
15-411/15-611 Compiler Design

Ben L. Titzer and Seth Goldstein

SSA (1 of 2)

January 28, 2025

15-411/611 © 2019-2025 Titzer/Goldstein

Today

● Trivial SSA

● φ-functions

● Dominance

● Placement & Renaming

● Bonus SSA in practice?

2

15-411/611 © 2019-2025 Titzer/Goldstein

SSA

● Static single assignment is an intermediate representation (IR)
where every variable has only one definition

○ Single static definition
○ (Could be in a loop which is executed dynamically many times.)

● φ‐functions used at CFG join points

● All definitions dominate uses

● Variable names don’t matter; IR implementation is literally nodes
in a graph that point to each other

3

15-411/611 © 2019-2025 Titzer/Goldstein

Advantages of SSA

● Makes def-use-chains explicit

● Makes dataflow optimizations more robust
○ Easier to get right

○ Multiple optimizations can compose

○ Applies to more places

● Improves register allocation
○ Makes building interference graphs easier

○ Easier register allocation algorithm

○ Decoupling of spill, color, and coalesce

● For most programs reduces space/time requirements
○ Smaller IR, faster optimizations

4

15-411/611 © 2019-2025 Titzer/Goldstein

Implications of single definition

5

● Never have to worry about a variable being overwritten
○ Before SSA, compilers had to worry about variable names and redefinitions
○ A “node” in SSA IR represents a computation, rather than a storage location

● Improves pattern-matching optimizations
○ Constant propagation (y = 13; x + y ⇝ x + 13)
○ Constant folding (3 + 5 ⇝ 8)
○ Strength reduction (x + 0 ⇝ x)
○ Algebraic simplification (x + y - x ⇝ y)

● Improves reasoning across control flow

● Think of it as a “bulk solution” to many forward dataflow problems

15-411/611 © 2019-2025 Titzer/Goldstein

Trivial SSA

● Each assignment generates a fresh variable.

● At each join point insert Φ functions for all live variables.

y ← x y ← 2

z ← y + x

x ← 1

y1 ← x1 y2 ← 2

z1 ← y3 + x2

x1 ← 1

6

15-411/611 © 2019-2025 Titzer/Goldstein

Trivial SSA

● Each assignment generates a fresh variable.

● At each join point insert Φ functions for all live variables.

y ← x y ← 2

z ← y + x

x ← 1

y1 ← x1 y2 ← 2

x2 ← Φ(x1,x1)
y3 ← Φ(y1,y2)
z1 ← y3 + x2

x1 ← 1

7

15-411/611 © 2019-2025 Titzer/Goldstein

Trivial SSA

● Each assignment generates a fresh variable.

● At each join point insert Φ functions for all live variables.

y ← x y ← 2

z ← y + x

x ← 1

y1 ← x1 y2 ← 2

x2 ← Φ(x1,x1)
y3 ← Φ(y1,y2)
z1 ← y3 + x2

x1 ← 1

Way too many Φ
functions inserted!

8

15-411/611 © 2019-2025 Titzer/Goldstein

Minimal SSA

● Each assignment generates a fresh variable.

● At each join point insert Φ functions for all variables with multiple
outstanding defs.

y ← x y ← 2

z ← y + x

x ← 1

y1 ← x1 y2 ← 2

x1 ← 1

9

x2 ← Φ(x1,x1)
y3 ← Φ(y1,y2)
z1 ← y3 + x2

x not redefined

15-411/611 © 2019-2025 Titzer/Goldstein

Minimal SSA

● Each assignment generates a fresh variable.

● At each join point insert Φ functions for all variables with multiple
outstanding defs.

y ← x y ← 2

z ← y + x

x ← 1

y1 ← x1 y2 ← 2

y3 ← Φ(y1,y2)
z1 ← y3 + x1

x1 ← 1

10

15-411/611 © 2019-2025 Titzer/Goldstein

• Introduce φ-functions to handle joins in CFG

• Loops have joins too!

Handling cyclic control flow

11

x ← …
y ← …
while(x < 100){

x ← x + 1
y ← y + 1

}

x ← …
y ← …
if (x >= 100) goto end

loop:
x ← x + 1
y ← y + 1
if (x < 100) goto loop

end:

15-411/611 © 2019-2025 Titzer/Goldstein

Handling cyclic control flow

● SSA requires single
definition for each use

● Introduce φ‐functions
to handle joins at loop
headers too

12

x ← …
y ← …
if (x >= 100) goto end

loop:
x ← x + 1
y ← y + 1
if (x < 100) goto loop

end:

15-411/611 © 2019-2025 Titzer/Goldstein

Handling cyclic control flow

13

loop:
x ← x + 1
y ← y + 1
if (x < 100) goto loop

x ← …
y ← …
if (x >= 100) goto end

end:

● SSA requires single
definition for each use

● Introduce φ‐functions
to handle joins at loop
headers too

15-411/611 © 2019-2025 Titzer/Goldstein

Handling cyclic control flow

14

loop:
x2 ← Φ(x1,x3)
y2 ← Φ(y1,y3)

x3 ← x2 + 1

y3 ← y2 + 1

if (x3 < 100) goto loop

x1 ← …
y1 ← …
if (x1 >= 100) goto end

end:

● SSA requires single
definition for each use

● Introduce φ‐functions
to handle joins at loop
headers too

15-411/611 © 2019-2025 Titzer/Goldstein

Handling cyclic control flow

15

loop:
x2 ← Φ(x1,x3)
y2 ← Φ(y1,y3)

x3 ← x2 + 1

y3 ← y2 + 1

if (x3 < 100) goto loop

x1 ← …
y1 ← …
if (x1 >= 100) goto end

end:

● SSA requires single
definition for each use

● Introduce φ‐functions
to handle joins at loop
headers too

What’s missing?

15-411/611 © 2019-2025 Titzer/Goldstein

Handling cyclic control flow

16

loop:
x2 ← Φ(x1,x3)
y2 ← Φ(y1,y3)

x3 ← x2 + 1

y3 ← y2 + 1

if (x3 < 100) goto loop

x1 ← …
y1 ← …
if (x1 >= 100) goto end

end:

● SSA requires single
definition for each use

● Introduce φ‐functions
to handle joins at loop
headers too

JOIN!!!

15-411/611 © 2019-2025 Titzer/Goldstein

Handling cyclic control flow

17

loop:
x2 ← Φ(x1,x3)
y2 ← Φ(y1,y3)

x3 ← x2 + 1

y3 ← y2 + 1

if (x3 < 100) goto loop

x1 ← …
y1 ← …
if (x1 >= 100) goto end

end:
x4 ← Φ(x1,x3)
y4 ← Φ(y1,y3)

● SSA requires single
definition for each use

● Introduce φ‐functions
to handle joins at loop
headers too

15-411/611 © 2019-2025 Titzer/Goldstein

What is a Φ anyway?

● Φ is a fictional operator; it merges multiple definitions into a
single definition at a join in the control flow graph.

● At a BB with p predecessors, there are p inputs to the Φ.
xnew ← Φ(x1, x2, x3, … , xp)

● What do the inputs to a Φ mean?

○ The inputs to φ‐functions positionally correspond to the incoming
control-flow edges.

○ They relate control flow merging and data flow merging.

18

15-411/611 © 2019-2025 Titzer/Goldstein

What is a Φ anyway?

19

Join points in the
control flow graph
may require insertion
of Φ functions.

join

15-411/611 © 2019-2025 Titzer/Goldstein

What is a Φ anyway?

20

y1 ← … y3 ← …y2 ← …

join

Join points in the
control flow graph
may require insertion
of Φ functions, if
there are different
versions of the
variable arriving.

15-411/611 © 2019-2025 Titzer/Goldstein

What is a Φ anyway?

21

y1 ← … y3 ← …

y4 ← Φ(y1,y2,y3)

y2 ← …

Each incoming control
edge supplies a
corresponding data
value for the Φ from
the predecessor.

join

15-411/611 © 2019-2025 Titzer/Goldstein

What is a Φ anyway?

22

y1 ← … y3 ← …

y4 ← Φ(y1,y2,y3)

y2 ← …

Each incoming control
edge supplies a
corresponding data
value for the Φ from
the predecessor.

join

15-411/611 © 2019-2025 Titzer/Goldstein

What is a Φ anyway?

23

y1 ← … y3 ← …

y4 ← Φ(y1,y2,y3)

y2 ← …

join

Uses of the variable
after the join get the
new value, not the old
value(s)!

y4

15-411/611 © 2019-2025 Titzer/Goldstein

Another Loop Example

24

a ← 0

b ← a + 1
c ← c + b
a ← b * 2
a < N

return c

15-411/611 © 2019-2025 Titzer/Goldstein

Another Loop Example

a1 ← 0

a3 ← Φ(a1,a2)
c3 ← Φ(c1,c2)
b2 ← a3 + 1
c2 ← c3 + b2
a2 ← b2 * 2
a2 < N

return c2

Notice c
1..3

are
recursively

defined!

25

a ← 0

b ← a + 1
c ← c + b
a ← b * 2
a < N

return c

15-411/611 © 2019-2025 Titzer/Goldstein

What is a Φ (for a loop) anyway?

26

y1 ← …

y4 ← y3

y3 ← Φ(y1,y2,y4)

y2 ← …

join

Φs at loop
headers relate
the dataflow on a
loop backedge
with the control
flow.

Allows finding
induction
variables really
easily.

15-411/611 © 2019-2025 Titzer/Goldstein

Minimal SSA

● Each assignment generates a fresh variable.

● At each join point insert Φ functions for all variables with multiple
outstanding defs.

y ← x y ← 2

z ← y + x

x ← 1

y1 ← x1 y2← 2

y3 ← Φ(y1,y2)
z1 ← y3 + x1

x1 ← 1

27

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert Φ?

11

1

5

6 7

8

13

2

3

4

9

10

1
2

CFG

If there is a def of a in block

5, which nodes need a Φ()?

28

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert Φ?

29

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path P
xz

 of edges from x to z

•There is a nonempty path P
yz

 of edges from y to z

•Paths P
xz

 and P
yz

 do not have any node in
common other than z, and…

•The node z does not appear within both P
xz

 and
P

yz
 prior to the end, though it may appear in one

or the other.

b ← exp1
if cond goto L

ret b

b ← exp2

X:

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert Φ?

30

b ← exp1
if cond goto L

b ← exp2

X:

Y:

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path P
xz

 of edges from x to z

•There is a nonempty path P
yz

 of edges from y to z

•Paths P
xz

 and P
yz

 do not have any node in
common other than z, and…

•The node z does not appear within both P
xz

 and
P

yz
 prior to the end, though it may appear in one

or the other.
ret b

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert Φ?

31

b ← exp1
if cond goto L

b ← exp2

X:

Y:

Z:

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path P
xz

 of edges from x to z

•There is a nonempty path P
yz

 of edges from y to z

•Paths P
xz

 and P
yz

 do not have any node in
common other than z, and…

•The node z does not appear within both P
xz

 and
P

yz
 prior to the end, though it may appear in one

or the other.
ret b

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert Φ?

32

b ← exp1
if cond goto L

b ← exp2

X:

Y:

Z:

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path P
xz

 of edges from x to z

•There is a nonempty path P
yz

 of edges from y to z

•Paths P
xz

 and P
yz

 do not have any node in
common other than z, and…

•The node z does not appear within both P
xz

 and
P

yz
 prior to the end, though it may appear in one

or the other.
ret b

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert Φ?

33

b ← exp1
if cond goto L

b ← exp2

X:

Y:

Z:

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path P
xz

 of edges from x to z

•There is a nonempty path P
yz

 of edges from y to z

•Paths P
xz

 and P
yz

 do not have any node in
common other than z, and…

•The node z does not appear within both P
xz

 and
P

yz
 prior to the end, though it may appear in one

or the other.
ret b

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert Φ?

34

b ← exp1
if cond goto L

b ← exp2

X:

Y:

Z:

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path P
xz

 of edges from x to z

•There is a nonempty path P
yz

 of edges from y to z

•Paths P
xz

 and P
yz

 do not have any node in
common other than z, and…

•The node z does not appear within both P
xz

 and
P

yz
 prior to the end, though it may appear in one

or the other.
ret b

15-411/611 © 2019-2025 Titzer/Goldstein

Iterative Insertion

● Implicit def of every variable in start node

● Inserting Φ-function creates new definition

● While there ∃ x,y,z that

○ satisfy path-convergence criteria

○ and z does not contain Φ-function for b

● do

○ insert b ← Φ(b,b,b,…,bn) at node z, z having n predecessors.

35

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Property of SSA

● In SSA definitions dominate uses*.

○ If xi is used in x ← Φ(…, xi, …), then

BB(xi) dominates ith predecessor of BB(Φ)

○ If x is used in y ← … x …,

then BB(x) dominates BB(y)

● We can use this for an efficient algorithm to convert to SSA

36

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Property of SSA

● In SSA definitions dominate uses*.

○ If xi is used in x ← Φ(…, xi, …), then

BB(xi) dominates ith predecessor of BB(Φ)

○ If x is used in y ← … x …,

then BB(x) dominates BB(y)

● We can use this for an efficient algorithm to convert to SSA

37

*well akshully, this only true for strict SSA**,
where all variables are defined before they are used.

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Property of SSA

● In SSA definitions dominate uses*.

○ If xi is used in x ← Φ(…, xi, …), then

BB(xi) dominates ith predecessor of BB(Φ)

○ If x is used in y ← … x …,

then BB(x) dominates BB(y)

● We can use this for an efficient algorithm to convert to SSA

38

*well akshully, this only true for strict SSA**,
where all variables are defined before they are used.
**well double akshully, we can insert assignments to

convert any program to strict SSA

Side trip: Dominators

15-411/611 © 2019-21 Goldstein

39

15-411/611 © 2019-2025 Titzer/Goldstein

Dominators

● a dom b

○ block a dominates block b if every possible execution path from

entry to b includes a
0

4

52

3

1

entry

exit
40

15-411/611 © 2019-2025 Titzer/Goldstein

Dominators

● a dom b

○ block a dominates block b if every possible execution path from

entry to b includes a
0

4

52

3

1

entry

exit
41

15-411/611 © 2019-2025 Titzer/Goldstein

Dominators

● a dom b

○ block a dominates block b if every possible execution path from

entry to b includes a

■ entry dominates everything

■ 0 dominates everything but entry

■ 1 dominates 2 and 1

0

4

52

3

1

entry

exit
42

15-411/611 © 2019-2025 Titzer/Goldstein

Dominators

● a dom b

○ block a dominates block b if every possible execution path from

entry to b includes a
0

4

52

3

1

entry

exit

Dominators are useful in:
● Dataflow analysis
● Constructing SSA
● Identifying “natural” loops
● Code motion
● …

43

15-411/611 © 2019-2025 Titzer/Goldstein

Definitions

● a sdom b

○ If a and b are different blocks and a dom b, we say that a

strictly dominates b

● a idom b

○ If a sdom b, and there is no c such that a sdom c and c

sdom b, we say that a is the immediate dominator of b

44

0

4

52

3

1

entry

exit

15-411/611 © 2019-2025 Titzer/Goldstein

Properties of Dom

● Dominance is a partial order on the blocks of the flow graph, i.e.,
○ 1. Reflexivity: a dom a for all a

○ 2. Anti-symmetry: a dom b and b dom a implies a = b

○ 3. Transitivity: a dom b and b dom c implies a dom c

● NOTE: there may be blocks a and b such that
neither a dom b or b dom a holds.

● The dominators of each node n are linearly ordered by the dom
relation. The dominators of n appear in this linear order on any
path from the initial node to n.

45

15-411/611 © 2019-2025 Titzer/Goldstein

Computing dominators

● We want to compute D[n], the set of blocks that dominate n

Initialize each D[n] (except D[entry]) to be the set of all blocks, and
then iterate until no D[n] changes:

46

15-411/611 © 2019-2025 Titzer/Goldstein

Example

block D[n]
entry {entry}

0 {entry,0,1,2,3,4,5,exit}
1 {entry,0,1,2,3,4,5,exit}
2 {entry,0,1,2,3,4,5,exit}
3 {entry,0,1,2,3,4,5,exit}
4 {entry,0,1,2,3,4,5,exit}
5 {entry,0,1,2,3,4,5,exit}

exit {entry,0,1,2,3,4,5,exit}

Initialization

47

0

4

52

3

1

entry

exit

15-411/611 © 2019-2025 Titzer/Goldstein

Example

block D[n] D[n]
entry {entry} {entry}

0 {entry,0,1,2,3,4,5,exit}
1 {entry,0,1,2,3,4,5,exit}
2 {entry,0,1,2,3,4,5,exit}
3 {entry,0,1,2,3,4,5,exit}
4 {entry,0,1,2,3,4,5,exit}
5 {entry,0,1,2,3,4,5,exit}

exit {entry,0,1,2,3,4,5,exit}

Initialization First Pass

Update rule:

{0,entry}
{1,0,entry}

{2,1,0,entry}
{3,1,0,entry}
{4,0,entry}

{5,4,0,entry}
{exit,3,1,0,entry}

48

0

4

52

3

1

entry

exit

15-411/611 © 2019-2025 Titzer/Goldstein

Example

block D[n] D[n]
entry {entry} {entry}

0 {0,entry}
1 {1,0,entry}
2 {2,1,0,entry}
3 {3,1,0,entry}
4 {4,0,entry}
5 {5,4,0,entry}

exit {exit,3,1,0,entry}

First Pass Second Pass

Update rule:

{0,entry}
{1,0,entry}

{2,1,0,entry}
{3,0,entry}
{4,0,entry}

{5,4,0,entry}
{exit,3,0,entry}

49

0

4

52

3

1

entry

exit

15-411/611 © 2019-2025 Titzer/Goldstein

Example

block D[n] D[n]
entry {entry} {entry}

0 {0,entry} {0,entry}
1 {1,0,entry} {1,0,entry}
2 {2,1,0,entry} {2,1,0,entry}
3 {3,0,entry} {3,0,entry}
4 {4,0,entry} {4,0,entry}
5 {5,4,0,entry} {5,4,0,entry}

exit {exit,3,0,entry} {exit,3,0,entry}

Second Pass Third Pass

Update rule:

50

0

4

52

3

1

entry

exit

15-411/611 © 2019-2025 Titzer/Goldstein

Computing dominators

● Iterative algorithm is O(n2e)

○ assuming bit vector set

○ choosing a good iteration order matters

● More efficient algorithm due to
Lengauer and Tarjan

○ O(e·α(e,n))

○ much more complicated

○ Books provide simple algorithms that are fast in practice(faster than Tarjan algorithm for realistic CFGs)

○ For a clever algorithm see: “A Simple, Fast Dominance Algorithm” by Cooper, Harvey, and Kennedy

α(e,n) is inverse Ackermann

51

https://www.cs.rice.edu/~keith/EMBED/dom.pdf

15-411/611 © 2019-2025 Titzer/Goldstein

Immediate dominators

● Let sD[n] be the set of blocks that strictly dominate n, then

● To compute iD[n], the set of blocks (size <= 1) that
immediately dominate n

● Set

● Repeat until no iD[n] changes:

52

sD[n] = D[n] - {n}

iD[n] = sD[n]

iD[n] = iD[n] － ⋃(sD[d])
d ∈ iD[n]

15-411/611 © 2019-2025 Titzer/Goldstein

Example

block iD[n]=sD[n] iD[n]
entry {} {}

0 {entry} {entry}
1 {0,entry} {0}
2 {1,0,entry} {1}
3 {0,entry} {0}
4 {0,entry} {0}
5 {4,0,entry} {4}

exit {3,0,entry} {3}

Initialization First Pass

Update rule:

53

0

4

52

3

1

entry

exit

CFG

15-411/611 © 2019-2025 Titzer/Goldstein

Dominator Tree

block iD[n]
entry {}

0 {entry}
1 {0}
2 {1}
3 {0}
4 {0}
5 {4}

exit {3}

In the dominator tree the initial node is the
entry block, and the parent of each other

node is its immediate dominator.

0

4

52

31

entry

exit

Dominator Tree
54

0

4

52

3

1

entry

exit

CFG

15-411/611 © 2019-2025 Titzer/Goldstein

Post-Dominance

● Block a post-dominates b (a pdom b) if every path
from a to the exit block includes b

● pdom on CFG is the same as dom on the reverse
(all edges reversed) CFG

● 0 post-dominates ?
1 post-dominates ?
4 post-dominates ?

55

0

4

52

3

1

entry

exit

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier

● z is in the dominance frontier of x If z is the first
node we encounter on the path from x which x does
not strictly dominate.

● For some path from node x to z,
 x → … → y → z
where x dom y but not x sdom z.

● Intuitively, the dominance frontier consists of nodes
“just outside the dominator tree”

56

0

4

52

3

1

entry

exit

CFG

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier

● z is in the dominance frontier of x If z is the first
node we encounter on the path from x which x does
not strictly dominate.

● For some path from node x to z,
 x → … → y → z
where x dom y but not x sdom z.

● Dominance frontier of 1? {3}

● Dominance frontier of 2? {3}

● Dominance frontier of 4? {3,4}

57

0

4

52

3

1

entry

exit

CFG

15-411/611 © 2019-2025 Titzer/Goldstein

0

4

52

3

1

entry

exit

idom

58

0

4

52

3

1

entry

exit

CFG

15-411/611 © 2019-2025 Titzer/Goldstein

0

4

52

3

1

entry

exit
59

0

4

52

3

1

entry

exit

idomCFG

15-411/611 © 2019-2025 Titzer/Goldstein

0

4

52

3

1

entry

exit
60

0

4

52

3

1

entry

exit

idomCFG

15-411/611 © 2019-2025 Titzer/Goldstein

0

4

52

3

1

entry

exit
61

0

4

52

3

1

entry

exit

idomCFG

15-411/611 © 2019-2025 Titzer/Goldstein

0

4

52

3

1

entry

exit
62

0

4

52

3

1

entry

exit

idomCFG

15-411/611 © 2019-2025 Titzer/Goldstein

● Let dominates[n] be the set of all blocks which block n dominates

○ subtree of dominator tree with n as the root

● The dominance frontier of n, DF[n] is

DF[n] = ⋃ succ(s) - dominates[n] - {n}

63

s ∈ dominates[n]

Calculating the Dominance Frontier

15-411/611 © 2019-2025 Titzer/Goldstein

Recap

● a dom b
○ every possible execution path from entry to b includes a

● a sdom b
○ a dom b and a != b

● a idom b
○ a is “closest” dominator of b

● a pdom b
○ every path from a to the exit block includes b

● Dominator trees
● Dominance frontier

64

15-411/611 © 2019-2025 Titzer/Goldstein

Back to inserting Φs

65

b ← exp1
if cond goto L

…
ret b

b ← exp2

x:

y:

z:

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path P
xz

 of edges from x to z

•There is a nonempty path P
yz

 of edges from y to z

•Paths P
xz

 and P
yz

 do not have any node in
common other than z, and…

•The node z does not appear within both P
xz

 and
P

yz
 prior to the end, though it may appear in one

or the other.
In other words, z ∈ DF(x)

15-411/611 © 2019-2025 Titzer/Goldstein

Using Dominance for SSA Construction

● Dominance-Frontier Criterion: Whenever node x contains a
definition of some variable a, then any node z ∈ DF(x), z needs
a Φ-function for a.

● Iterated dominance frontier: since a Φ-function itself is a
definition, we must iterate the dominance-frontier criterion until
there are no nodes that need Φ-functions.

66

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance

B

1

5

6 7

8

D

2

3

4

9

A

C

1

B

5

6 7 8

2

3

4 9

A

C D

CFG D-Tree

If there is a def of a in block

5, which nodes need a Φ()?

67

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier

B

1

5

6 7

8

D

2

3

4

9

A

C

CFG D-Tree

The dominance Frontier of a node x =
{ w | x dom pred(w) AND !(x sdom w)}

15-411/611
© 2019-21 Goldstein

68

1

B

5

6 7 8

2

3

4 9

A

C D

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier &
path-convergence

B

1

5

6 7

8

D

2

3

4

9

A

C

B

1

5

6 7

8

D

2

3

4

9

A

C

69

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier Criterion

B

1

5

6 7

8

D

2

3

4

9

A

C

70

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier Criterion

B

1

5

6 7

8

D

2

3

4

9

A

C

71

And, Iterating

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier Criterion

B

1

5

6 7

8

D

2

3

4

9

A

C

72

And, Iterating

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier Criterion

B

1

5

6 7

8

D

2

3

4

9

A

C

73

And, Iterating

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier Criterion

B

1

5

6 7

8

D

2

3

4

9

A

C

74

Done

15-411/611 © 2019-2025 Titzer/Goldstein

Computing Dominance Frontier

● We just covered a O(n3) iterative algorithm – embarrassing!

● There’s also a near linear time algorithm due to Tarjan and
Lengauer (Chap 19.2)

○ SSA construction therefore near linear

○ SSA form makes many optimizations linear (no need for iterative data flow)

75

15-411/611 © 2019-2025 Titzer/Goldstein

Using DF to Place Φ()
● Gather all the defsites of every variable
● Then, for every variable

○ foreach defsite
■ foreach node in DF(defsite)

● if we haven’t put Φ() in node put one in

● If this node didn’t define the variable before: add this node to the defsites

● This essentially computes the Iterated Dominance Frontier on
the fly, creating minimal SSA

76

15-411/611 © 2019-2025 Titzer/Goldstein

Using DF to Place Φ()

foreach node n {
foreach variable v defined in n {

orig[n] ∪= {v}
defsites[v] ∪= {n}

}
foreach variable v {

W = defsites[v]
while W not empty {

foreach y in DF[n]
if y ∉ PHI[v] {

insert “v ← Φ(v,v,…)” at top of y
PHI[v] = PHI[v] ∪ {y}
if v ∉ orig[y]: W = W ∪ {y}

}
}

}
}

77

1

5 6 7

2

3 4

D-tree
i ← 1
j ← 1
k ← 0

k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

1

2

4

65

7

3

78

Computing SSA

i ← 1
j ← 1
k ← 0

k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

1

2

4

65

7

3

79

Compute D-tree

Compute Dominance Frontier (DFs)

DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2} 80

1

5 6 7

2

3 4

i ← 1
j ← 1
k ← 0

k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

1

2

4

65

7

3

DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

var j: W={1,5,6}

i ← 1
j ← 1
k ← 0

k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

1

2

4

65

7

3

Compute defsites

DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

var j: W={1,5,6}

i ← 1
j ← 1
k ← 0

k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

1

2

4

65

7

3

Inspect variables

DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

var j: W={1,5,6}

DF[1] ∪ DF[5] ∪ DF[6] ={7}

i ← 1
j ← 1
k ← 0

k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

1

2

4

65

7

3

Insert ɸ for j

DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

var j: W={1,5,6}

i ← 1
j ← 1
k ← 0

k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Insert ɸ for j

DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

var j: W={1,5,6,7}

i ← 1
j ← 1
k ← 0

k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Handle new write for j

DF[1] ∪ DF[5] ∪ DF[6] ∪ DF[7]
={7,2}

DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

var j: W={1,5,6,7}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Insert more ɸ for j

DF[1] ∪ DF[5] ∪ DF[6] ∪ DF[7]
={7,2}

DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

var j: W={1,5,6,7,2}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Update writes for j

DF[1] ∪ DF[5] ∪ DF[6] ∪ DF[7] ∪ DF[2]
={7,2}

15-411/611 © 2019-2025 Titzer/Goldstein

Renaming Variables

● Placing ɸ is not enough, need to update names

● Walk down the dominator tree, renaming variables incrementally

● Replace uses with most recent renamed def

○ For straight-line code this is easy

○ If there are branches and joins?

88

15-411/611 © 2019-2025 Titzer/Goldstein

Renaming for Straight-Line Code

● Need to extend for ɸ-functions.

● Need to maintain property that
definitions dominate uses.

89

for each variable a:

 Count[a] = 0

 Stack[a] = [0]

renameBasicBlock(B):

 for each instruction S in block B:

 for each use of a variable x in S:

 i = top(Stack[x])

 replace the use of x with xi
 for each variable a that S defines

 count[a] = Count[a] + 1

 i = Count[a]

 push i onto Stack[a]

 replace definition of a with ai

Renaming in CFG

90

rename(n):

renameBasicBlock(n)

for each successor Y of n, where n is the jth predecessor of Y:

for each phi-function f in Y, where the operand of f is ‘a’

 i = top(Stack[a])

replace jth operand with ai

for each child of n in D-tree, X:

rename(X)

for each instruction S ∈ n:

for each variable v that S defines:

 pop Stack[v]

defsites[v]

i {1}
j {1,5,6,7,2}
k {1,5,6}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

defsites[v]

i {1}
j {1,5,6,7,2}
k {1,5,6}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

j1

cursor

defsites[v]

i {1}
j {1,5,6,7,2}
k {1,5,6}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

j1

j1

cursor

defsites[v]

i {1}
j {1,5,6,7,2}
k {1,5,6}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

j1

j1

cursor

j2

defsites[v]

i {1}
j {1,5,6,7,2}
k {1,5,6}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

j1

j1j2

j2

cursor

defsites[v]

i {1}
j {1,5,6,7,2}
k {1,5,6}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

j1

j1j2

j2 j2

cursor

defsites[v]

i {1}
j {1,5,6,7,2}
k {1,5,6}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

j1

j1j2

j2 j2

j3

cursor

defsites[v]

i {1}
j {1,5,6,7,2}
k {1,5,6}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

j1

j1j2

j2 j2

j3 j4

cursor

defsites[v]

i {1}
j {1,5,6,7,2}
k {1,5,6}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

j1

j1j2

j2 j2

j3

j3

j4

j4

cursor

defsites[v]

i {1}
j {1,5,6,7,2}
k {1,5,6}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

j1

j1j2

j2 j2

j3

j3

j4

j4j5

cursor

defsites[v]

i {1}
j {1,5,6,7,2}
k {1,5,6}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

j1

j1j2

j2 j2

j3

j3

j4

j4j5

cursor

What’s
missing?

defsites[v]

i {1}
j {1,5,6,7,2}
k {1,5,6}

i ← 1
j ← 1
k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i
k ← k + 1

j ← k
k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

j1

j1j2

j2 j2

j3

j3

j4

j4j5

j5

cursor

15-411/611 © 2019-2025 Titzer/Goldstein

Flavors of SSA

● Minimal SSA

○ at each join point with >1 outstanding definition insert a φ-function

○ Some may be dead

● Pruned SSA

○ only add live φ-functions

○ must compute LIVEOUT

● Semi-pruned SSA

○ Same as minimal SSA, but only on names live across more than 1 basic block

103

15-411/611 © 2019-2025 Titzer/Goldstein

Summary

● SSA is a useful and efficient IR.

● Definitions dominate uses

● Constructing SSA can be efficient
(No need to do Lengaur-Tarjan Algorithm, instead see A Simple,
Fast Dominance Algorithm by Cooper, Harvey, and Kennedy)

● Don’t do any optimizations yet!

104

https://www.cs.rice.edu/~keith/EMBED/dom.pdf
https://www.cs.rice.edu/~keith/EMBED/dom.pdf

15-411/611 © 2019-2025 Titzer/Goldstein

Next time

● More practice building SSA
● Constant propagation with SSA
● Deconstructing SSA
● SSA in practice

