
Bug Catching: Automated Program Verification

15414/15614 Spring 2024

Lecture 23: Review

Ruben Martins

April 16, 2024

Ruben Martins Bug Catching 1 / 35

Resolution

Resolution rule

p _ C ¬p _ D

C _ D
./p

Ruben Martins Bug Catching 2 / 35

Exercise: Resolution

Show the following CNF formula is unsatisfiable by using resolution to

derive the empty clause:

¬x1 _ ¬x2 C1

x1 _ x2 C2

¬x1 _ ¬x3 C3

x1 _ x3 C4

¬x2 _ ¬x3 C5

x2 _ x3 C6

Ruben Martins Bug Catching 3 / 35

Saturation

Saturation

I When we are not able to reach a contradiction with resolution, then

by necessity the sequence of clauses must reach saturation, that is,
any further application of resolution will only lead to clauses already

in the sequence.

I If we reach saturation without deducing a contradiction and we

conclude the initial theory is satisfiable.

Ruben Martins Bug Catching 4 / 35

Exercise: Saturation

Show that the following CNF formula is satisfiable by saturation

¬p _ ¬q _ r C0

p C1

¬r C2

Ruben Martins Bug Catching 5 / 35

Reconstructing a Satisfying Assignment

Robinson’s algorithm

Choose an ordering of the variables p0, p1, . . . , pn�1

M0 = { }
Mi+1 = Mi [{pi} provided there is no C 2 S s.t. C ✓ Mi [{pi}
Mi+1 = Mi [{¬pi} provided there is a C 2 S s.t. C ✓ Mi [{p}

M = Mn

Then M |= S , as proved by Robinson.

Ruben Martins Bug Catching 6 / 35

Exercise: Robinson’s Algorithm

Reconstruct a satisfying assignment using Robinson’s algorithm

¬p _ ¬q _ r C0

p C1

¬r C2

¬q _ r C3 = C1 ./p C0

¬q C4 = C3 ./r C2

¬p _ ¬q C5 = C0 ./r C2

Ruben Martins Bug Catching 7 / 35

4 , 9 , 5

Mo = 53

My = Sp3 , 57ph

M2 = <P, 79h

97p , 79h 24

My = < p , 19,
7r)

42p , 9 ,7r)2

Tseitin Encoding

Tseitin Encoding

I Introduce fresh variables to encode subformulas

I Encode the meaning of these fresh variables with clauses

I Guarantees equisatisfiability with a linear increase in the size of the

formula

Ruben Martins Bug Catching 8 / 35

Exercise: Tseitin Encoding

Use the Tseitin Encoding to transform the following propositional

formula to CNF:

� = (x ^ ¬y) _ (z _ (x ^ ¬w))

Ruben Martins Bug Catching 9 / 35

Unary and Binary Representations

Unary and binary representations

1. Unary representation: a Boolean variable for each possible value

2. Binary representation: binary representation of an integer

Ruben Martins Bug Catching 10 / 35

Exercise: Representing Integer Variables in SAT

Suppose we want to encode the domain of an integer variable X = 1, 2, 3
Encode the domain of this integer variables using:

I Unary representation

I Binary representation

Ruben Martins Bug Catching 11 / 35

SAT Encodings

Variables and Constraints

1. Define the meaning of variables

2. Encode the constraints of the problem into CNF

Ruben Martins Bug Catching 12 / 35

Exercise: N-Queens

Q
Q

Q
Q

I There should be 4 queens on

the board.

I Two queens should never be

on the same line.

I Two queens should never be

on the same column.

I Two queens should never be

on the same diagonal.

Ruben Martins Bug Catching 13 / 35

Status of a Clause under Partial Interpretation

Status of a clause

Given a partial interpretation I , a clause is:

I Satisfied, if one or more of its literals is satisfied

I Conflicting, if all of its literals are assigned but not satisfied

I Unit, if it is not satisfied and all but one of its literals are assigned

I Unresolved, otherwise

Ruben Martins Bug Catching 14 / 35

Exercise: Status of Clauses

Given the partial interpretation I = {p1,¬p2, p4} what is the status of

the following clauses:

I (p1 _ p3 _ ¬p4)
I (¬p1 _ p2)

I (p2 _ ¬p4 _ p3)

I (¬p1 _ p3 _ p5)

Ruben Martins Bug Catching 15 / 35

Unit Propagation

Unit Propagation

I Identify unit clauses:

I Unit clauses: clauses that have exactly one unassigned literal

I Satisfy the unassigned literal by assigning true if it is positive (li)
and false if it is negative (¬li)

I Repeat until fix point

Ruben Martins Bug Catching 16 / 35

DPLL algorithm

let rec dpll (f: formula) : bool =
let fp = bcp f in
match fp with
| Some True -> true
| Some False -> false
| None ->

begin
let p = choose_var f in
let ft = (subst_var f p true) in
let ff = (subst_var f p false) in
dpll ft || dpll ff
end

Ruben Martins Bug Catching 17 / 35

Exercise: DPLL algorithm

Considering the following propositional formula in CNF:

¬x1 _ x2 _ ¬x3 C1

¬x1 _ ¬x2 _ ¬x3 C2

x1 _ ¬x2 _ ¬x3 C3

x1 _ x2 _ ¬x3 C4

¬x1 _ x2 _ x3 C5

x1 _ x2 _ x3 C6

¬x1 _ ¬x2 _ x3 C7

x1 _ ¬x2 _ x3 C8

Start with the following decision and apply the DPLL algorithm with unit

propagation:

1. (1) Decide ¬x1
2. . . .

Ruben Martins Bug Catching 18 / 35

Congruence Closure

Congruence closure

1. Let SP be the set of all terms, and their subterms (recursively), in P .

2. Initialize ⇠= by placing each element of SP in its own congruence

class.

3. For every positive literal s = t in P , merge the congruence classes of

s and t.

4. While ⇠= changes, repeat the following:

4.1 Propagate the congruence axiom, to account for any merged

congruence classes from the previous step. For any s ⇠= t, if
f (. . . , s, . . .) and f (. . . , t, . . .) are currently in di↵erent congruence

classes, then merge them.

5. Check the negative equality literals in P against the computed ⇠=.

I For any s 6= t appearing in P, if s ⇠= t, then return that P is unsat.

I Otherwise, s 6⇠= t for all s 6= t appearing in P, so return that P is sat.

Ruben Martins Bug Catching 19 / 35

Exercise: Congruence closure

Use the congruence algorithm to determine the satisfiability of the

following formula:

f (g(x)) = g(f (x)) ^ f (g(f (y))) = x ^ f (y) = x ^ g(f (x)) 6= x

Ruben Martins Bug Catching 20 / 35

Nelson-Oppen

Nelson-Oppen

The Nelson-Oppen procedure for a formula ' that combines di↵erent

theories consists of:

1. Purification: Purify ' into F1, . . . ,Fn.

2. Apply the decision procedure for Ti to Fi . If there exists i such that

Fi is unsatisfiable in Ti , then ' is unsatisfiable.

3. Equality propagation: If there exists i , j such that Fi Ti -implies an

equality between variables of ' that is not Tj -implied by Fj , add this

equality to Fj and go to step 2.

4. If all equalities have been propagated then the formula is satisfiable.

Ruben Martins Bug Catching 21 / 35

Exercise: Nelson-Oppen algorithm

Solve the following formula using the Nelson-Oppen algorithm:

' = f (x + g(y))  g(a) + f (b)

Ruben Martins Bug Catching 22 / 35

DPLL(T)

DPLL(T)

The key idea behind this framework is to decompose the SMT problem

into parts we can deal with e�ciently:

I Use SAT solver to cope with the Boolean structure of the formula;

I Use dedicated conjunctive theory solver to decide satisfiability in

the background theory.

Ruben Martins Bug Catching 23 / 35

Exercise: DPLL(T)

Use the DPLL(T) algorithm to determine if the following formula is

satisfiable:

' : g(a) = c ^ (f (g(a)) 6= f (c) _ g(a) = d) ^ c 6= d

Ruben Martins Bug Catching 24 / 35

Bounded Model Checking

Bounded Model Checking

BMC computes an underapproximation of a program by assuming that all

loops in the program are unrolled to some fixed, pre-determined finite

depth k .

Ruben Martins Bug Catching 25 / 35

Exercise: From programs to SAT

Consider the domain of the numbers to be {0, 1, 2} and:

I Precondition: number1 can be 0 or 1

I Precondition: number2 can be 0 or 1

I Postcondition: sum will be the sum of number1 and number2

int number1;
int number2;
int sum = number1;
for(int i = 0; i < number2; i++) {

sum += 1; // Increment sum by 1, number2 times
}
assert (sum == number1 + number2);

Write a CNF formula that corresponds to verifying the postcondition.

Ruben Martins Bug Catching 26 / 35

LTL Semantics

LTL Semantics

The truth of LTL formulas in a trace � is defined inductively as follows:

1. � |= F i↵ �0 |= F for a state formula F provided that �0 6= ⇤

2. � |= ¬P i↵ � 6|= P , i.e. it is not the case that � |= P

3. � |= P ^ Q i↵ � |= P and � |= Q

4. � |= XP i↵ �1 |= P

5. � |= ⇤P i↵ �i |= P for all i � 0

6. � |= ⌃P i↵ �i |= P for some i � 0

7. � |= PUQ i↵ there is an i � 0 such that �i |= Q and �j |= P for all

0  j < i

Ruben Martins Bug Catching 27 / 35

Examples of traces satisfying LTL formulas

· · ·

any F any any any

XF

· · · · · ·

F F F F

⇤F

· · · · · ·

¬F ¬F F any

⌃F

· · · · · ·

F ^ ¬G F ^ ¬G F ^ ¬G G

FUG

Ruben Martins Bug Catching 28 / 35

Kripke Structure

Definition (Kripke structure)

I A Kripke frame (W ,y) consists of a set W with a transition

relation y ✓ W ⇥W
I s y t indicates that there is a direct transition from s to t in the

Kripke frame (W ,y)

I The elements s 2 W are called states.

I AKripke structure K = (W ,y, v , I) is a Kripke frame (W ,y) with

a mapping v : W ! 2
V

I 2
V
is the powerset of V assigning truth-values to all the

propositional atoms in all states.

I A Kripke structure has a set of initial states I ✓ W .

Ruben Martins Bug Catching 29 / 35

Kripke Structure

Computation Structure

A Kripke structure K = (W ,y, v , I) is called a computation structure if:

I W is a finite set of states

I every element s 2 W has at least one direct successor t 2 W with

s y t.

Ruben Martins Bug Catching 29 / 35

Exercise: LTL Formulas and Kripke Structures

coin
s0

select
s1

co↵ee
s2

tea
s3

Which formulas are satisfied by this Kripke structure?

I ⇤co↵ee
I ⇤⌃(co↵ee _ tea)
I ⇤(coin ^ Xselect ! ⌃(co↵ee _ tea))

Ruben Martins Bug Catching 30 / 35

Exercise: LTL Formulas

Show that the following LTL formulas are valid using the semantics of

the LTL operators or provide a counterexample if they are incorrect.

1. ⌃(P _ Q) $ ⌃P _ ⌃Q
2. ⇤(P _ Q) $ ⇤P _⇤Q

Ruben Martins Bug Catching 31 / 35

CTL Semantics

CTL Semantics

In a fixed computation structure K = (W ,y, v), the truth of CTL

formulas in state s is defined inductively as follows:

I s |= AXP i↵ all successors t with s y t satisfy t |= P

I s |= EXP i↵ at least one successor t with s y t satisfies t |= P

I s |= A⇤P i↵ all paths s0, s1, s2, . . . starting in s0 = s satisfy si |= P
for all i � 0

I s |= E⇤P i↵ some path s0, s1, s2, . . . starting in s0 = s satisfies

si |= P for all i � 0

Ruben Martins Bug Catching 32 / 35

CTL Semantics

CTL Semantics

In a fixed computation structure K = (W ,y, v), the truth of CTL

formulas in state s is defined inductively as follows:

I s |= A⌃P i↵ all paths s0, s1, s2, . . . starting in s0 = s satisfy si |= P
for some i � 0

I s |= E⌃P i↵ some path s0, s1, s2, . . . starting in s0 = s satisfies

si |= P for some i � 0

I s |= APUQ i↵ all paths s0, s1, s2, . . . starting in s0 = s have some

i � 0 such that si |= Q and sj |= P for all 0  j < i

I s |= EPUQ i↵ some path s0, s1, s2, . . . starting in s0 = s has some

i � 0 such that si |= Q and sj |= P for all 0  j < i

Ruben Martins Bug Catching 32 / 35

Example: Visualization of CTL formulas

p

q

...
...

...

p

p

q
...

q
...

q

...
...

Visualization of a CTL formula: A[PUQ]

Ruben Martins Bug Catching 33 / 35

Example: Visualization of CTL formulas

...
...

...
...

...
...

p
...

Visualization of a CTL formula: E⌃P

Ruben Martins Bug Catching 34 / 35

Exercise: CTL vs. LTL

Show that the following formulas are not equivalent by giving a Kripke

structure that satisfies one formula but not the other:

I LTL formula ⌃⇤P

I CTL formula AFAGP

Ruben Martins Bug Catching 35 / 35

