SSA (1 of 2)

15-411/15-611 Compiler Design

Ben L. Titzer and Seth Goldstein January 28, 2025

Today

- Trivial SSA
- \bullet ϕ -functions
- Dominance
- Placement & Renaming
- Bonus SSA in practice?

SSA

- Static single assignment is an **intermediate representation (IR)** where every variable has only *one* definition
	- Single **static** definition
	- (Could be in a loop which is executed dynamically many times.)
- ^φ‐functions used at CFG join points
- All definitions dominate uses
- Variable names don't matter; IR implementation is literally nodes in a graph that point to each other

Advantages of SSA

- Makes def-use-chains explicit
- Makes dataflow optimizations more *robust*
	- Easier to get right
	- Multiple optimizations can compose
	- Applies to more places
	- Improves register allocation
		- Makes building interference graphs easier
		- Easier register allocation algorithm
		- Decoupling of spill, color, and coalesce
- For most programs reduces space/time requirements
	- Smaller IR, faster optimizations

Implications of single definition

● Never have to worry about a variable being overwritten

- Before SSA, compilers had to worry about variable names and redefinitions
- A "node" in SSA IR represents a computation, rather than a storage location
- Improves pattern-matching optimizations
	- \circ Constant propagation (y = 13; x + y \rightarrow x + 13)
	- \circ Constant folding $(3 + 5 \cdot \sqrt{8})$
	- \circ Strength reduction $(x + 0 \rightarrow x)$
	- \circ Algebraic simplification $(x + y x \rightarrow y)$
- Improves reasoning across control flow
- Think of it as a "bulk solution" to many forward dataflow problems

Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.

Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.

Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.

Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all variables with multiple outstanding defs.

Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all variables with multiple outstanding defs.

- Introduce φ-functions to handle *joins* in CFG
- Loops have joins too!

x ← … y while(x < 100){ $x \leftarrow x + 1$ $y \leftarrow y + 1$ **}**

- SSA requires single definition for each use
- Introduce φ-functions to handle joins at loop headers too

```
x ← …
   y ← …
   if (x >= 100) goto end
loop:
   x \leftarrow x + 1y \leftarrow y + 1if (x < 100) goto loop
end:
```
- SSA requires single definition for each use
- Introduce φ-functions to handle joins at loop headers too

- SSA requires single definition for each use
- \blacksquare Introduce ϕ -functions to handle joins at loop headers too

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611 © 2019-2025 Titzer/Goldstein

- SSA requires single definition for each use
- \blacksquare Introduce ϕ -functions to handle joins at loop headers too

```
x \leftarrow xy \leftarrowif (x > = 100) goto end
loop:
   x \leftarrow x + 1y \leftarrow y + 1if (x < 100) goto loop
end:
```


- SSA requires single definition for each use
- \blacksquare Introduce ϕ -functions to handle joins at loop headers too

- \bullet \bullet is a fictional operator; it merges multiple definitions into a single definition at a join in the control flow graph.
- At a BB with *p* predecessors, there are *p* inputs to the Φ. $X_{new} \leftarrow \Phi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, ..., \mathbf{x}_p)$
- \bullet What do the inputs to a Φ mean?
	- The inputs to φ‐functions *positionally correspond* to the incoming control-flow edges.
	- They relate control flow merging and data flow merging.

Join points in the control flow graph may require insertion of Φ functions.

Join points in the control flow graph may require insertion of Φ functions, *if there are different versions of the variable arriving.*

Each incoming control edge supplies a corresponding data value for the Φ from the predecessor.

Each incoming control edge supplies a corresponding data value for the Φ from the predecessor.

Another Loop Example

Another Loop Example

What is a Φ (for a loop) anyway?

Φs at loop headers relate the dataflow on a loop backedge with the control flow.

Allows finding induction variables really easily.

Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all variables with multiple outstanding defs.

If there is a def of **a** in block 5, which nodes need a Φ ()?

Require a Φ -function for variable <u>b</u> at node \underline{z} of the flow graph:

- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.

Require a Φ -function for variable <u>b</u> at node \underline{z} of the flow graph:

- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one $\frac{1}{\sqrt{2}}$ prior to the end, though it has appear in one π **ret b** π

Require a Φ -function for variable <u>b</u> at node \underline{z} of the flow graph:

- •There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one r_{yz} prior to the end, though it has appear in one and z : $\text{ret } b$

Require a Φ -function for variable <u>b</u> at node \underline{z} of the flow graph:

- •There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one r_{yz} prior to the end, though it has appear in one and z : $\text{ret } b$

Require a Φ -function for variable <u>b</u> at node \underline{z} of the flow graph:

- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one r_{yz} prior to the end, though it hid, appear in one **b z**: **ret b z**: **ret b**

Require a Φ -function for variable <u>b</u> at node \underline{z} of the flow graph:

- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one $\frac{1}{y^2}$ prior to the end, though it may appear in one $\frac{1}{x^2}$ **2:** $\frac{\text{ret b}}{\text{er } x}$

Iterative Insertion

- Implicit def of every variable in start node
- Inserting Φ-function creates new definition
- While there \exists x,y,z that
	- satisfy path-convergence criteria
	- O and z does not contain $Φ$ -function for b
- do

O insert $b \leftarrow \Phi(b, b, b, ..., b_n)$ at node z, z having n predecessors.

Dominance Property of SSA

- In SSA **definitions dominate uses***.
	- O If x_i is used in $x \leftarrow \Phi(\ldots, x_i, \ldots)$, then BB(x_i) dominates ith predecessor of BB(Φ)
	- \circ If x is used in $y \leftarrow ... x ...$ then $BB(x)$ dominates $BB(y)$
- We can use this for an efficient algorithm to convert to SSA
Dominance Property of SSA

● In SSA **definitions dominate uses***.

O If x_i is used in $x \leftarrow \Phi(\ldots, x_i, \ldots)$, then BB(x_i) dominates ith predecessor of BB(Φ)

 \circ If x is used in $y \leftarrow ... x$... then $BB(x)$ dominates $BB(y)$

● We can use this for an efficient algorithm to convert to SSA ***well** *akshully*, this only true for strict SSA**, where all variables are defined before they are used.

Dominance Property of SSA

● In SSA **definitions dominate uses***.

O If x_i is used in $x \leftarrow \Phi(\ldots, x_i, \ldots)$, then BB(x_i) dominates ith predecessor of BB(Φ)

 \circ If x is used in $y \leftarrow ... x$... then $BB(x)$ dominates $BB(y)$

● We can use this for an efficient algorithm to convert to SSA ***well** *akshully*, this only true for strict SSA**, where all variables are defined before they are used. ****well** *double akshully*, we can insert assignments to convert any program to strict SSA

15-411/611 © 2019-2025 Titzer/Goldstein

Side trip: Dominators

○block *^a dominates* block *b* if every possible execution path from *entry* to *b* includes *a*

○block *^a dominates* block *b* if every possible execution path from *entry* to *b* includes *a*

○block *^a dominates* block *b* if every possible execution path from *entry* to *b* includes *a*

■ entry dominates everything

- **■ ⁰** dominates everything but entry
- **■ ¹** dominates **2** and **¹**

● a dom b

○block *^a dominates* block *b* if every possible execution path from *entry* to *b* includes *a*

Dominators are useful in:

- *● Dataflow analysis*
- *● Constructing SSA*
- *● Identifying "natural" loops*
- *● Code motion*

● …

Definitions

○If *a* and *b* are different blocks and *a dom b*, we say that *^a strictly dominates b*

○If *a sdom b*, and there is no *c* such that *a sdom c* and *^c sdom b*, we say that *a* is the *immediate dominator* of *b*

Properties of Dom

- Dominance is a partial order on the blocks of the flow graph, i.e.,
	- \circ 1. Reflexivity: **a dom a** for all **a**
	- 2. Anti-symmetry: a dom b and b dom a implies $a = b$
	- 3. Transitivity: **a dom b** and **b dom c** implies **a dom c**
- NOTE: there may be blocks a and b such that neither a dom b or b dom a holds.
- The dominators of each node **n** are linearly ordered by the dom relation. The dominators of **n** appear in this linear order on any path from the initial node to n.

Computing dominators

We want to compute $D[n]$, the set of blocks that dominate *n*

Initialize each *D*[*n*] (except *D*[entry]) to be the set of all blocks, and then iterate until no *D*[*n*] changes: $D[entry] = {entry}$

$$
D[n] = \{n\} \cup \left(\bigcap_{p \in \text{pred}(n)} D[p]\right), \quad \text{for } n \neq \text{entry}
$$

 σ

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611 © 2019-2025 Titzer/Goldstein

 α

50

15-411/611 © 2019-2025 Titzer/Goldstein

Computing dominators

- \bullet Iterative algorithm is $O(n^2e)$
	- assuming bit vector set
	- choosing a good iteration order matters
- More efficient algorithm due to Lengauer and Tarjan

α(*e*,*n*) is *inverse Ackermann*

- *○ ^O*(*e·α*(*e*,*n*))
- much more complicated
- Books provide simple algorithms that are fast in practice(faster than Tarjan algorithm for realistic CFGs)
- O For a clever algorithm see: "[A Simple, Fast Dominance Algorithm" by Cooper, Harvey, and Kennedy](https://www.cs.rice.edu/~keith/EMBED/dom.pdf)

Immediate dominators

- Let *sD[n]* be the set of blocks that strictly dominate *n*, then **sD[n] = D[n] - {n}**
- To compute *iD*[*n*], the set of blocks (size <= 1) that immediately dominate *n*
- Set **iD[n] = sD[n]**
- \bullet Repeat until no iD[n] changes:

```
iD[n] = iD[n] - \cup (sD[d])d ∈ iD[n]
```


Update rule: $iD[n] = iD[n] - \bigcup (sD[d])$ $d \in iD[n]$

15-411/611 © 2019-2025 Titzer/Goldstein

Dominator Tree

In the *dominator tree* the initial node is the entry block, and the parent of each other node is its immediate dominator.

Dominator Tree

15-411/611 © 2019-2025 Titzer/Goldstein

Post-Dominance

- Block *a* post-dominates *b* (a pdom b) if every path from *a* to the exit block includes *b*
- pdom on CFG is the same as dom on the reverse (all edges reversed) CFG
- **● ⁰** post-dominates ? **1** post-dominates ? **4** post-dominates ?

Dominance Frontier

- *z* is in the dominance frontier of *x* If *z* is the first node we encounter on the path from *x* which *x* does not *strictly* dominate.
- For some path from node *x* to *z*, $X \rightarrow \ldots \rightarrow V \rightarrow Z$ where *x* dom *y* but not *x* sdom *z*.
	- Intuitively, the dominance frontier consists of nodes "just outside the dominator tree"

Dominance Frontier

- *z* is in the dominance frontier of *x* If *z* is the first node we encounter on the path from *x* which *x* does not *strictly* dominate.
- For some path from node *x* to *z*, $X \rightarrow \ldots \rightarrow V \rightarrow Z$ where *x* dom *y* but not *x* sdom *z*.
- Dominance frontier of 1? {3}
- Dominance frontier of **2**? {3}
- Dominance frontier of 4? {3,4}

 ω

 ϵ_1

Calculating the Dominance Frontier

● Let *dominates*[n] be the set of all blocks which block n dominates

○ subtree of dominator tree with n as the root

● The dominance frontier of n, *DF[n]* is

$DF[n] = \bigcup succ(s)$ - dominates[n] - {n}

 $s \in$ dominates[n]

Recap

● a dom b

○ every possible execution path from *entry* to *b* includes *a*

● a sdom b

○ a dom b and *a* != *b*

● a idom b

○ a is "closest" dominator of *b*

● a pdom b

○ every path from *a* to the exit block includes *b*

- Dominator trees
- Dominance frontier

Back to inserting Φs

Require a Φ -function for variable \underline{b} at node \underline{z} of the flow graph:

- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.

In other words, $z \in DF(x)$

Using Dominance for SSA Construction

Dominance-Frontier Criterion: Whenever node x contains a definition of some variable a, then any node $z \in DF(x)$, z needs a Φ-function for a.

Iterated dominance frontier: since a Φ-function itself is a definition, we must iterate the dominance-frontier criterion until there are no nodes that need Φ-functions.

Dominance

If there is a def of a in block 5, which nodes need a Φ ()?

CFG D-Tree

Dominance Frontier

Dominance Frontier & path-convergence

Dominance Frontier Criterion

Dominance Frontier Criterion

Dominance Frontier Criterion

Dominance Frontier Criterion

Dominance Frontier Criterion

Computing Dominance Frontier

● We just covered a O(n³) iterative algorithm – **embarrassing!**

- There's also a near linear time algorithm due to Tarjan and Lengauer (Chap 19.2)
	- SSA construction therefore near linear
	- SSA form makes many optimizations linear (no need for iterative data flow)

Using DF to Place $\mathsf{P}()$

- Gather all the defsites of every variable
- Then, for every variable
	- foreach defsite
		- foreach node in DF(defsite)
			- \bullet if we haven't put $\Phi()$ in node put one in
			- If this node didn't define the variable before: add this node to the defsites

● This essentially computes the Iterated Dominance Frontier on the fly, creating minimal SSA

Using DF to Place Φ()

```
15-411/611 © 2019-2025 Titzer/Goldstein
foreach node n {
    foreach variable v defined in n {
        orig[n] ∪= {v}
        defsites[v] ∪= {n}
    }
    foreach variable v {
        W = defsites[v]
        while W not empty {
            foreach y in DF[n]
            if y ∉ PHI[v] {
                 insert "v \leftarrow \Phi(v,v,...)' at top of y
                 PHI[v] = PHI[v] \cup \{y\}if v \notin \text{orig}[y]: W = W \cup \{y\}}
        }
    }
}
```
Computing SSA

78

Compute D-tree

Compute Dominance Frontier (DFs)

DFs $1 \quad {\}$ 2 {2} 3 {2} 4 {} 5 {7} 6 {7} 7 {2} 1 $\{ i,j,k \}$ 2 {} 3 {} 4 {} 5 {j,k} 6 {j,k} 7 {} orig[n] defsites[v] $i \{1\}$ ${1,5,6}$ $k \{1, 5, 6\}$

> var j: W={1,5,6} DF[1] ∪ DF[5] ∪ DF[6] ={7}

Handle new write for j

DF[1] ∪ DF[5] ∪ DF[6] ∪ DF[7] $=\{7,2\}$

var j: W={1,5,6,7}

DFs 2 {} 3 {} 4 {} 5 {j,k} 6 {j,k} 7 {}

 $\mathsf{k}\}$ $defsites[v]$ $i \{1\}$ ${1,5,6}$ k {1,5,6}

Renaming Variables

- \bullet Placing ϕ is not enough, need to update names
- Walk down the dominator tree, renaming variables incrementally
- Replace uses with most recent renamed def
	- For straight-line code this is easy
	- If there are branches and joins?

Renaming for Straight-Line Code

- Need to extend for ϕ -functions.
- Need to maintain property that definitions dominate uses.

for each variable a: $Count[a] = 0$ $Stack[a] = [0]$ renameBasicBlock(*B*): **for each** instruction *S* in block *B*: **for each** use of a variable *x* in *S*: $i = \text{top}(\text{Stack}[x])$ replace the use of *x* with x_i **for each** variable *a* that *S* defines $\text{count}[a] = \text{Count}[a] + 1$ $i =$ Count[a] push *i* onto Stack[*a*] replace definition of *a* with *ai*

89

Renaming in CFG

rename(n):

```
renameBasicBlock(n)
```
for each successor Y of n, where n is the jth predecessor of Y:

for each phi-function f in Y, **where** the operand of f is 'a'

 $i = top(Stack[a])$

replace ith operand with a.

for each child of n in D-tree, X:

rename(X)

for each instruction $S \subseteq n$:

for each variable v that S defines:

pop Stack[v]

defsites[v]

i {1} ${1,5,6,7,2}$ k {1,5,6}

$\overline{1}$ 2 $4¹$

$\overline{1}$ 2 $4¹$

Flavors of SSA

Minimal SSA

 \overline{O} at each join point with ≥ 1 outstanding definition insert a φ-function

- Some may be dead
- Pruned SSA
	- only add live φ-functions
	- must compute LIVEOUT
	- Semi-pruned SSA
		- Same as minimal SSA, but only on names live across more than 1 basic block

Summary

- SSA is a useful and efficient IR.
- Definitions dominate uses
- Constructing SSA can be efficient (No need to do Lengaur-Tarjan Algorithm, instead see [A Simple,](https://www.cs.rice.edu/~keith/EMBED/dom.pdf) [Fast Dominance Algorithm by Cooper, Harvey, and Kennedy](https://www.cs.rice.edu/~keith/EMBED/dom.pdf))

Next time

- More practice building SSA
- Constant propagation with SSA
- Deconstructing SSA
- SSA in practice