Bug Catching: Automated Program Verification 15414/15614 Spring 2024 Lecture 23: Review

Ruben Martins

April 16, 2024

Resolution rule

$$\frac{p \lor C \quad \neg p \lor D}{C \lor D} \bowtie_p$$

Show the following CNF formula is unsatisfiable by using resolution to derive the empty clause:

$$\begin{array}{c} \neg x_{1} \lor \neg x_{2} & C_{1} \\ (\searrow x_{1} & (\swarrow z \neg x_{2} \lor x_{3} \neg \zeta_{3} x_{1} \lor x_{2} & C_{2} \\ \neg x_{1} \lor \neg x_{3} & C_{3} \\ \chi_{3} \lor & \chi_{3} \not z & \chi_{3} \not z & \chi_{3} & \zeta_{4} \\ \chi_{3} \lor & \chi_{3} \not z & \chi_{3} & \zeta_{5} \\ & & x_{2} \lor x_{3} & C_{6} \end{array}$$

$$C_1 \bigvee_{X_1} C_2 = \Im X_2 \vee X_2$$

Saturation

- When we are not able to reach a contradiction with resolution, then by necessity the sequence of clauses must reach *saturation*, that is, any further application of resolution will only lead to clauses already in the sequence.
- If we reach saturation without deducing a contradiction and we conclude the initial theory is satisfiable.

Show that the following CNF formula is satisfiable by saturation

$$\begin{array}{cccc}
\neg p \lor \neg q \lor r & C_0 \\
p & & C_1 \\
\neg r & & C_2
\end{array}$$

Robinson's algorithm

Choose an ordering of the variables
$$p_0, p_1, \ldots, p_{n-1}$$

 $M_0 = \{\}$
 $M_{i+1} = M_i \cup \{p_i\}$ provided there is no $C \in S$ s.t. $C \subseteq \overline{M_i \cup \{p_i\}}$
 $M_{i+1} = M_i \cup \{\neg p_i\}$ provided there is a $C \in S$ s.t. $C \subseteq \overline{M_i \cup \{p_i\}}$
 $M = M_n$
Then $M \models S$, as proved by Robinson.

Reconstruct a satisfying assignment using Robinson's algorithm

$\neg p \lor \neg q \lor r$	C_0	P,9,5	
p	C_1	H0=18	
$\neg r$	<i>C</i> ₂	H1=3P41.	
$\neg q \lor r$	$C_3 = C_1 \bowtie_p C_0$		
eg q	$C_4 = C_3 \bowtie_r C_2$	H2 = 5P, 794	
$ eg p \lor eg q$	$C_5 = C_0 \bowtie_r C_2$	578,792	

1704

4

M3 = 4 P, 1 9, 142 478, 9, 712 C2

Tseitin Encoding

- Introduce fresh variables to encode subformulas
- Encode the meaning of these fresh variables with clauses
- Guarantees equisatisfiability with a linear increase in the size of the formula

Unary and binary representations

- 1. Unary representation: a Boolean variable for each possible value
- 2. Binary representation: binary representation of an integer

Suppose we want to encode the domain of an integer variable X = 1, 2, 3Encode the domain of this integer variables using:

► Unary representation ► Binary representation ×, X: J true ×2 (X: V X2 V X3) of least - one (IX: V IX2) (IX: V IX3) (IX: V IX3) (IX: V IX3) (IX: V IX3)

Variables and Constraints

- 1. Define the meaning of variables
- 2. Encode the constraints of the problem into CNF

Exercise: N-Queens

 $CNF(Y_1+X_2+...+X_{1L}=4)$

¥i	Xz	Ŵ	X4
ÿ			
			ÿ
	Ŵ		×.6

- $\begin{array}{c} X_1 \lor Y_2 \lor Y_3 \lor X_4 \\ \neg X_1 \lor \neg X_2 \\ \vdots \end{array}$
- ► There should be 4 queens on the board.
 ×₁ + ×₂ + ×₅ + ×₅ = 1
- Two queens should never be on the same line.
- Two queens should never be on the same column.
- Two queens should never be on the same diagonal.

Status of a Clause under Partial Interpretation

I partial arighment

Status of a clause

Given a partial interpretation I, a clause is:

- Satisfied, if one or more of its literals is satisfied
- Conflicting, if all of its literals are assigned but not satisfied
- Unit, if it is not satisfied and all but one of its literals are assigned
- Unresolved, otherwise

Given the partial interpretation $I = \{p_1, \neg p_2, p_4\}$ what is the status of the following clauses:

- ► (p1 ∨ p3 ∨ ¬p4) satisfied
- $(\cancel{p}_1 \lor \cancel{p}_2) \qquad (\text{out} \ (\cancel{p}_2 \lor \cancel{p}_4 \lor (\cancel{p}_3)) \qquad (\text{out} \ (\cancel{p}_2 \lor \cancel{p}_4 \lor (\cancel{p}_3)) \qquad (\cancel{p}_1 \lor \cancel{p}_3 \lor \cancel{p}_5) \qquad (\cancel{p}_1 \lor \cancel{p}_3 \lor \cancel{p}_5) \qquad (\cancel{p}_1 \lor \cancel{p}_3 \lor \cancel{p}_5) \qquad (\cancel{p}_1 \lor \cancel{p}_2 \lor \cancel{p}_3 \lor \cancel{p}_5) \qquad (\cancel{p}_1 \lor \cancel{p}_1 \lor \cancel{p}_2 \lor \cancel{p}_5) \qquad (\cancel{p}_1 \lor \cancel{p}_2 \lor \cancel{p}_5) \qquad (\cancel{p}_1 \lor \cancel{p}_1 \lor \cancel{p}_2 \lor \cancel{p}_5) \qquad (\cancel{p}_1 \lor \cancel{p}_1 \lor \cancel{p}_2 \lor \cancel{p}_5) \qquad (\cancel{p}_1 \lor \cancel{p}_2 \lor \cancel{p}_1 \lor \cancel{p}_2 \lor \cancel{p}_1 \lor \cancel{p}_2 \lor \cancel{p}_2 \lor \cancel{p}_2 \lor \cancel{p}_2 \lor \cancel{p}_1 \lor \cancel{p}_2 \lor (\cancel{p}_2 \lor (@(1)) \lor (@(1))$

Unit Propagation

- Identify unit clauses:
 - Unit clauses: clauses that have exactly one unassigned literal
- Satisfy the unassigned literal by assigning true if it is positive (*l_i*) and false if it is negative (¬*l_i*)
- Repeat until fix point

```
let rec dpll (f: formula) : bool =
   let fp = bcp f in
   match fp with
   | Some True -> true
   | Some False -> false
   | None ->
    begin
   let p = choose_var f in
   let ft = (subst_var f p true) in
   let ff = (subst_var f p false) in
   dpll ft || dpll ff
   end
```

Considering the following propositional formula in CNF:

$$\begin{array}{c} & & & \\ (\neg x) \lor \checkmark x_2 \lor \neg x_3 & C_1 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_2 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_3 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_3 \\ (\neg x) \lor \checkmark x_2 \lor \neg x_3 & C_4 \\ (\neg x) \lor x_2 \lor \neg x_3 & C_4 \\ (\neg x) \lor x_2 \lor \neg x_3 & C_5 \\ (\neg x) \lor x_2 \lor \neg x_3 & C_5 \\ (\neg x) \lor x_2 \lor x_3 & C_5 \\ (\neg x) \lor \neg x_2 \lor x_3 & C_6 \\ (\neg x) \lor \neg x_2 \lor x_3 & C_6 \\ (\neg x) \lor \neg x_2 \lor x_3 & C_7 \\ (\neg x) \lor \neg x_2 \lor x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 & C_8 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 \\ (\neg x) \lor \neg x_3 \\ (\neg x) \lor \neg x_2 \lor \neg x_3 \\ (\neg x) \lor \neg x_3 \\ (\neg$$

1

Start with the following decision and apply the DPLL algorithm with unit propagation:

1. (1) Decide
$$\neg x_1$$

2. . . .

Congruence closure

- 1. Let S_P be the set of all terms, and their subterms (recursively), in P.
- 2. Initialize \cong by placing each element of S_P in its own congruence class.
- 3. For every positive literal *s* = *t* in *P*, merge the congruence classes of *s* and *t*.
- 4. While \cong changes, repeat the following:
 - 4.1 Propagate the congruence axiom, to account for any merged congruence classes from the previous step. For any $s \cong t$, if $f(\ldots, s, \ldots)$ and $f(\ldots, t, \ldots)$ are currently in different congruence classes, then merge them.
- 5. Check the negative equality literals in P against the computed \cong .
 - For any $s \neq t$ appearing in P, if $s \cong t$, then return that P is unsat.
 - Otherwise, $s \ncong t$ for all $s \neq t$ appearing in *P*, so return that *P* is sat.

Use the congruence algorithm to determine the satisfiability of the following formula: $f(g(x)) = g(f(x)) \land f(g(f(y))) = x \land f(y) = x \land g(f(x)) \neq x$

Nelson-Oppen

The Nelson-Oppen procedure for a formula φ that combines different theories consists of:

- 1. **Purification**: Purify φ into F_1, \ldots, F_n .
- 2. Apply the decision procedure for T_i to F_i . If there exists *i* such that F_i is unsatisfiable in T_i , then φ is unsatisfiable.
- 3. Equality propagation: If there exists i, j such that F_i T_i -implies an equality between variables of φ that is not T_j -implied by F_j , add this equality to F_j and go to step 2.
- 4. If all equalities have been propagated then the formula is satisfiable.

Exercise: Nelson-Oppen algorithm

$$\frac{P_{urifichion}}{T_{R}} = \frac{T_{Eur}}{T_{Eur}}$$

$$\mu_{4} = \chi + \mu_{1} \qquad \mu_{1} = g(\chi) \qquad \mu_{5} = f(\mu_{4})$$

$$\mu_{5} \leq \mu_{2} + \mu_{3} \qquad \mu_{2} = g(a) \qquad \Lambda$$

$$\mu_{5} \leq \mu_{2} + \mu_{3} \qquad \mu_{3} = f(b) \qquad \Lambda$$

Solve the following formula using the Nelson-Oppen algorithm:

$$\varphi = f(x + g(y)) \le g(a) + f(b)$$

$$\mu_1 \qquad \mu_2 \qquad \mu_3$$

$$\overline{f_{qua}} \qquad \overline{f_{pua}} \qquad \overline{f_{$$

DPLL(T)

The key idea behind this framework is to decompose the SMT problem into parts we can deal with efficiently:

- ► Use SAT solver to cope with the **Boolean structure** of the formula;
- Use dedicated conjunctive theory solver to decide satisfiability in the background theory.

Exercise: DPLL(T)

Theory SAT

$$\begin{array}{c|c}
\hline g(a) = C \\
f(g(a)) \neq f(c) \\
g(a) = d \\
f(g(a)) \neq f(c) \\
f(g(a)) \neq f$$

Use the DPLL(T) algorithm to determine if the following formula is satisfiable:

$$\varphi: \underline{g(a)} = c \land (f(\underline{g(a)}) \neq f(c) \lor \underline{g(a)} = d) \land c \neq d$$

$$\overline{P_1} \qquad \overline{P_2} \qquad \overline{P_3} \qquad \overline{r_4}$$

$$\overline{I} = h \ p_1 \ p_2 \ p_3 \ r_4$$

Bounded Model Checking

BMC computes an *underapproximation* of a program by assuming that all loops in the program are unrolled to some fixed, pre-determined finite depth k.

Exercise: From programs to SAT

Consider the domain of the numbers to be $\{0, 1, 2\}$ and: Sum [2, 3, 2]

- Precondition: number1 can be 0 or 1
- Precondition: number2 can be 0 or 1
- Postcondition: sum will be the sum of number1 and number2

(7 number, V (number 1) int number1; (number, v number,) int number2; int sum = number1; number A com > Sum2 for(int i = 0; i < number2; i++) {</pre> number 2 times i humber 2 A sum - Sum 2 sum += 1; // Increment sum by 1, } assert (sum == number1 + number2);

Write a CNF formula that corresponds to verifying the postcondition.

numbers numbers

Sun 2°, sun, sun

LTL Semantics

The truth of LTL formulas in a trace σ is defined inductively as follows:

- 1. $\sigma \models F$ iff $\sigma_0 \models F$ for a state formula F provided that $\sigma_0 \neq \Lambda$
- 2. $\sigma \models \neg P$ iff $\sigma \not\models P$, i.e. it is not the case that $\sigma \models P$

3.
$$\sigma \models P \land Q$$
 iff $\sigma \models P$ and $\sigma \models Q$

4.
$$\sigma \models \mathbf{X}P$$
 iff $\sigma^1 \models P$

5.
$$\sigma \models \Box P$$
 iff $\sigma^i \models P$ for all $i \ge 0$

6.
$$\sigma \models \Diamond P$$
 iff $\sigma^i \models P$ for some $i \ge 0$

7. $\sigma \models P\mathbf{U}Q$ iff there is an $i \ge 0$ such that $\sigma^i \models Q$ and $\sigma^j \models P$ for all $0 \le j < i$

Examples of traces satisfying LTL formulas

Definition (Kripke structure)

- A Kripke frame (W, ∩) consists of a set W with a transition relation ∩ ⊆ W × W
 - ▶ $s \sim t$ indicates that there is a direct transition from s to t in the Kripke frame (W, \sim)
 - The elements $s \in W$ are called states.
- ► AKripke structure $K = (W, \frown, v, I)$ is a Kripke frame (W, \frown) with a mapping $v : W \to 2^V$
 - 2^V is the powerset of V assigning truth-values to all the propositional atoms in all states.
 - A Kripke structure has a set of initial states $I \subseteq W$.

Computation Structure

A Kripke structure $K = (W, \curvearrowright, v, I)$ is called a *computation structure* if:

- ► W is a finite set of states
- every element $s \in W$ has at least one direct successor $t \in W$ with $s \curvearrowright t$.

Exercise: LTL Formulas and Kripke Structures

Which formulas are satisfied by this Kripke structure?

- ► □ coffee Fclse
- ► □◊(coffee ∨ tea) True
- $\blacktriangleright \Box(\mathit{coin} \land \mathsf{X}\mathit{select} \to \Diamond(\mathit{coffee} \lor \mathit{tea})) \ \texttt{frue}$

Show that the following LTL formulas are valid using the semantics of the LTL operators or provide a counterexample if they are incorrect.

- 1. $\Diamond (P \lor Q) \leftrightarrow \Diamond P \lor \Diamond Q$
- 2. $\Box(P \lor Q) \leftrightarrow \Box P \lor \Box Q$

CTL Semantics

In a fixed computation structure $K = (W, \frown, v)$, the truth of CTL formulas in state *s* is defined inductively as follows:

- $s \models \mathsf{AX}P$ iff all successors t with $s \frown t$ satisfy $t \models P$
- $s \models \mathsf{EXP}$ iff at least one successor t with $s \frown t$ satisfies $t \models P$
- ► $s \models A \Box P$ iff all paths $s_0, s_1, s_2, ...$ starting in $s_0 = s$ satisfy $s_i \models P$ for all $i \ge 0$
- ▶ $s \models \mathbf{E} \square P$ iff some path $s_0, s_1, s_2, ...$ starting in $s_0 = s$ satisfies $s_i \models P$ for all $i \ge 0$

CTL Semantics

In a fixed computation structure $K = (W, \frown, v)$, the truth of CTL formulas in state *s* is defined inductively as follows:

- ► $s \models \mathbf{A} \Diamond P$ iff all paths s_0, s_1, s_2, \ldots starting in $s_0 = s$ satisfy $s_i \models P$ for some $i \ge 0$
- ▶ $s \models \mathbf{E} \Diamond P$ iff some path s_0, s_1, s_2, \ldots starting in $s_0 = s$ satisfies $s_i \models P$ for some $i \ge 0$
- ▶ $s \models APUQ$ iff all paths $s_0, s_1, s_2, ...$ starting in $s_0 = s$ have some $i \ge 0$ such that $s_i \models Q$ and $s_j \models P$ for all $0 \le j < i$
- ► $s \models \mathsf{E}P\mathsf{U}Q$ iff some path s_0, s_1, s_2, \ldots starting in $s_0 = s$ has some $i \ge 0$ such that $s_i \models Q$ and $s_j \models P$ for all $0 \le j < i$

Example: Visualization of CTL formulas

Visualization of a CTL formula: A[PUQ]

Example: Visualization of CTL formulas

Visualization of a CTL formula: $\mathbf{E} \Diamond P$

Show that the following formulas are not equivalent by giving a Kripke structure that satisfies one formula but not the other:

