
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
DPLL(T) & SMT Encodings

Ruben Martins

Carnegie Mellon University
Lecture 19

Thursday, March 28, 2024

1 Introduction

In the previous lecture, we studied the Nelson-Oppen procedure for solving a combi-
nation of theories. However, this procedure has some limitations, and in practice, most
SMT solvers use DPLL(T) to solve a combination of theories. In this lecture, we will
continue explaining the DPLL(T) approach and see some examples of its usage.

This lecture will also show how we can use SMT solvers in practice. In particular,
we will show how we can use SMT solvers to prove the equivalence of programs. Un-
interpreted functions can be used to help to verify programs by abstracting complex
functions that may be hard to reason about. When compared to SAT, encoding using
SMT is much easier and allows the combination of different theories. In practice, when
the domain is finite and can be encoded compactly to SAT, then SAT solvers are usu-
ally faster than SMT solvers. However, SMT is more general and allows us to solve
problems that cannot be encoded to SAT.

Learning Goals

1. DPLL(T) combines a conjunctive theory solver and DPLL to decide formulas in a
given first-order theory.

2. Just as conflict clauses were important for DPLL, learning theory lemmas can
dramatically improve the performance of DPLL(T).

3. When reaching a conflict DPLL(T) can minimize the learned clause by computing
unsatisfiable subformulas.

http://www.cs.cmu.edu/~15414/

L19.2 DPLL(T) & SMT Encodings

4. Uninterpreted functions can be used to simplify proofs by replacing (complex)
interpreted functions by uninterpreted functions.

5. SMT solvers can be used in practice for program equivalence, graph coloring, and
other applications.

2 Review: Boolean abstraction

We define the Boolean abstraction of a Σ-formula φ recursively:

• <literal> ::= <atom>T | ¬ <atom>T

• <formula> ::= <literal> B (lT)def
= Pi, where Pi is a fresh variable

• <formula> ::= ¬ <formula> B (¬F)def
= ¬B(F)

• <formula> ::= <formula> ∧ <formula> B (F1 ∧ F2)def
= B(F1) ∧ B(F2)

• <formula> ::= <formula> ∨ <formula> B (F1 ∨ F2)def
= B(F1) ∨ B(F2)

• <formula> ::= <formula>→ <formula> B (F1 → F2)def
= B(F1) → B(F2)

• <formula> ::= <formula>↔ <formula> B (F1 ↔ F2)def
= B(F1) ↔ B(F2)

Given a Σ-formula φ:

φ : g(a) = c ∧ (f(g(a)) ̸= f(c) ∨ g(a) = d) ∧ c ̸= d

The Boolean abstraction of φ is the following:

B(F) = B(g(a) = c) ∧ B(f(g(a)) ̸= f(c) ∨ g(a) = d) ∧ c ̸= d)

= B(g(a) = c) ∧ B(f(g(a)) ̸= f(c) ∨ g(a) = d)) ∧ B(c ̸= d)

= B(g(a) = c) ∧ B(f(g(a)) ̸= f(c)) ∨ B(g(a) = d) ∧ B(c ̸= d)

= P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

Note that we can also define B−1 which maps from the Boolean variables back to
the atoms in the original formula. For example B−1(P1 ∧ P3 ∧ P4) corresponds to the
formula g(a) = c ∧ g(a) = d ∧ c = d.

We call B(φ) an abstraction of φ since it is an over-approximation of φ with respect
to satisfiability. Observe the following properties of this over-approximation:

• If φ is satisfiable then B(φ) is also satisfiable;

• If B(φ) is satisfiable then φ is not necessarily satisfiable:

φ : 1 ≤ x ∧ x ≤ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

φ is unsatisfiable in the theory of integers (TZ) since x is either 1 or 2 but f(x) ̸=
f(1) ∧ f(x) ̸= f(2) implies that x must be different than 1 and 2. However, the
Boolean abstraction B(φ) = P1 ∧ P2 ∧ P3 ∧ P4 is satisfiable.

15-414 LECTURE NOTES RUBEN MARTINS

DPLL(T) & SMT Encodings L19.3

• If φ is unsatisfiable then B(φ) is not necessarily unsatisfiable:

φ : 1 ≤ x ∧ x ≤ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

The same example as for the previous case holds for this case as well. φ is unsat-
isfiable in the theory of integers (TZ) but B(φ) is satisfiable.

• If B(φ) is unsatisfiable then φ is also unsatisfiable.

3 DPLL(T): Combining theory and SAT solvers

The Boolean abstraction provides us with a lazy way to solve SMT. Given a Σ-formula
φ, we can determine its satisfiability by performing the following procedure:

1. Construct the Boolean abstraction B(φ);

2. If B(φ) is unsatisfiable then φ is unsatisfiable;

3. Otherwise, get an interpretation I for B(φ);

4. Construct ω =
∧n

i=1 Pi ↔ I(Pi);

5. Send B−1(ω) to the T -solver;

6. If T -solver reports that B−1(ω) is satisfiable then φ is satisfiable;

7. Otherwise, update B(φ) := B(φ) ∧ ¬ω and return to step 2.

This procedure terminates when: (i) B(φ) becomes unsatisfiable which implies that φ
is also unsatisfiable or (ii) T -solver reports that B−1(ω) is satisfiable which implies that
φ is satisfiable. Note that if B−1(ω) is unsatisfiable we cannot terminate since there may
be another interpretation ω′ to B(φ) that would make B−1(ω′) satisfiable. Therefore, we
need to exhaust all interpretations for B(φ) before deciding that φ is unsatisfiable. On
step 7 we add ¬ω to B(φ) since if we did not, we would get the same interpretation I
for B(φ). We denote ¬ω as a theory conflict clause that prevents the SAT solver from
going down the same path in future iterations.

Suppose we want to find if the Σ-formula φ is satisfiable:

φ : g(a) = c ∧ (f(g(a)) ̸= f(c) ∨ g(a) = d) ∧ c ̸= d

We start by building its Boolean abstraction B(φ):

B(φ) : P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

Table 1 shows the step 1 of the procedure with the corresponding Boolean abstraction
B(φ). Next, we query the SAT solver for an interpretation to B(φ). Assume that the
SAT solver returns the following interpretation I = {P1,¬P2, P3,¬P4}. We construct

15-414 LECTURE NOTES RUBEN MARTINS

L19.4 DPLL(T) & SMT Encodings

Theory solver SAT solver
P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

Table 1: B(φ).

Theory solver SAT solver
g(a) = c ∧ P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

f(g(a)) ̸= f(c) ∧ (¬P1 ∨ P2 ∨ ¬P3 ∨ P4)
g(a) = d ∧
c ̸= d
g(a) = d ∧ g(a) = c → c = d
c ̸= d
unsat

Table 2: Updated B(φ) after checking that the interpretation I = {P1,¬P2, P3,¬P4}
does not satisfy φ

ω = (P1 ∧ ¬P2 ∧ P3 ∧ ¬P4) and send B−1(ω) to T -solver. Note that B−1(ω) corresponds
to:

B−1(ω) : g(a) = c ∧ f(g(a)) ̸= f(c) ∧ g(a) = d ∧ c ̸= d

B−1(ω) is unsatisfiable since if g(a) = d and g(a) = c then c = d but φ states that
c ̸= d. Therefore, we know that this interpretation is not satisfiable but there may exist
another interpretation I that satisfies φ. We update B(φ) with ¬ω as shown in Table 2
and query the SAT solver for another interpretation.

Assume that the SAT solver returns a new interpretation I = {P1, P2, P3,¬P4}. We
construct ω = (P1 ∧ P2 ∧ P3 ∧ ¬P4) and send B−1(ω) to T -solver. Note that in this case
B−1 corresponds to:

B−1(ω) : g(a) = c ∧ f(g(a)) = f(c) ∧ g(a) = d ∧ c ̸= d

We can see that B−1(ω) is unsatisfiable for the same reason as before. We update B(φ)
with ¬ω as shown in Table 3 and perform another query to the SAT solver.

Assume that the SAT solver returns a new interpretation I = {P1,¬P2,¬P3,¬P4}.
We construct ω = (P1∧¬P2∧¬P3∧¬P4) and send B−1(ω) to T -solver. Note that in this
case B−1 corresponds to:

B−1(ω) : g(a) = c ∧ f(g(a)) ̸= f(c) ∧ g(a) ̸= d ∧ c ̸= d

We can see that B−1(ω) is unsatisfiable since g(a) = c but f(g(a)) ̸= f(c). We update
B(φ) with ¬ω as shown in Table 4 and observe that B(φ) becomes unsatisfiable after
adding ¬ω. Since B(φ) is unsatisfiable, we can conclude that φ is also unsatisfiable.

3.1 Improving DPLL(T) framework

Consider the Σ-formula φ defined over TZ:

φ : 0 < x ∧ x < 1 ∧ x < 2 ∧ . . . x < 99

15-414 LECTURE NOTES RUBEN MARTINS

DPLL(T) & SMT Encodings L19.5

Theory solver SAT solver
g(a) = c ∧ P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

f(g(a)) = f(c) ∧ (¬P1 ∨ P2 ∨ ¬P3 ∨ P4)
g(a) = d ∧ (¬P1 ∨ ¬P2 ∨ ¬P3 ∨ P4)
c ̸= d
g(a) = d ∧ g(a) = c → c = d
c ̸= d
unsat

Table 3: Updated B(φ) after checking that the interpretation I = {P1, P2, P3,¬P4} does
not satisfy φ.

Theory solver SAT solver
g(a) = c ∧ P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

f(g(a)) ̸= f(c) ∧ (¬P1 ∨ P2 ∨ ¬P3 ∨ P4)
g(a) ̸= d ∧ (¬P1 ∨ ¬P2 ∨ ¬P3 ∨ P4)
c ̸= d (¬P1 ∨ P2 ∨ P3 ∨ P4)
g(a) = c → f(g(a)) = f(c)
f(g(a)) ̸= f(c)
unsat unsat

Table 4: Updated B(φ) after checking that the interpretation I = {P1,¬P2,¬P3,¬P4}
does not satisfy φ. B(φ) becomes unsatisfiable after adding the negation of I .

The Boolean abstraction B(φ) is the following:

B(φ) : P0 ∧ P1 ∧ . . . ∧ P99

Note that B(φ) has 298 interpretations containing P0 ∧ P1 and none of them satisfies
φ. The procedure described in the previous section will enumerate all of them one by
one and add a blocking conflict clause that only covers a single assignment! A potential
solution to this issue is to not treat the SAT solver as a black box but instead incremen-
tally query the theory solver as interpretations are made in the SAT solver. If we would
perform this integration then we would be able to stop after adding {0 < x, x < 1}
and would not need to explore the 298 infeasible interpretations. This can be done by
pushing the T -solver into the DPLL algorithm as follows:

1. After Boolean Constraint Propagation (BCP), invoke the T -solver on the partial
interpretation;

2. If the T -solver returns unsatisfiable then we can stop the search of the SAT solver
and immediately add ¬ω to Bφ;

3. Otherwise, continue as usual until we have a new partial interpretation.

15-414 LECTURE NOTES RUBEN MARTINS

L19.6 DPLL(T) & SMT Encodings

Recall the example:

φ : g(a) = c ∧ (f(g(a)) ̸= f(c) ∨ g(a) = d) ∧ c ̸= d

And its Boolean abstraction B(φ):

B(φ) : P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

DPLL would begin by propagating P1 and ¬P4 since they are unit clauses. At this
point the theory axioms imply more propagations:

g(a) = c → f(g(a)) = f(c)

g(a) = c ∧ c ̸= d → g(a) ̸= d

Deciding ¬P2 or P3 would be wasteful, so we can add the theory lemmas:

(P1 → P2)

(P1 ∧ ¬P3) → ¬P3

This procedure is called theory propagation and can guarantee that every Boolean
interpretation is T -satisfiable. However, in practice doing this at every step can be
expensive and theory propagation is only applied when it is “likely” (using heuristics)
to derive useful implications.

Another optimization that can be performed is to minimize the conflict clause ω that
we add to B(φ) to contain only the root cause of the issue. Consider again the Σ-formula
φ:

φ : g(a) = c ∧ (f(g(a)) ̸= f(c) ∨ g(a) = d) ∧ c ̸= d

Notice that the interpretations I = {P1,¬P2, P3,¬P4} and I ′ = {P1,¬P2, P3,¬P4}
had the same root cause that lead to φ being unsatisfiable under that interpretation,
i.e. g(a) = d and g(a) which implies that c = d but we know that c ̸= d which is a
contradiction. Can we find the root cause of this issue and learn something stronger
than ω = (¬P1 ∨ P2 ∨ ¬P3 ∨ P4)? Yes, we can minimize ω using unsatisfiable cores!

Definition 1 (Minimal unsatisfiable core). Let φ be an unsatisfiable formula and φc ⊆ φ.
φc is a minimal unsatisfiable core if and only if:

• φc is unsatisfiable;

• Removing any element from φc makes φc satisfiable.

For I = {P1,¬P2, P3,¬P4} we have the following B−1(φ):

B−1(φ) : g(a) = c ∧ f(g(a)) ̸= f(c) ∧ g(a) = d ∧ c ̸= d

We can compute the minimal unsatisfiable core of B−1(φ) as follows.

1. Drop g(a) = c. Is the formula still unsatisfiable? No! Then it means this constraint
will be part of the minimal unsatisfiable core.

15-414 LECTURE NOTES RUBEN MARTINS

DPLL(T) & SMT Encodings L19.7

2. Drop f(g(a)) ̸= f(c). Is the formula still unsatisfiable? Yes! Then it means that
we can remove this constraint from the minimal unsatisfiable core.

3. Now we have g(a) = c ∧ g(a) = d ∧ c ̸= d.

4. Drop g(a) = d. Is the formula still unsatisfiable? No, then keep this constraint.

5. Drop c ̸= d. Is the formula still unsatisfiable? No, then keep this constraint.

We can conclude that our minimal unsatisfiable core is g(a) = c ∧ g(a) = d ∧ c ̸= d.
Therefore, we can learn the clause ω′ = (¬P1 ∨ ¬P3 ∨ P4) instead of ω = (¬P1 ∨ P2 ∨
¬P3 ∨ P4) which would have save one query to the SAT solver in the previous section.

4 SMT Encodings: Proving equivalence of programs

Replacing functions with uninterpreted functions in a given formula is a common tech-
nique for making it easier to reason about (e.g., to prove its validity) At the same time,
this process makes the formula weaker which means that it can make a valid formula in-
valid. This observation is summarized in the following relation, where φUF is derived
from a formula φ by replacing some or all of its functions with uninterpreted functions:

|= φUF → φ

Uninterpreted functions are widely used in calculus and other branches of mathe-
matics, but in the context of reasoning and verification, they are mainly used for sim-
plifying proofs. Under certain conditions, uninterpreted functions let us reason about
systems while ignoring the semantics of all functions, assuming they are not necessary
for the proof.

Assume that we have a method for checking the validity of a Σ-formula in TE. Re-
lying on this assumption, the basic scheme for using uninterpreted functions is the
following:

1. Let φ denote a formula of interest that has interpreted functions. Assume that a
validity check of φ is too hard (computationally), or even impossible.

2. Assign an uninterpreted function to each interpreted function in φ. Substitute
each function in φ with the uninterpreted function to which it is mapped. Denote
the new formula by φUF .

3. Check the validity of φUF . If it is valid then φ is valid. Otherwise, we do not
know anything about the validity of φ.

As a motivating example consider the problem of proving the equivalence of two C
functions shown in Figure 1. In general, proving the equivalence of two programs is
undecidable, which means there is no sound and complete to prove such an equiva-
lence. However, in this case, equivalence can be decided since the program does not

15-414 LECTURE NOTES RUBEN MARTINS

L19.8 DPLL(T) & SMT Encodings

1 i n t power3 (i n t in)
2 {
3 i n t i , out a ;
4 out a = in ;
5 f o r (i = 0 ; i < 2 ; i ++)
6 out a = out a * in ;
7 re turn out a ;
8 }

(a)

1 i n t power3 new (i n t in)
2 {
3 i n t out b ;
4

5 out b = (in * in) * in ;
6

7 re turn out b ;
8 }

(b)

Figure 1: Two C functions. We can simplify the proof of their equivalence by replacing
the multiplication operator by an uninterpreted function.

out0 a =in0 a ∧
out1 a =out0 a ∗ in0 a ∧
out2 a =out1 a ∗ in0 a

(a) (φa)

out0 b =(in0 b ∗ in0 b) ∗ in0 b

(b) (φa)

Figure 2: Two formulas corresponding to the programs (a) and (b) in Figure 1.

have unbounded memory usage. A key observation about these programs is that they
have only bounded loops, and therefore it is possible to compute their input/output
relations. The derivation of these relations from these two programs can be as follows:

1. Remove the variable declarations and “return statements”.

2. Unroll the for loop.

3. Replace the left-hand side variable in each assignment with a new auxiliary vari-
able.

4. Whenever a variable is read, replace it with the auxiliary variable that replaced it
in the last place where it was assigned.

5. Conjoin all program statements.

These operations result in the two formulas φa and φb which are shown in Figure 2.
This procedure to transform code into a first-order formula is known as static single
assignment (SSA) and we talk more about it in the next lecture about bounded model
checking. Even though generalizing SSA to programs with “if” branches and other
constructs can be challenging, we restrict ourselves to a limited form of SSA to illustrate
how uninterpreted functions can be used to abstract the multiplication operator.

To show that these programs are equivalent with respect to their input-outputs, we
must show that the following formula Φ is valid:

15-414 LECTURE NOTES RUBEN MARTINS

DPLL(T) & SMT Encodings L19.9

1 (declare -fun out0_a () (Int))

2 (declare -fun out1_a () (Int))

3 (declare -fun in0_a () (Int))

4 (declare -fun out2_a () (Int))

5 (declare -fun out0_b () (Int))

6 (declare -fun in0_b () (Int))

7 (define -fun phi_a () Bool

8 (and (= out0_a in0_a) ; out0_a = in0_a

9 (and (= out1_a (* out0_a in0_a)) ; out1_a = out0_a * in0_a

10 (= out2_a (* out1_a in0_a))))) ; out2_a = out1_a * in0_a

11 (define -fun phi_b () Bool

12 (= out0_b (* (* in0_b in0_b) in0_b))) ; out0_b = in0_b * in0_b *

in0_b

13 (define -fun phi_input () Bool

14 (= in0_a in0_b))

15 (define -fun phi_output () Bool

16 (= out2_a out0_b))

17 (assert (not (=> (and phi_input phi_a phi_b) phi_output)))

18 (check -sat)

Figure 3: SMT encoding of Φ using mathematical integers to model integers.

in0 a = in0 b ∧ φa ∧ φb → out2 a = out0 b

Showing the validity of Φ is equivalent to show the unsatisfiability of ¬Φ. We can
show that ¬Φ is unsatisfiable by using SMT solvers.

5 Using SMT solvers

SMT solvers take as input a formula in a standardized format (SMT2-Lib format). A
detailed description of the SMT2-Lib format is available at:

http://smtlib.cs.uiowa.edu

SMT solvers support a variety of theories, namely: the theory of arrays with exten-
sionality, the theory of bit vectors with an arbitrary size, the core theory defining the
basic Boolean operators, the theory of floating-point numbers, the theory of integer
number, and the theory of reals. 1

Before using SMT solvers to show that ¬Φ is unsatisfiable, we must decide how we
will model integers since this will restrict the underlying theories used by the SMT
solver.

5.1 Modeling integers as mathematical integers

1Further details on each theory are available at http://smtlib.cs.uiowa.edu/theories.shtml.

15-414 LECTURE NOTES RUBEN MARTINS

http://smtlib.cs.uiowa.edu
http://smtlib.cs.uiowa.edu/theories.shtml

L19.10 DPLL(T) & SMT Encodings

1 (declare -fun out0_a () (_ BitVec 512))

2 (declare -fun out1_a () (_ BitVec 512))

3 (declare -fun in0_a () (_ BitVec 512))

4 (declare -fun out2_a () (_ BitVec 512))

5 (declare -fun out0_b () (_ BitVec 512))

6 (declare -fun in0_b () (_ BitVec 512))

7 (define -fun phi_a () Bool

8 (and (= out0_a in0_a) ; out0_a = in0_a

9 (and (= out1_a (bvmul out0_a in0_a)) ; out1_a = out0_a * in0_a

10 (= out2_a (bvmul out1_a in0_a))))) ; out2_a = out1_a * in0_a

11 (define -fun phi_b () Bool

12 (= out0_b (bvmul (bvmul in0_b in0_b) in0_b))) ; out0_b = in0_b *

in0_b * in0_b

13 (define -fun phi_input () Bool

14 (= in0_a in0_b))

15 (define -fun phi_output () Bool

16 (= out2_a out0_b))

17 (assert (not (=> (and phi_input phi_a phi_b) phi_output)))

18 (check -sat)

Figure 4: SMT encoding of Φ using bit vectors to model integers.

If we model integers as mathematical integers then the SMT solver will use the theory
of integers and will be able to show that both programs are equivalent. Figure 3 shows
the SMT encoding of Φ when using integers:

When modeling integers as mathematical integers, we can prove the equivalence of
these programs quickly and without any issues. However, integers are not represented
as mathematical integers in C. If we want to model integers as the ones being used in C
then we should model them using bit vectors (of size 32 or 64).

5.2 Modeling integers as bit vectors

Modeling integers as bit vectors has the advantage of capturing the C model and be-
ing able to detect potential overflows. However, using the bit vector theory is not as
efficient as using the theory of integers. In particular, assume we want to show that
the programs are equivalent to a bit width of 512. The SMT encoding when using bit
vectors is shown in the Figure 5.

This formula is much more challenging to be solved than the previous one and will
become harder as the bit-width increases. You can try it on your own computer (since
you should have z3 installed) by running the following command:

$ z3 -smt2 formula

where the formula is a file with the contents of Figure 5. The reason why this formula
is challenging to solve is because of the multiplication operator when using bit vectors.
Can we avoid this issue altogether? What if we consider the multiplication operator as
an uninterpreted function?

15-414 LECTURE NOTES RUBEN MARTINS

DPLL(T) & SMT Encodings L19.11

1 (declare -fun out0_a () (_ BitVec 512))

2 (declare -fun out1_a () (_ BitVec 512))

3 (declare -fun in0_a () (_ BitVec 512))

4 (declare -fun out2_a () (_ BitVec 512))

5 (declare -fun out0_b () (_ BitVec 512))

6 (declare -fun in0_b () (_ BitVec 512))

7 (declare -fun f ((_ BitVec 512) (_ BitVec 512)) (_ BitVec 512))

8 (define -fun phi_a () Bool

9 (and (= out0_a in0_a) ; out0_a = in0_a

10 (and (= out1_a (f out0_a in0_a)) ; out1_a = out0_a * in0_a

11 (= out2_a (f out1_a in0_a))))) ; out2_a = out1_a * in0_a

12 (define -fun phi_b () Bool

13 (= out0_b (f (f in0_b in0_b) in0_b))) ; out0_b = in0_b * in0_b *

in0_b

14 (define -fun phi_input () Bool

15 (= in0_a in0_b))

16 (define -fun phi_output () Bool

17 (= out2_a out0_b))

18 (assert (not (=> (and phi_input phi_a phi_b) phi_output)))

19 (check -sat)

Figure 5: SMT encoding of Φ using an uninterpreted function for multiplication.

5.3 Using uninterpreted functions

If we consider an uninterpreted function f that takes as input two bit vectors and
returns a bit vector then we can replace the bit vector multiplication operator (bvmul)
by f . If we are able to prove that this formula is unsatisfiable, then we can conclude
that the original formula is also unsatisfiable and we are able to show the equivalence
between the two programs when representing integers by bit vectors of width 512. This
formula is much easier to be solved than the one using bit-vector multiplication since
we abstracted the multiplication function and the SMT solver will not need to reason
about what f does but only that it is a function.

6 Modeling: SAT vs. SMT

Recall the graph coloring problem that we modeled with SAT in Lecture 15.
To encode the 3-coloring problem of the graph presented in Figure 6 to SAT, we re-

quired 15 variables and 41 clauses. However, when encoding this problem to SMT, we
can see this can be done in a more compact and simpler way. Since we can encode
variables with integers, we can have the integer domain represent the possible colors.

1 (declare -fun A () Int)

2 (declare -fun B () Int)

3 (declare -fun C () Int)

4 (declare -fun D () Int)

5 (declare -fun E () Int)

6 (assert (not (= A E)))

15-414 LECTURE NOTES RUBEN MARTINS

https://www.cs.cmu.edu/~15414/lectures/15-encodings.pdf

L19.12 DPLL(T) & SMT Encodings

Figure 6: 3-coloring of a graph.

7 (assert (not (= A C)))

8 (assert (not (= B E)))

9 (assert (not (= B C)))

10 (assert (not (= B D)))

11 (assert (not (= C D)))

12 (assert (not (= D E)))

13 (assert (and (>= A 0) (<= A 2)))

14 (assert (and (>= B 0) (<= B 2)))

15 (assert (and (>= C 0) (<= C 2)))

16 (assert (and (>= D 0) (<= D 2)))

17 (assert (and (>= E 0) (<= E 2)))

18 (check -sat)

19 (get -model)

SMT formulas when written in SMT-LIB format also have the advantage that they are
easier to read than CNF formulas since variables can have names and restrictions are
more readable. When modeling problems to logic, unless the performance is critical,
SMT is often more used than SAT.

15-414 LECTURE NOTES RUBEN MARTINS

	Introduction
	Review: Boolean abstraction
	DPLL(T): Combining theory and SAT solvers
	Improving DPLL(T) framework

	SMT Encodings: Proving equivalence of programs
	Using SMT solvers
	Modeling integers as mathematical integers
	Modeling integers as bit vectors
	Using uninterpreted functions

	Modeling: SAT vs. SMT

