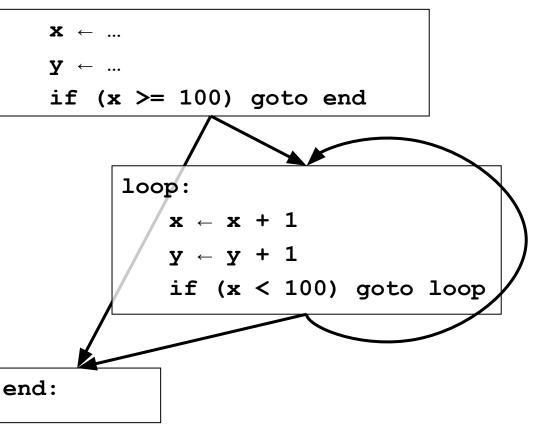
X ←
$\mathbf{Y} \leftarrow$
if $(x \ge 100)$ goto end
loop:
$\mathbf{x} \leftarrow \mathbf{x} + 1$
$\mathbf{y} \leftarrow \mathbf{y} + 1$
if $(x < 100)$ goto loop
end:

- SSA requires single definition for each use
- Introduce φ-functions
 to handle joins at loop
 headers too

 $\mathbf{X} \leftarrow \dots$ **y** ← ... if $(x \ge 100)$ goto end loop: $\mathbf{x} \leftarrow \mathbf{x} + \mathbf{1}$ y ← y + 1 if (x < 100) goto loop end:

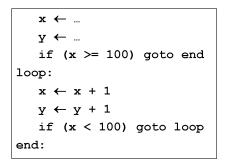
- SSA requires single definition for each use
- Introduce φ-functions
 to handle joins at loop
 headers too

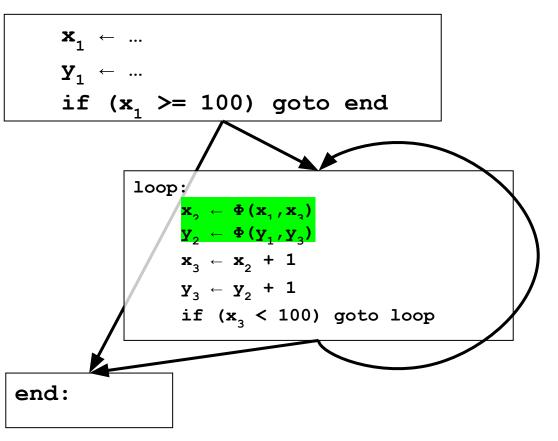


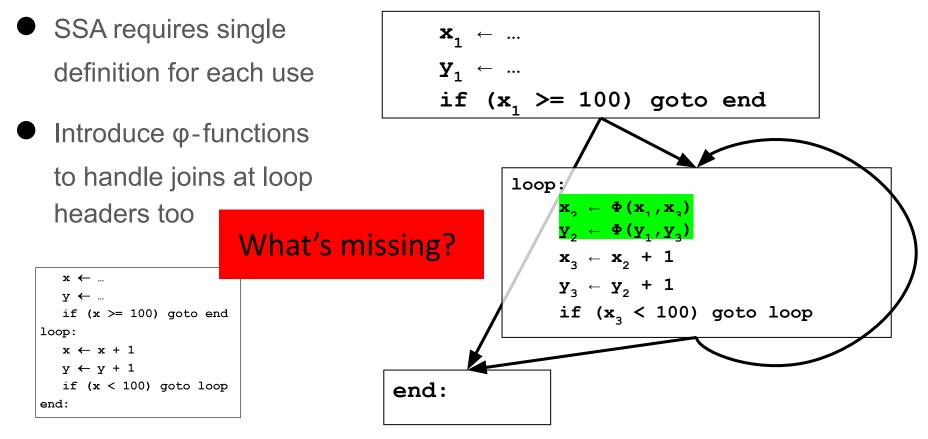


© 2019-2025 Titzer/Goldstein

- SSA requires single definition for each use
- Introduce φ-functions
 to handle joins at loop
 headers too







- SSA requires single definition for each use
- Introduce φ-functions
 to handle joins at loop
 headers too

```
x \leftarrow \dots

y \leftarrow \dots

if (x \ge 100) goto end

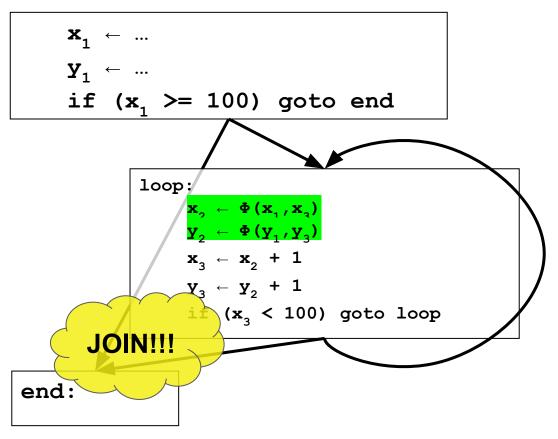
loop:

x \leftarrow x + 1

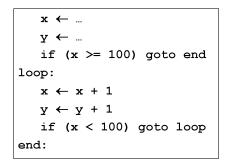
y \leftarrow y + 1

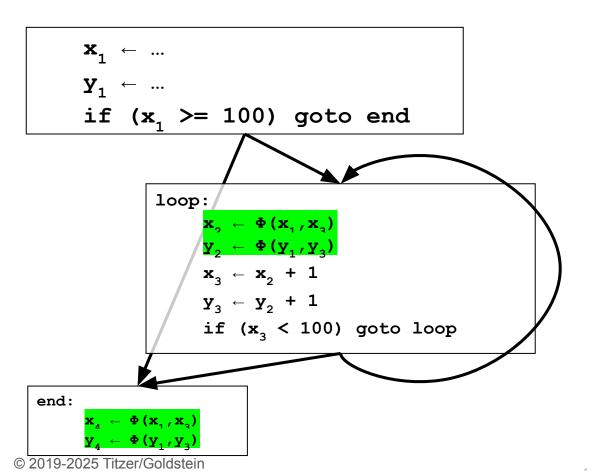
if (x < 100) goto loop

end:
```



- SSA requires single definition for each use
- Introduce φ-functions
 to handle joins at loop
 headers too

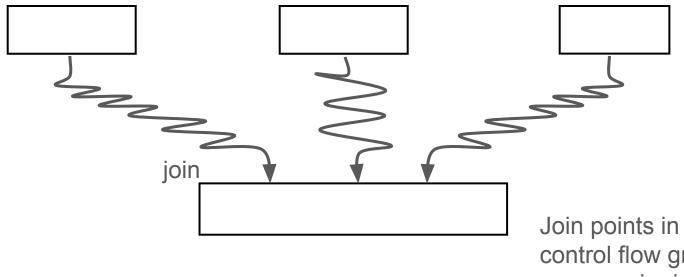




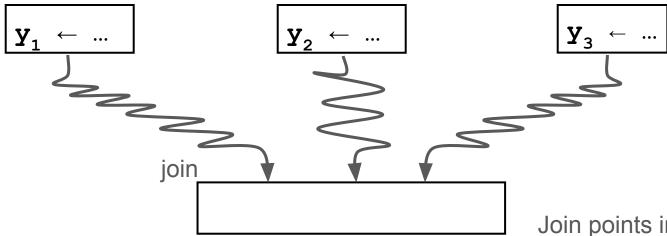
15-411/611

- Φ is a fictional operator; it merges multiple definitions into a single definition at a join in the control flow graph.
- At a BB with *p* predecessors, there are *p* inputs to the Φ . $x_{new} \leftarrow \Phi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_p)$

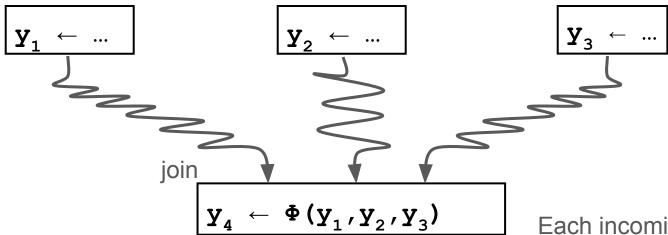
- What do the inputs to a Φ mean?
 - The inputs to φ-functions *positionally correspond* to the incoming control-flow edges.
 - They relate control flow merging and data flow merging.



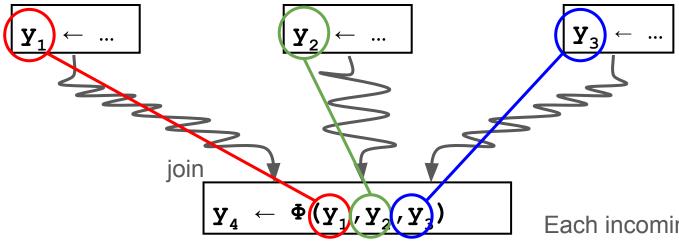
Join points in the control flow graph may require insertion of Φ functions.



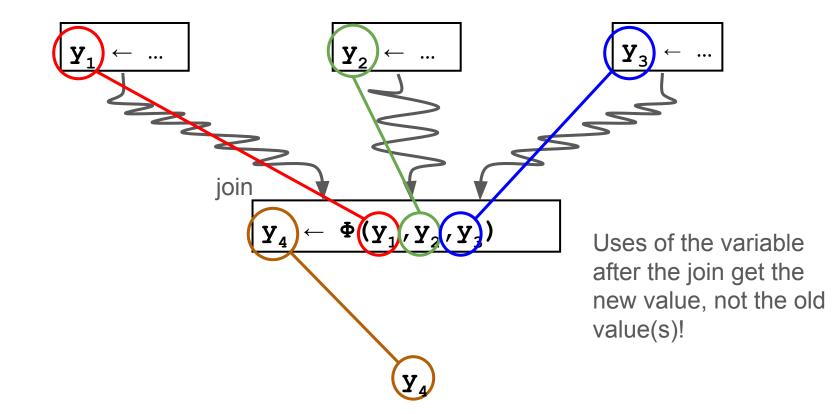
Join points in the control flow graph may require insertion of Φ functions, *if there are different versions of the variable arriving.*



Each incoming control edge supplies a corresponding data value for the Φ from the predecessor.

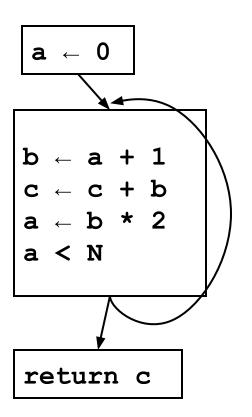


Each incoming control edge supplies a corresponding data value for the Φ from the predecessor.



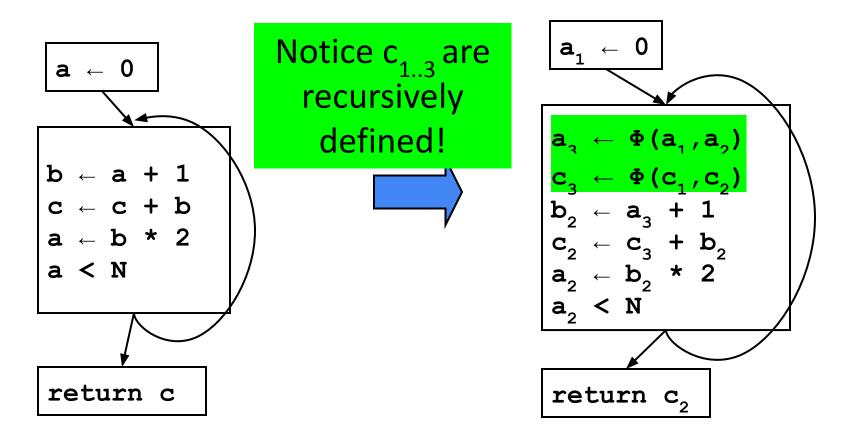
23

Another Loop Example



24

Another Loop Example



What is a Φ (for a loop) anyway?

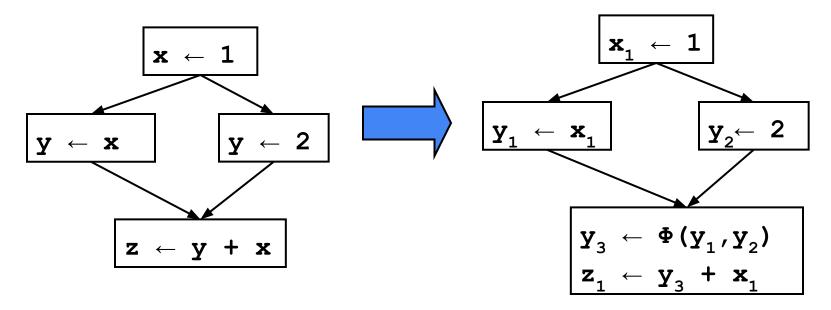


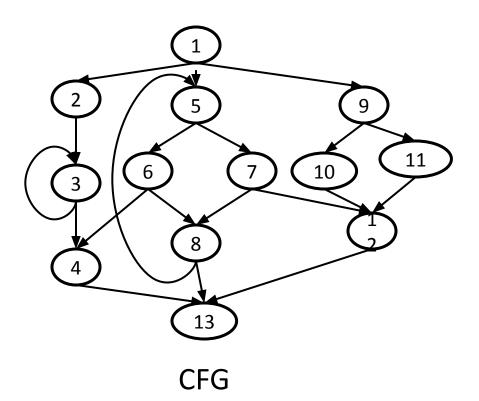
Φs at loop headers relate the dataflow on a loop backedge with the control flow.

Allows finding induction variables really easily.

Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all variables with multiple outstanding defs.

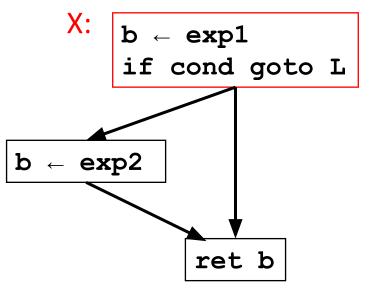




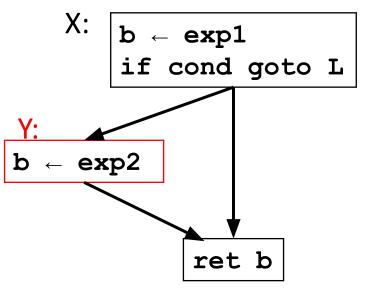
If there is a def of **a** in block 5, which nodes need a $\Phi()$?

28

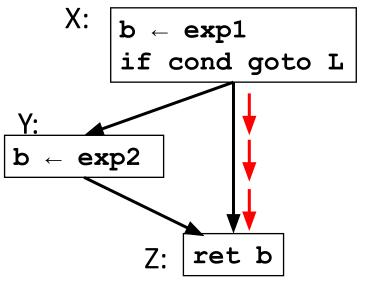
- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{vz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.



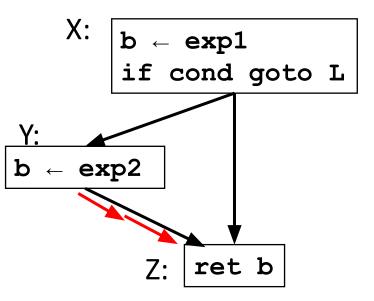
- There is a block x containing a def of b
- There is a block y ≠ x containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{vz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.



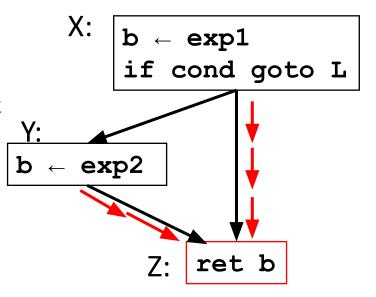
- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{vz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.



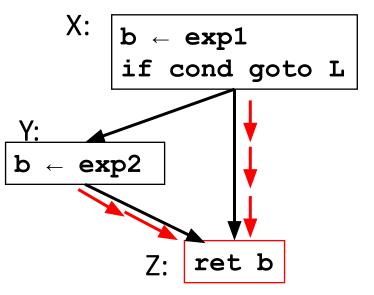
- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{vz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.



- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{vz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.



- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{vz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.



Iterative Insertion

- Implicit def of every variable in start node
- Inserting Φ-function creates new definition
- While there $\exists x,y,z$ that
 - O satisfy path-convergence criteria
 - \circ and z does not contain Φ -function for b
- do

O insert b ← $\Phi(b,b,b,...,b_n)$ at node z, z having n predecessors.

Dominance Property of SSA

In SSA definitions dominate uses*.

O If x_i is used in $x \leftarrow \Phi(..., x_i, ...)$, then BB(x_i) dominates ith predecessor of BB(Φ)

O If x is used in y ← ... x ..., then BB(x) dominates BB(y)

• We can use this for an efficient algorithm to convert to SSA

Dominance Property of SSA

In SSA definitions dominate uses*.

O If x_i is used in $x \leftarrow \Phi(..., x_i, ...)$, then BB(x_i) dominates ith predecessor of BB(Φ)

O If x is used in y ← ... x ..., then BB(x) dominates BB(y)

 We can use this for an efficient algorithm to convert to SSA
 *well akshully, this only true for strict SSA**, where all variables are defined before they are used.

Dominance Property of SSA

In SSA definitions dominate uses*.

O If x_i is used in $x \leftarrow \Phi(..., x_i, ...)$, then BB(x_i) dominates ith predecessor of BB(Φ)

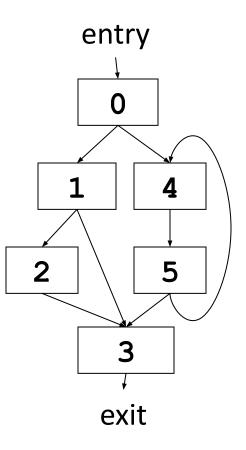
O If x is used in $y \leftarrow \dots x \dots$, then BB(x) dominates BB(y)

 We can use this for an efficient algorithm to convert to SSA *well akshully, this only true for strict SSA**, where all variables are defined before they are used.
 *well double akshully, we can insert assignments to convert any program to strict SSA

© 2019-2025 Titzer/Goldstein

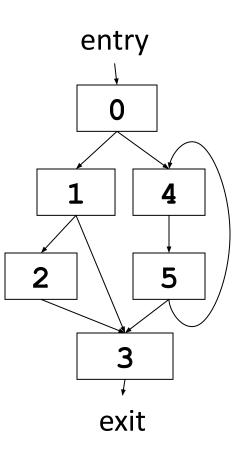
Side trip: Dominators

 block a dominates block b if every possible execution path from entry to b includes a



-00

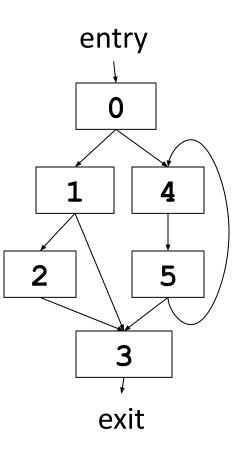
 block a dominates block b if every possible execution path from entry to b includes a



 block a dominates block b if every possible execution path from entry to b includes a

entry dominates everything

- **0** dominates everything but entry
- 1 dominates 2 and 1

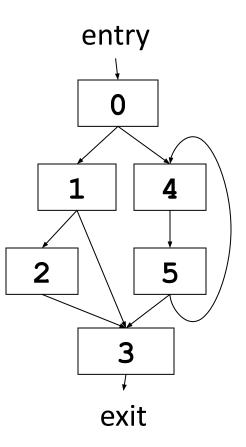


 block a dominates block b if every possible execution path from entry to b includes a

Dominators are useful in:

- Dataflow analysis
- Constructing SSA
- Identifying "natural" loops
- Code motion

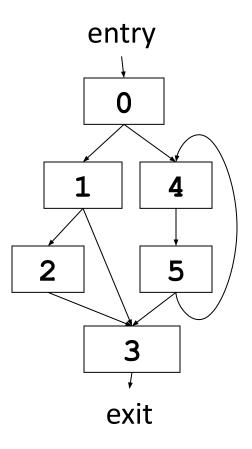
. . .



Definitions

• If *a* and *b* are different blocks and *a dom b*, we say that *a strictly dominates b*

○ If *a sdom b*, and there is no *c* such that *a sdom c* and *c sdom b*, we say that *a* is the *immediate dominator* of *b*



Properties of Dom

- Dominance is a partial order on the blocks of the flow graph, i.e.,
 - 1. Reflexivity: a dom a for all a
 - 2. Anti-symmetry: a dom b and b dom a implies a = b
 - 3. Transitivity: a dom b and b dom c implies a dom c
- NOTE: there may be blocks a and b such that neither a dom b or b dom a holds.
- The dominators of each node n are linearly ordered by the dom relation. The dominators of n appear in this linear order on any path from the initial node to n.

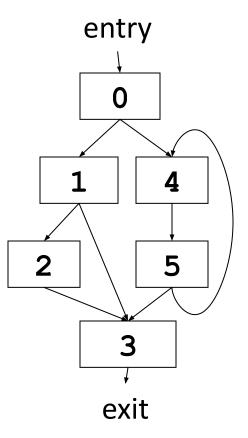
Computing dominators

• We want to compute *D*[*n*], the set of blocks that dominate *n*

Initialize each D[n] (except D[entry]) to be the set of all blocks, and then iterate until no D[n] changes: D[entry] = {entry}

$$D[n] = \{n\} \cup \left(\bigcap_{p \in \mathsf{pred}(n)} D[p]\right), \text{ for } n \neq \mathsf{entry}$$

	Initialization	
block	D[n]	
entry	{entry}	
0	{entry,0,1,2,3,4,5,exit}	
1	{entry,0,1,2,3,4,5,exit}	
2	{entry,0,1,2,3,4,5,exit}	
3	{entry,0,1,2,3,4,5,exit}	
4	{entry,0,1,2,3,4,5,exit}	
5	{entry,0,1,2,3,4,5,exit}	
exit	{entry,0,1,2,3,4,5,exit}	



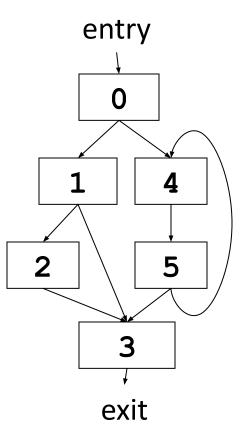
block	Initialization D[n]	First Pass D[n]	entry
entry	{entry}	{entry}	Ō
0	{entry,0,1,2,3,4,5,exit}	{0,entry}	
1	{entry,0,1,2,3,4,5,exit}	{1,0,entry}	
2	{entry,0,1,2,3,4,5,exit}	{2,1,0,entry}	1 4 \
3	{entry,0,1,2,3,4,5,exit}	{3,1,0,entry}	
4	{entry,0,1,2,3,4,5,exit}	{4,0,entry}	
5	{entry,0,1,2,3,4,5,exit}	$\{5,4,0,\text{entry}\}$	2 5
exit	{entry,0,1,2,3,4,5,exit}	- {exit,3,1,0,entry}	
Upa	late rule: $D[n] = \{n\} \cup$	$\left(\bigcap_{p\inpred(n)}D[p]\right),$	3 ¢ exit

© 2019-2025 Titzer/Goldstein

	First Pass	Second Pass	entry
block	D[n]	D[n]	
entry	{entry}	{entry}	0
0	{0,entry}	{0,entry}	
1	{1,0,entry}	{1,0,entry}	
2	{2,1,0,entry}	{2,1,0,entry}	1 4 \
3	{3,1,0,entry}	{3,0,entry}	
4	{4,0,entry}	{4,0,entry}	
5	{5,4,0,entry}	{5,4,0,entry}	2 \ 5 /
exit	{exit,3,1,0,entry}	{exit,3,0,entry}	
Upo	date rule: $D[n] = \{n\} \cup$	$\left(\bigcap_{p\inpred(n)}D[p]\right),$	3 J exit

© 2019-2025 Titzer/Goldstein

block	Second Pass D[n]	Third Pass D[n]
entry	{entry}	{entry}
0	{0,entry}	{0,entry}
1	{1,0,entry}	{1,0,entry}
2	{2,1,0,entry}	{2,1,0,entry}
3	{3,0,entry}	{3,0,entry}
4	{4,0,entry}	{4,0,entry}
5	{5,4,0,entry}	{5,4,0,entry}
exit	{exit,3,0,entry}	{exit,3,0,entry}
Update rule: $D[n] = \{n\} \cup \left(\bigcap_{p \in pred(n)} D[p]\right)$		



50

© 2019-2025 Titzer/Goldstein

15-411/611

Computing dominators

- Iterative algorithm is $O(n^2 e)$
 - O assuming bit vector set
 - O choosing a good iteration order matters
- More efficient algorithm due to Lengauer and Tarjan

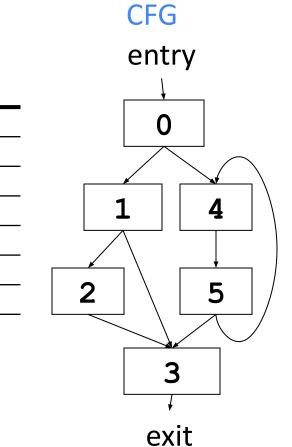
 $\alpha(e,n)$ is inverse Ackermann

- O $O(e \cdot \alpha(e,n))$
- O much more complicated
- O Books provide simple algorithms that are fast in practice(faster than Tarjan algorithm for realistic CFGs)
- O For a clever algorithm see: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey, and Kennedy

Immediate dominators

- Let sD[n] be the set of blocks that strictly dominate n, then
 sD[n] = D[n] {n}
- To compute *iD*[*n*], the set of blocks (size <= 1) that immediately dominate *n*
- Set iD[n] = sD[n]
- Repeat until no iD[n] changes:

```
iD[n] = iD[n] - \bigcup(sD[d])
d \equiv iD[n]
```

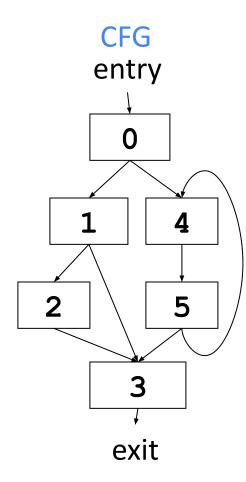


53

block	Initialization iD[n]=sD[n]	First Pass iD[n]
entry	{}	{}
0	{entry}	{entry}
1	{0,entry}	{0}
2	{1,0,entry}	{1}
3	{0,entry}	{0}
4	{0,entry}	{0}
5	{4,0,entry}	{4}
exit	{3,0,entry}	{3}

Update rule: $iD[n] = iD[n] - \bigcup (sD[d])$ $d \in iD[n]$

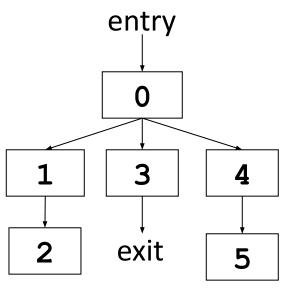
© 2019-2025 Titzer/Goldstein



Dominator Tree

In the *dominator tree* the initial node is the entry block, and the parent of each other node is its immediate dominator.

block	iD[n]
entry	{}
0	{entry}
1	{0}
2	{1}
3	{0}
4	{0}
5	{4}
exit	{3}



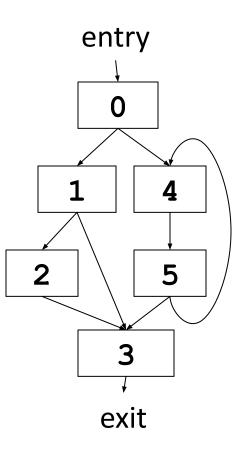
Dominator Tree

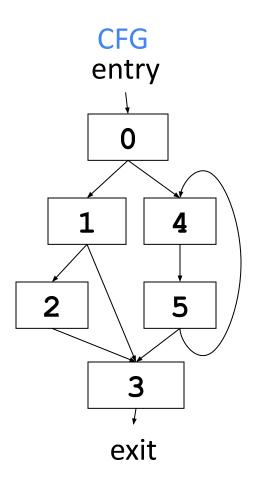
15-411/611

© 2019-2025 Titzer/Goldstein

Post-Dominance

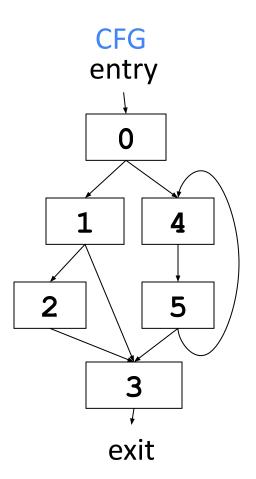
- Block *a* post-dominates *b* (a pdom b) if every path from *a* to the exit block includes *b*
- pdom on CFG is the same as dom on the reverse (all edges reversed) CFG
- 0 post-dominates ?
 1 post-dominates ?
 4 post-dominates ?





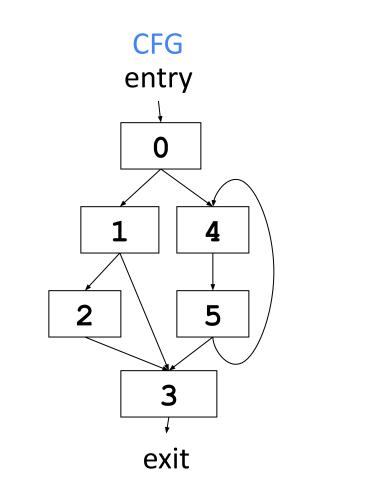
Dominance Frontier

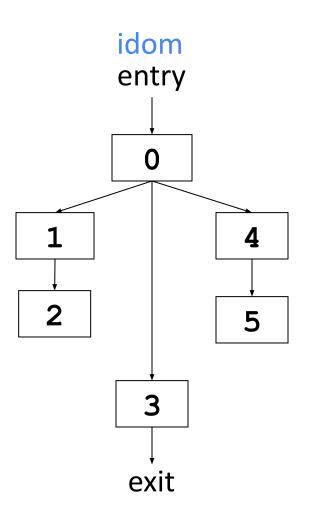
- *z* is in the dominance frontier of *x* If *z* is the first node we encounter on the path from *x* which *x* does not *strictly* dominate.
- For some path from node x to z, $x \rightarrow ... \rightarrow y \rightarrow z$ where x dom y but not x sdom z.
 - Intuitively, the dominance frontier consists of nodes "just outside the dominator tree"

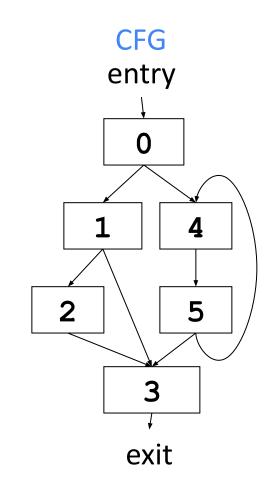


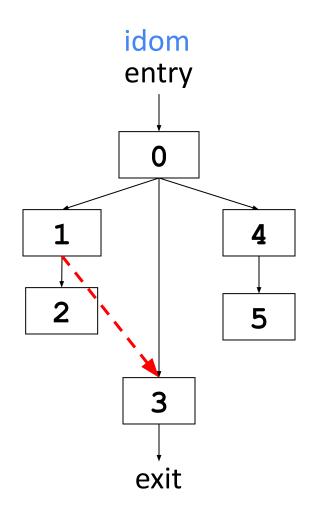
Dominance Frontier

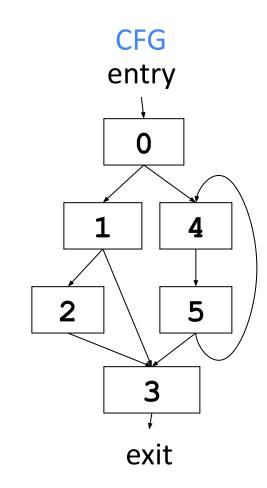
- *z* is in the dominance frontier of *x* If *z* is the first node we encounter on the path from *x* which *x* does not *strictly* dominate.
- For some path from node x to z, $x \rightarrow ... \rightarrow y \rightarrow z$ where x dom y but not x sdom z.
- Dominance frontier of **1**? {3}
- Dominance frontier of 2? {3}
 - Dominance frontier of 4? {3,4}

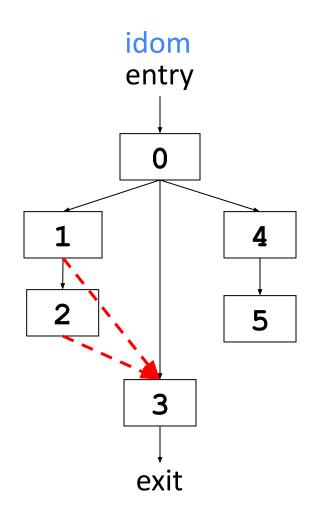


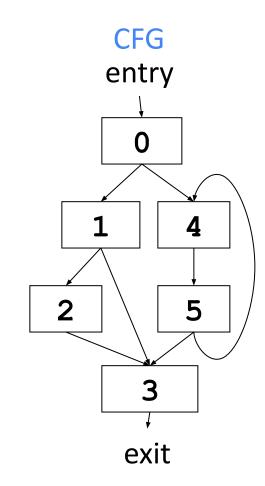


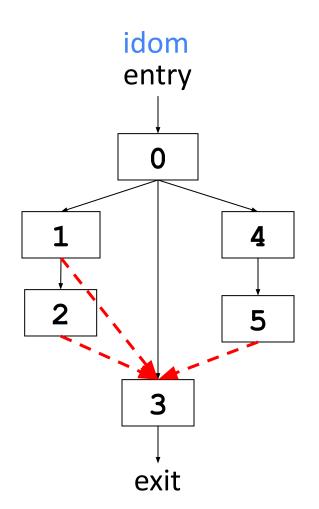


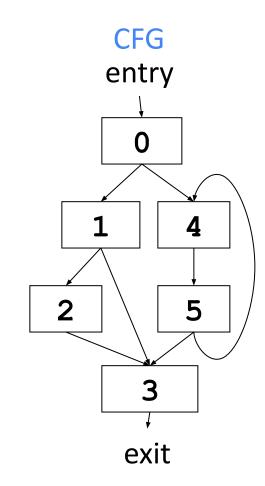


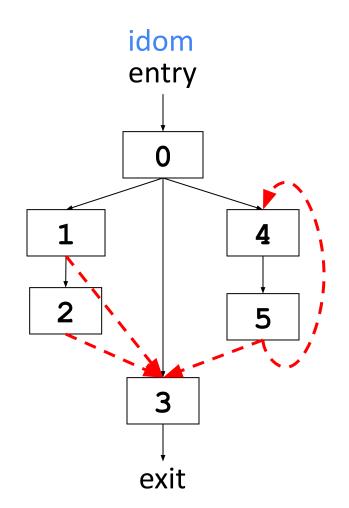












Calculating the Dominance Frontier

• Let *dominates*[n] be the set of all blocks which block n dominates

 \circ subtree of dominator tree with **n** as the root

• The dominance frontier of n, *DF[n]* is

$DF[n] = \bigcup succ(s) - dominates[n] - \{n\}$

 $s \in \text{dominates}[n]$

Recap

• a dom b

• every possible execution path from *entry* to *b* includes *a*

• a sdom b

• *a dom b* and *a* != *b*

• a idom b

• *a* is "closest" dominator of *b*

• a pdom b

• every path from *a* to the exit block includes *b*

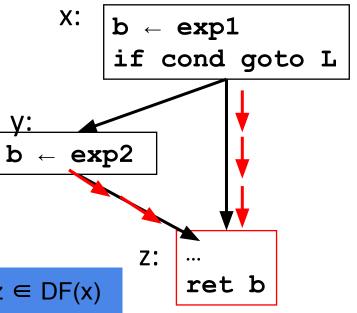
- Dominator trees
- Dominance frontier

Back to inserting Φ s

Require a Φ -function for variable <u>b</u> at node <u>z</u> of the flow graph:

- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{vz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.

In other words, $z \in DF(x)$

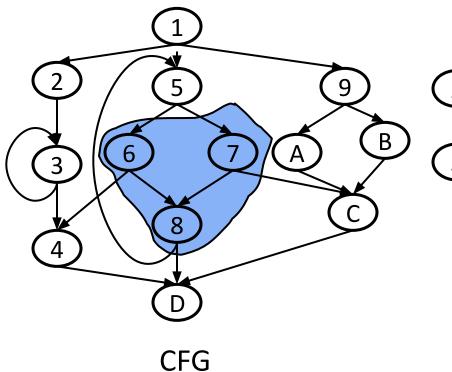


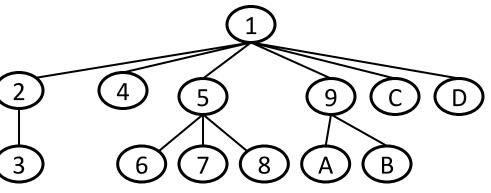
Using Dominance for SSA Construction

• **Dominance-Frontier Criterion**: Whenever node x contains a definition of some variable a, then any node $z \in DF(x)$, z needs a Φ -function for a.

Iterated dominance frontier: since a Φ-function itself is a definition, we must iterate the dominance-frontier criterion until there are no nodes that need Φ-functions.

Dominance

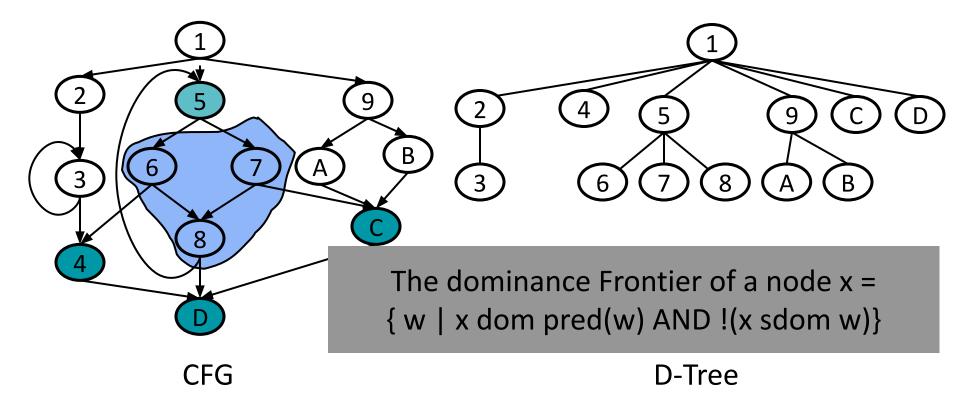




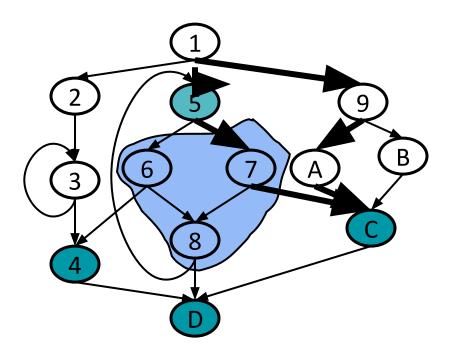
If there is a def of a in block 5, which nodes need a $\Phi()$?

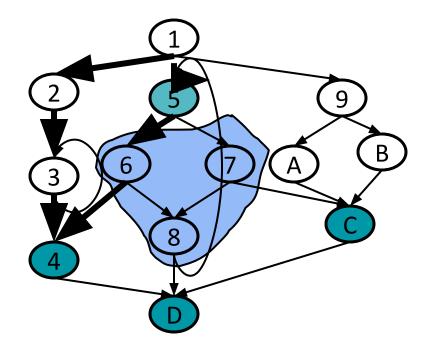
D-Tree

Dominance Frontier

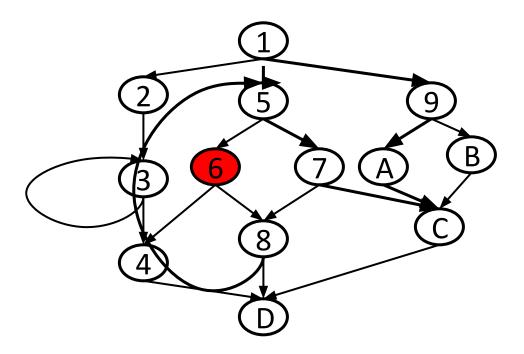


Dominance Frontier & path-convergence

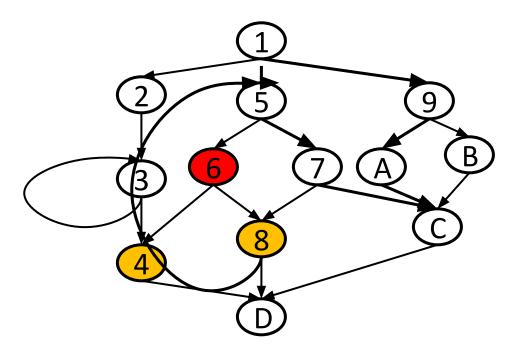




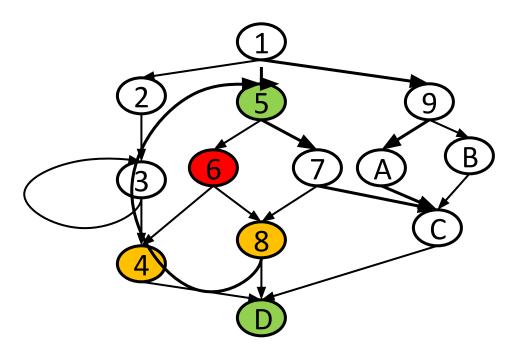
Dominance Frontier Criterion



Dominance Frontier Criterion



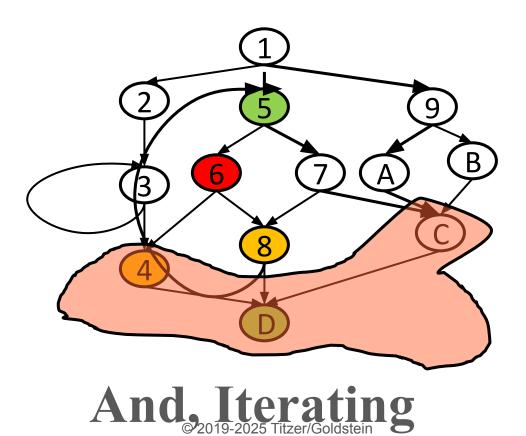
Dominance Frontier Criterion



72

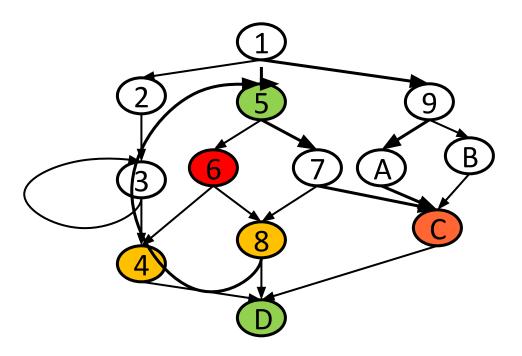
15-411/611

Dominance Frontier Criterion



23

Dominance Frontier Criterion



74

Computing Dominance Frontier

• We just covered a $O(n^3)$ iterative algorithm – *embarrassing!*

- There's also a near linear time algorithm due to Tarjan and Lengauer (Chap 19.2)
 - O SSA construction therefore near linear
 - O SSA form makes many optimizations linear (no need for iterative data flow)

Using DF to Place $\Phi()$

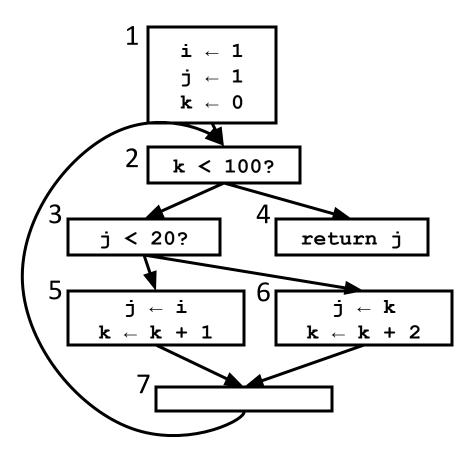
- Gather all the defsites of every variable
- Then, for every variable
 - o foreach defsite
 - foreach node in DF(defsite)
 - if we haven't put $\Phi()$ in node put one in
 - If this node didn't define the variable before: add this node to the defsites

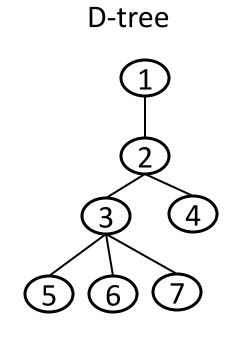
 This essentially computes the Iterated Dominance Frontier on the fly, creating minimal SSA

Using DF to Place $\Phi()$

```
foreach node n {
         foreach variable v defined in n {
              orig[n] U = \{v\}
              defsites [v] U = \{n\}
         }
         foreach variable v {
              W = defsites[v]
              while W not empty {
                   foreach y in DF[n]
                   if y \notin PHI[v] {
                       insert "v \leftarrow \Phi(v, v, ...)" at top of y
                       PHI[v] = PHI[v] \cup \{y\}
                       if v \notin \text{orig}[y]: W = W \cup \{y\}
                                    © 2019-2025 Titzer/Goldstein
15-411/611
```

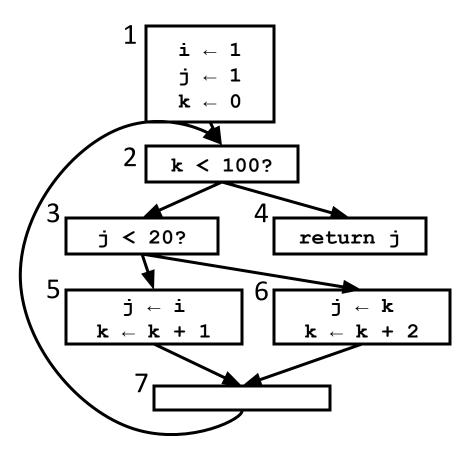
Computing SSA



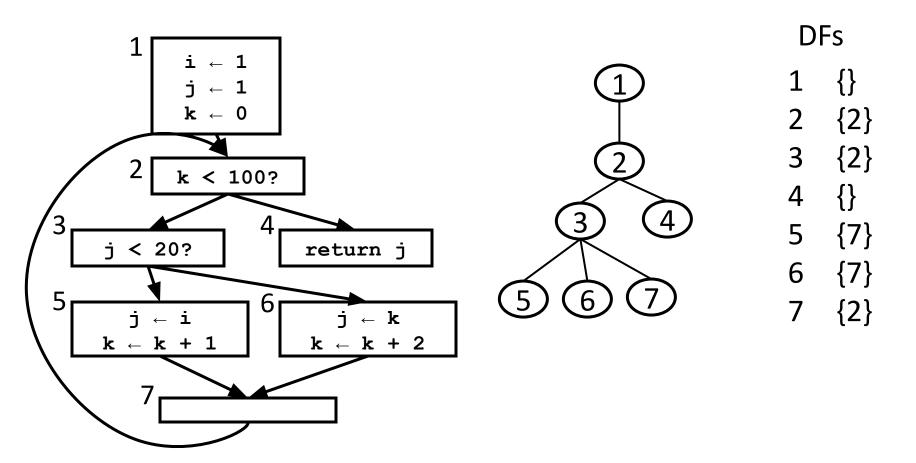


78

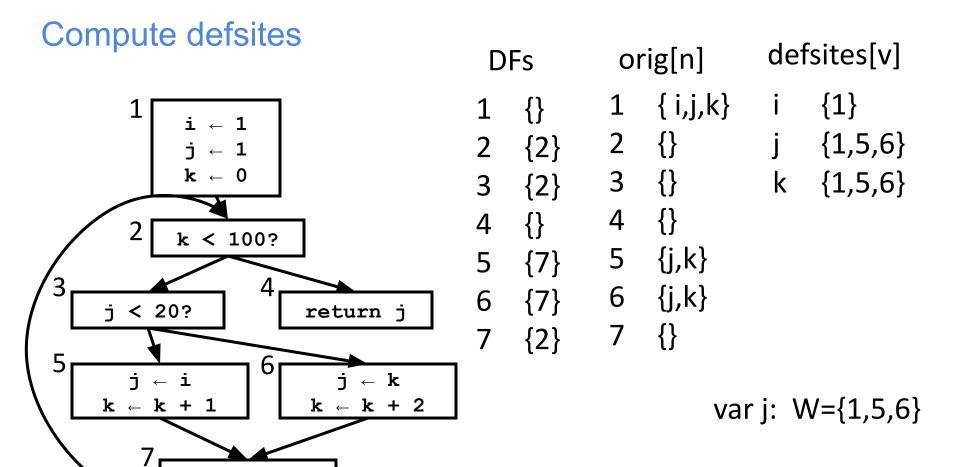
Compute D-tree

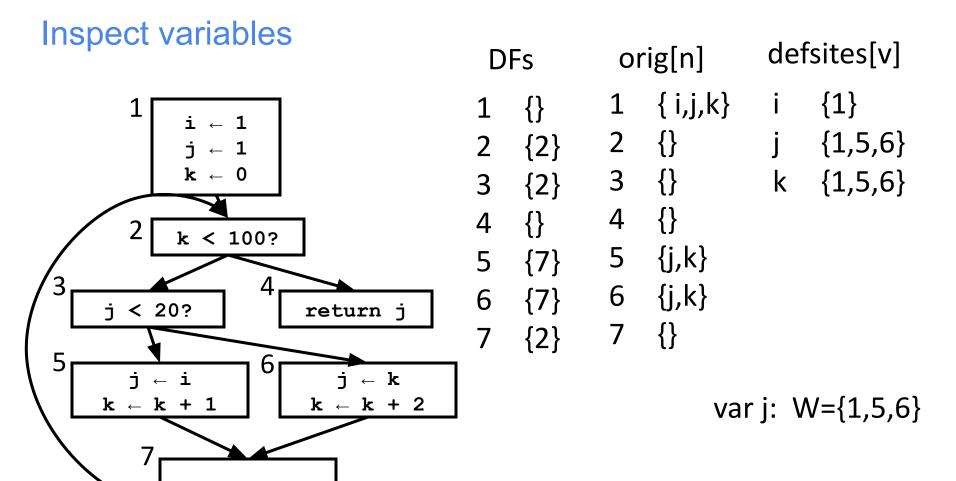


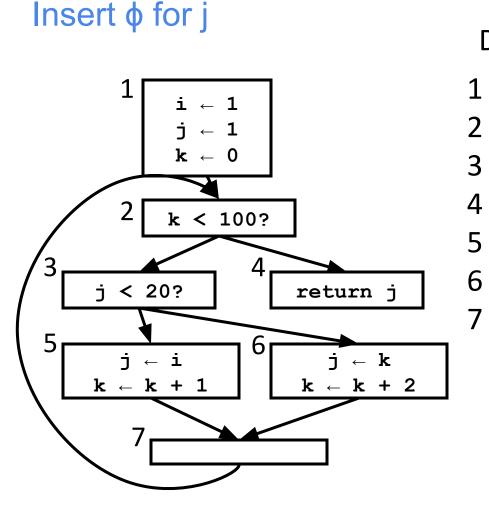
Compute Dominance Frontier (DFs)



80





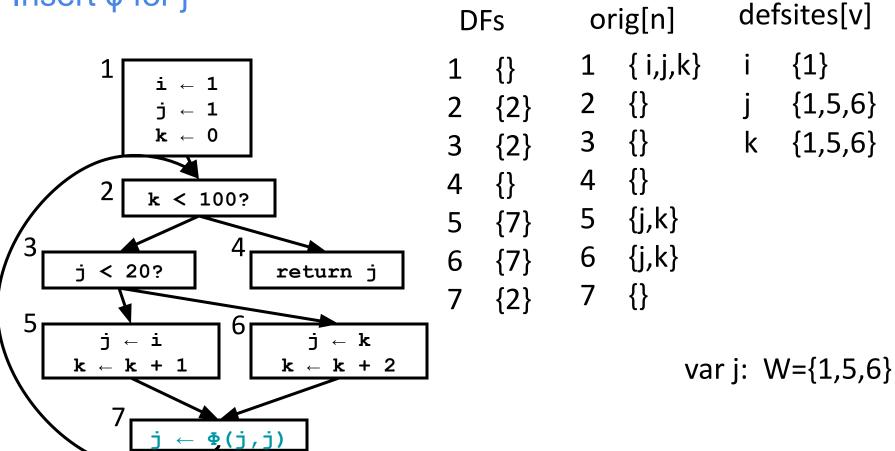


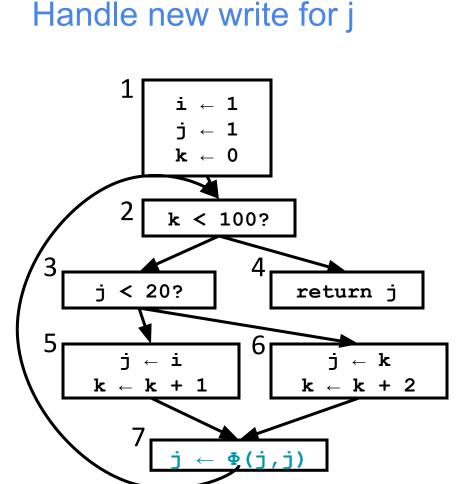
 $DF[1] \cup DF[5] \cup DF[6] = \{7\}$

var j: W={1,5,6}

defsites[v] orig[n] DFs {1} 1 Ĭ {} 2 {} {1,5,6} {2} {1,5,6} 3 {} k {2} {} 4 {} 5 {j,k} {7} {j,k} 6 {7} {} {2} 7

Insert ϕ for j





DF[1] U DF[5] U DF[6] U DF[7] ={7,2}

var j: W={1,5,6,7}

{1}

{1,5,6}

 $\{1,5,6\}$

1

2

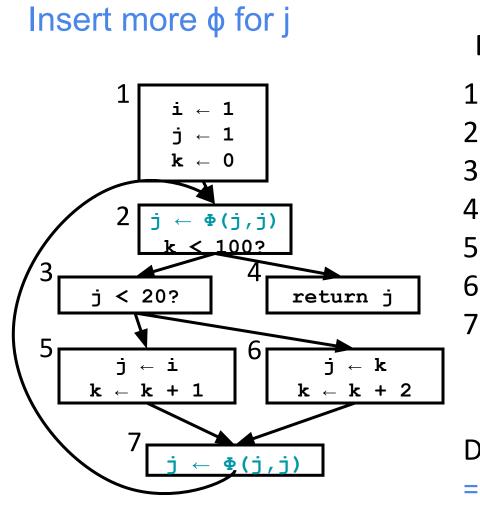
3

4

5

6

7



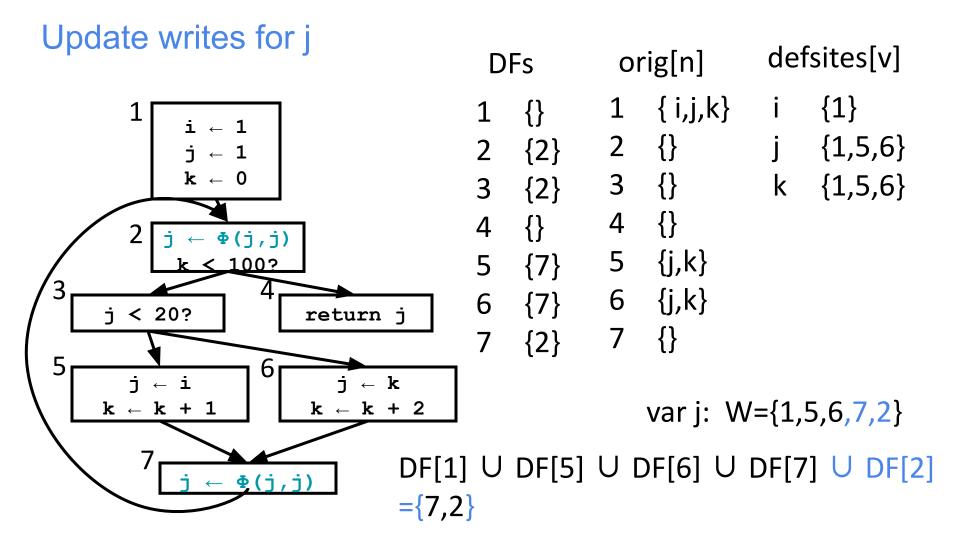
DF[1] U DF[5] U DF[6] U DF[7] ={7,2}

var j: W={1,5,6,7}

{1}

{1,5,6}

{1,5,6}



Renaming Variables

- Placing ϕ is not enough, need to update names
- Walk down the dominator tree, renaming variables incrementally
- Replace uses with most recent renamed def
 - O For straight-line code this is easy
 - O If there are branches and joins?

Renaming for Straight-Line Code

- Need to extend for ϕ -functions.
- Need to maintain property that definitions dominate uses.

for each variable a: Count[a] = 0Stack[a] = [0]renameBasicBlock(*B*): **for each** instruction *S* in block *B*: for each use of a variable x in S: i = top(Stack[x])replace the use of x with x_i for each variable *a* that *S* defines count[a] = Count[a] + 1i = Count[a]push *i* onto Stack[*a*] replace definition of a with a_{i}

Renaming in CFG

rename(n):

```
renameBasicBlock(n)
```

for each successor Y of n, **where** n is the jth predecessor of Y: **for each** phi-function f in Y, **where** the operand of f is 'a'

i = top(Stack[a])

replace jth operand with a_i

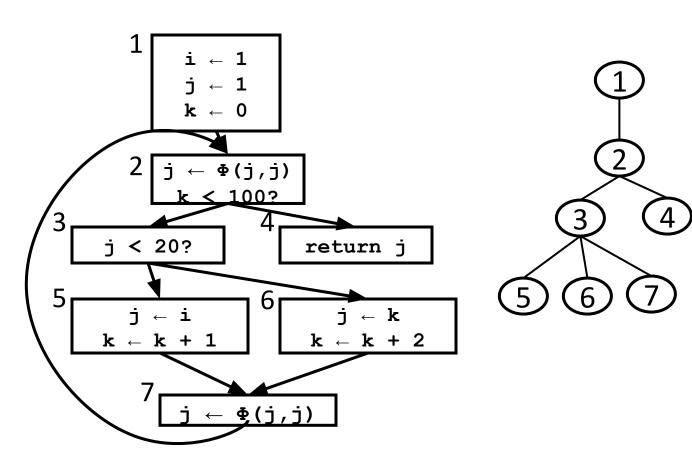
for each child of n in D-tree, X:

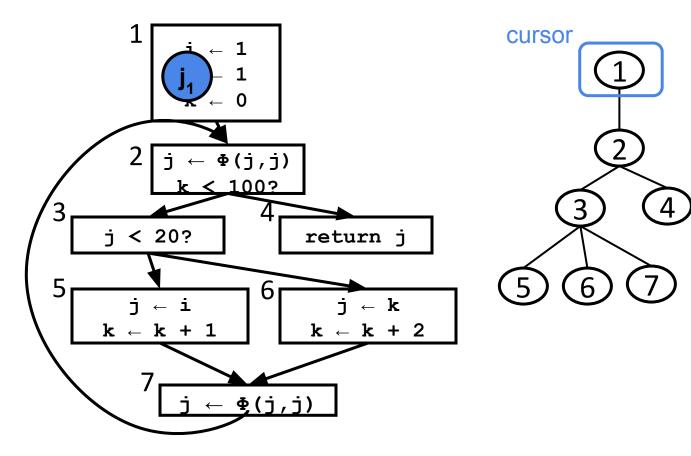
rename(X)

for each instruction $S \in n$:

for each variable v that S defines:

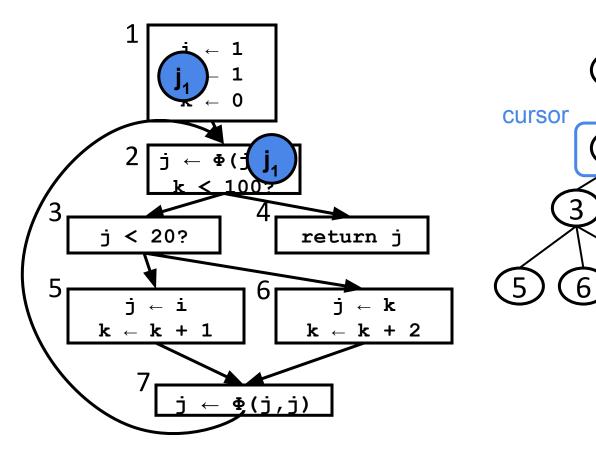
pop Stack[v]





defsites[v]

i {1} j {1,5,6,7,2} k {1,5,6}



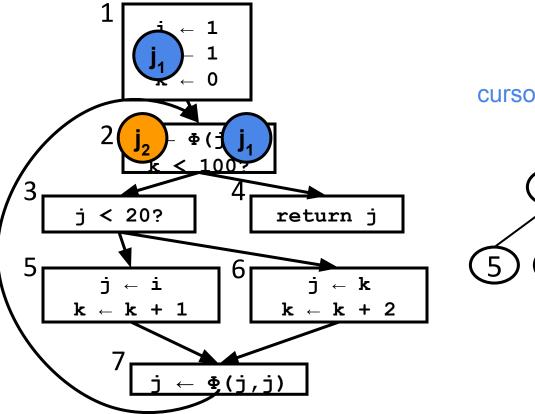
{1} {1,5,6,7,2}

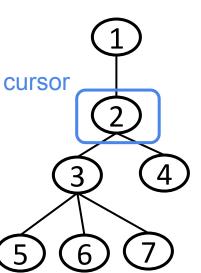
k {1,5,6}

4

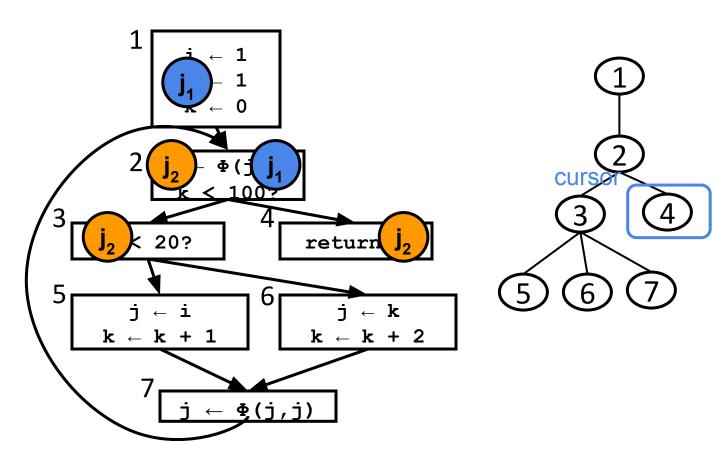
7

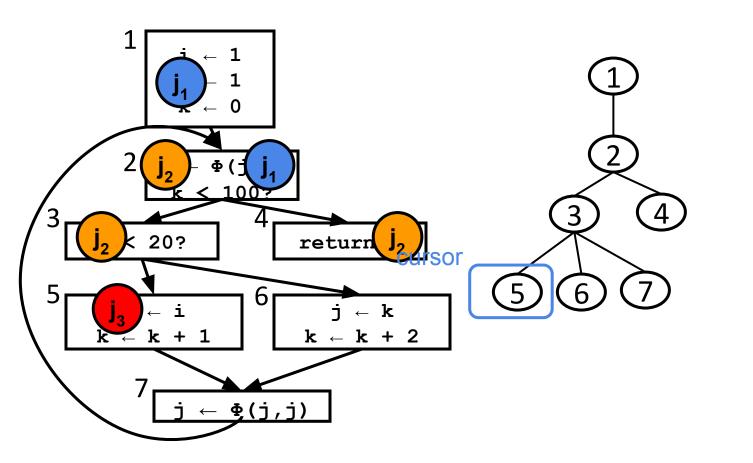
defsites[v]

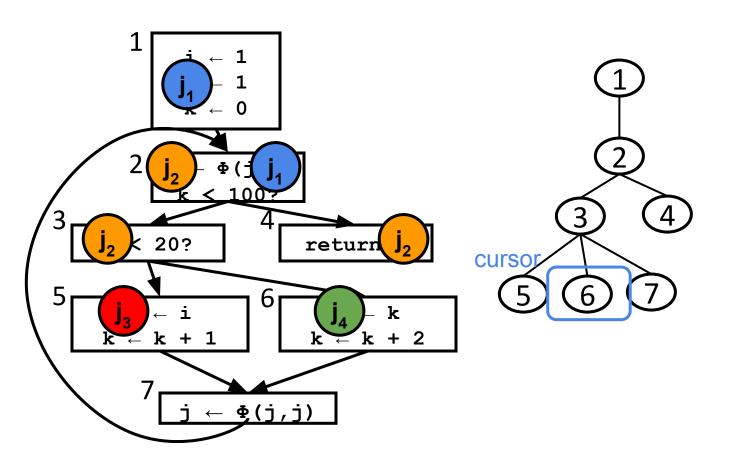


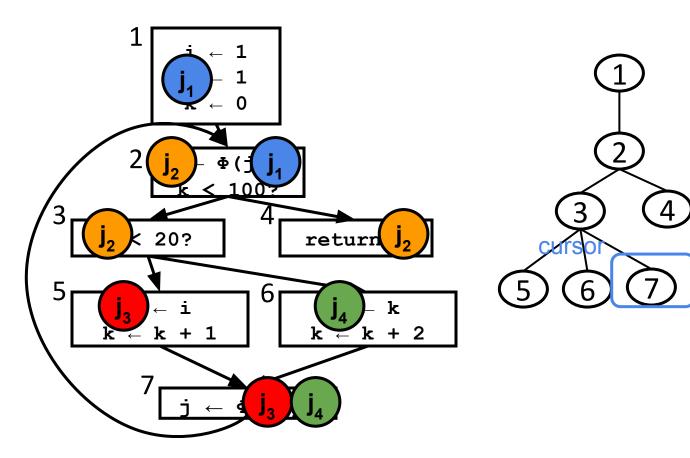


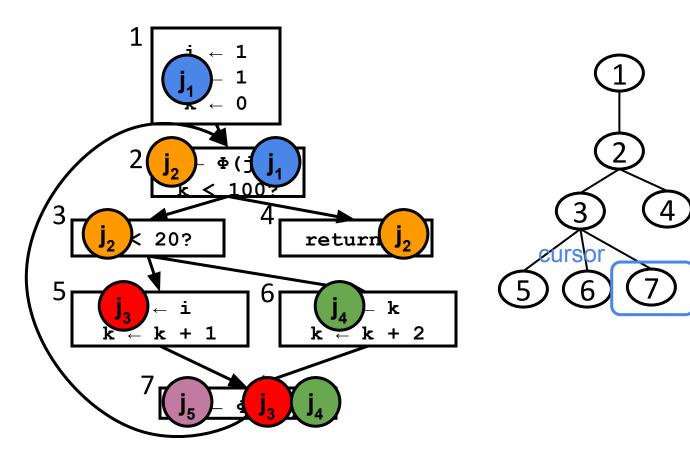


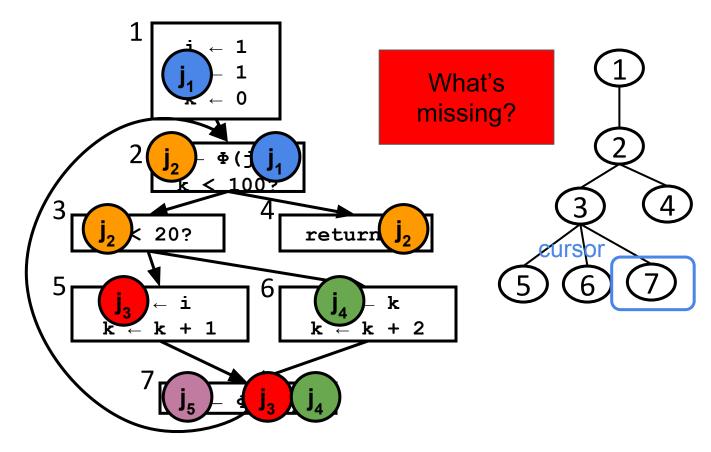


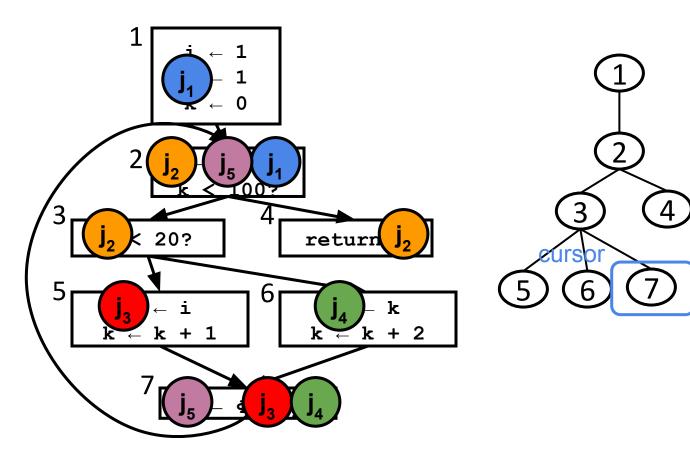












Flavors of SSA

Minimal SSA

 \circ at each join point with >1 outstanding definition insert a φ -function

- O Some may be dead
- Pruned SSA
 - \circ only add live φ -functions
 - O must compute LIVEOUT
 - Semi-pruned SSA
 - O Same as minimal SSA, but only on names live across more than 1 basic block

109

© 2019-2025 Titzer/Goldstein

Summary

- SSA is a useful and efficient IR.
- Definitions dominate uses
- Constructing SSA can be efficient
 (No need to do Lengaur-Tarjan Algorithm, instead see <u>A Simple</u>, <u>Fast Dominance Algorithm by Cooper, Harvey, and Kennedy</u>)



Next time

- More practice building SSA
- Constant propagation with SSA
- Deconstructing SSA
- SSA in practice