Bug Catching: Automated Program Verification

15414/15614 Spring 2024

Lecture 23: Review

Ruben Martins

April 16, 2024

Ruben Martins Bug Catching

1/

Resolution

Resolution rule

pVvC —-pVvD
CvD

Ruben Martins Bug Catching 2/35

Exercise: Resolution

Show the following CNF formula is unsatisfiable by using resolution to
derive the empty clause:

-x1V-x G C, = q XLV X7_
C\Mx'Cq ?—\X?_\IX'} :C)Xl V Xo C2 C‘ Pq)‘, 3
Cq'qr(e: -x1V-x3 G
+

= <z C X1 \/X3 C4
x3 v K? ‘K3 L X% V-x3 Cs

X2 V X3 Gs

Ruben Martins Bug Catching 3/35

Saturation

» When we are not able to reach a contradiction with resolution, then
by necessity the sequence of clauses must reach saturation, that is,

any further application of resolution will only lead to clauses already
in the sequence.

» |If we reach saturation without deducing a contradiction and we
conclude the initial theory is satisfiable.

Ruben Martins Bug Catching

Exercise: Saturation

Show that the following CNF formula is satisfiable by saturation
pV-gVr G

p G
-r C2

Ruben Martins Bug Catching 5/35

Reconstructing a Satisfying Assignment

Robinson's algorithm

Choose an ordering of the variables pg, p1, ..., pr—1 —

Mo =)]
My = M U{p} provided there isno C € Ss.it. C C M; U {p;}
Miz1 = M;U{-p;} provided thereisa C € Sst. CC M;U {pL}

M = M,

Then M = S, as proved by Robinson.

Ruben Martins Bug Catching 6 /35

Exercise: Robinson’s Algorithm

Reconstruct a satisfying assignment using Robinson’s algorithm

pV-agVvr G ?/‘l,(

P G Ho:"}

-r G =).'h’s'
—qVr C3:C11><lpC0 “' 5?‘(1

~q G=Gx G My =419}

—pV - G =G, C

PYRT BT 4qe,04t G

H;:J,?,'!q/'lf‘l

j)"?/ c\/." f} CL

Ruben Martins Bug Catching 7/ 35

Tseitin Encoding

Tseitin Encoding

» Introduce fresh variables to encode subformulas
» Encode the meaning of these fresh variables with clauses

» Guarantees equisatisfiability with a linear increase in the size of the
formula

Ruben Martins Bug Catching 8/

Exercise: Tseitin Encoding

Use the Tseitin Encoding to transform the following propositional

formula to CNF: @
¢=(xA=y)V(zV(xA-w)) /N
D T @
* b X
(&V 3V L) A x Y
a 9 (LAY "y & 5 (xn3)
b) (xATwW) "\avur\‘\y);(‘lavﬂ"

(& v¥)
Gyl a z(xvyva)

Ruben Martins Bug Catching 9/35

Unary and Binary Representations

Unary and binary representations

1. Unary representation: a Boolean variable for each possible value
2. Binary representation: binary representation of an integer

Ruben Martins Bug Catching 10 / 35

Exercise: Representing Integer Variables in SAT

Suppose we want to encode the domain of an integer variable X 5’1, 2, 3l(
Encode the domain of this integer variables using:

» Unary representation X, AL T rve
» Binary representation X1 X s eloe
*3 -

(X‘\/\('LV>(3) o < \eont - oue

(1x.iv X &T-Mg}fl—_o\,.r_
(1% v Xy)

L"XL\I’\X})

Ruben Martins Bug Catching 11 /35

SAT Encodings

Variables and Constraints

1. Define the meaning of variables

2. Encode the constraints of the problem into CNF

Ruben Martins Bug Catching 12 /35

Exercise: N-Queens

CVF (Fiextt - 4 %ie T W)

i

X1

oy

XKy

w

w

Ruben Martins

Bug Catching

KivRq V¥ Xy v Xy
AN VN
:)
There should be 4 queens on
the board. LTI R TS S i TN

Two queens should never be
on the same line.

Two queens should never be
on the same column.

Two queens should never be
on the same diagonal.

13 /35

Status of a Clause under Partial Interpretation
{c\ﬁ"& G)NSMW

Status of a clause

Given a partial interpretation /, a clause is:
» Satisfied, if one or more of its literals is satisfied
» Conflicting, if all of its literals are assigned but not satisfied
» Unit, if it is not satisfied and all but one of its literals are assigned

» Unresolved, otherwise

Ruben Martins Bug Catching

14 / 35

Exercise: Status of Clauses

Y

e
Q7 g
¢

Given the partial interpretation / = {p1, 7p2, pa} what is the status of
the following clauses:

> (o VpsVops) Secesfhed
> (D¢ V%) (o~ F
> (VW V(Pz) X

> (—\)g{{\/ p3 V ps) UV\(Q_(O\VCA

Ruben Martins Bug Catching 15 /35

Unit Propagation

Unit Propagation

» Identify unit clauses:
» Unit clauses: clauses that have exactly one unassigned literal

» Satisfy the unassigned literal by assigning true if it is positive (/;)
and false if it is negative (—/;)

» Repeat until fix point

Ruben Martins Bug Catching 16 / 35

DPLL algorithm

let rec dpll (f: formula) : bool =
let fp = bcp f in
match fp with
| Some True -> true
| Some False -> false

| None ->
begin
let p = choose_var f in
let ft = (subst_var f p true) in
let ff = (subst_var f p false) in
dpll ft || dpll f£ff

end

Ruben Martins Bug Catching 17 / 35

Exercise: DPLL algorithm

Considering the following propositional formula in CNF:
Decde K
@V}QV—'X3 G ph?csé(1)&3 @ G

Sx)VEX)V —x3 G -
%5 X3 G Cnfct (3

VeV oxs G CypraCg = %1 YNX1L = o
X3
X1 >5Q\/X3 G
7)@\/X3 C6 %cr_\l “-v\cck X

VERDV x3 G Prepegede X @ Cq
VX))V X3 Gs

Start with the following decision and apply the DPLL algorithm with unit
propagation:

1. (1) Decide —x;
2. ...

Ruben Martins Bug Catching 18 / 35

Congruence Closure

Congruence closure

1. Let Sp be the set of all terms, and their subterms (recursively), in P.

2. Initialize = by placing each element of Sp in its own congruence
class.

3. For every positive literal s = t in P, merge the congruence classes of
s and t.

4. While = changes, repeat the following:
4.1 Propagate the congruence axiom, to account for any merged

congruence classes from the previous step. For any s £ ¢, if
f(...,s,...)and f(...,t,...) are currently in different congruence

classes, then merge them.
5. Check the negative equality literals in P against the computed 2.

» For any s # t appearing in P, if s & t, then return that P is unsat.
» Otherwise, s 2 t for all s # t appearing in P, so return that P is sat.

Ruben Martins Bug Catching 19 /35

Exercise: Congruence closure

Use the congruence algorithm to determine the satisfiability of the
following formula:

f(g(x)) = g(f(x)) A f(g(Ff(¥))) = x A fy) = x N g(F(x)) # x

Ruben Martins Bug Catching 20 /35

Nelson-Oppen

Nelson-Oppen

The Nelson-Oppen procedure for a formula ¢ that combines different
theories consists of:

1. Purification: Purify ¢ into Fq,..., F,.

2. Apply the decision procedure for T; to F;. If there exists i such that
F; is unsatisfiable in T;, then ¢ is unsatisfiable.

3. Equality propagation: If there exists 7, such that F; T;-implies an
equality between variables of ¢ that is not Tj-implied by F;, add this
equality to F; and go to step 2.

4. If all equalities have been propagated then the formula is satisfiable.

Ruben Martins Bug Catching 21 /35

Exercise: Nelson-Oppen algorithm

Mg s xde o p
M &
S SMuaky oy = g(\o) N
Solve the following formula usirxgﬁthe Nelson-Oppen algorithm:

p="f(x+gly)) <gla)+f(b)
N M M3

ms
Fcrw [\—\-7 ?cn?aaa}\‘o'«
T | Teer

Ruben Martins Bug Catching

DPLL(T)
The key idea behind this framework is to decompose the SMT problem
into parts we can deal with efficiently:

» Use SAT solver to cope with the Boolean structure of the formula;

» Use dedicated conjunctive theory solver to decide satisfiability in
the background theory.

Ruben Martins Bug Catching 23 /35

Exercise: DPLL(T)

/\\-Qarj SAV
= 9(0&':0'\ (Pll\k'l(’-._\/ Pj\f\ 1?5),\
(i(a(ﬂ\tf@?" TCoA A B n i)
59 = AN
c+Ad
Use the DPLL(T) algorithm to determine if the following formula is

satisfiable:
¢:g(a) = c A (F(g(a) # F(c) Vg(a) =d) Ac £ d
i P %3 Ty

Toh P, 10y AN

Ruben Martins Bug Catching 24 /35

Bounded Model Checking

Bounded Model Checking

BMC computes an underapproximation of a program by assuming that all
loops in the program are unrolled to some fixed, pre-determined finite

depth k.

Ruben Martins Bug Catching

Exercise: From programs to SAT

*\uw«\ﬂcf / “gw‘-.w—,,‘
hombRry |, woeabar

Consider the domain of the numbers to be {0, 1,2} and: Somm L, sum)
» Precondition: numberl can be 0 or 1

° =
Stue +r oy 50-«{_ ; Soun
o e “€
» Precondition: number2 can be 0 or 1
» Postcondition: sum will be the sum of numberl and number2
N N = |
int numberd; (humb lr‘v v nuw\Jr:) () wober | vTavnixe 4]
int number?2;
int sum = numberl; o o]
for(int i = 0; i < number2; i++) { “"““]"’1,'\&.:0*1 S Somra

sum += 1; // Increment sum by 1, number2 times -

(
hv'—ak/: Ia Su""‘] 4 S"““"Il

}

assert (sum == numberl + number2);

Write a CNF formula that corresponds to verifying the postcondition.

Ruben Martins Bug Catching 26 / 35

LTL Semantics

LTL Semantics

The truth of LTL formulas in a trace o is defined inductively as follows:
1. o |E F iff g | F for a state formula F provided that g # A

o = —P iff o £ P, i.e. it is not the case that o = P

cE=PAQIiffol=Pando = Q

ocEXPiffol =P

o= OPiffo’ = Pforalli>0

o = QP iff o' = P for some i >0

o = PUQ iff there is an i > 0 such that o/ = Q and ¢/ |= P for all
0<j<i

N o a ks wd

Ruben Martins Bug Catching 27 / 35

(7]
s
>
=
—
L
—
_I
-
b0
=
ey
R0
s}
[gv}
(7]
w)
Q
O
[0
—
-
G
(@)
w)
Q
o
£
L)
X
L

FUG

Kripke Structure

Definition (Kripke structure)

» A Kripke frame (W, ~) consists of a set W with a transition
relation ~ C W x W
» s t indicates that there is a direct transition from s to t in the
Kripke frame (W, ~)
» The elements s € W are called states.
» AKripke structure K = (W, ~, v, 1) is a Kripke frame (W, ~) with
a mapping v : W — 2V
» 2V is the powerset of V assigning truth-values to all the
propositional atoms in all states.
» A Kripke structure has a set of initial states /| C W.

Ruben Martins Bug Catching 29 /35

Kripke Structure

Computation Structure

A Kripke structure K = (W, ~, v, 1) is called a computation structure if:
» W is a finite set of states

» every element s € W has at least one direct successor t € W with
st

Ruben Martins Bug Catching 29 /35

Exercise: LTL Formulas and Kripke Structures

W GeT Golpee gy
30—~ 09005

Which formulas are satisfied by this Kripke structure?
» [coffee Fclg(_
> O (coffee V tea) '\ cut
» [I(coin A Xselect — {(coffee \V tea)) \ cut

Ruben Martins Bug Catching 30 /35

Exercise: LTL Formulas

Show that the following LTL formulas are valid using the semantics of
the LTL operators or provide a counterexample if they are incorrect.

1. O(PVQ) & OPVOQ
2. 0PV Q)+ OPVOQ

Ruben Martins Bug Catching 31/35

CTL Semantics

CTL Semantics

In a fixed computation structure K = (W, ~, v), the truth of CTL
formulas in state s is defined inductively as follows:

» s = AXP iff all successors t with s ~ t satisfy t = P
» s = EXP iff at least one successor t with s ~ ¢ satisfies t = P

» s = AOP iff all paths sp, 51, S, . .. starting in sp = s satisfy s; = P
foralli>0

» s = EOP iff some path sp, 51, Sy, ... starting in sop = s satisfies
si = Pforalli>0

Ruben Martins Bug Catching 32 /35

CTL Semantics

CTL Semantics

In a fixed computation structure K = (W, ~, v), the truth of CTL
formulas in state s is defined inductively as follows:
» s = AQP iff all paths sp, 51, S, ... starting in sp = s satisfy s; = P
for some i >0

» s = EQP iff some path sp, 51,5, ... starting in sp = s satisfies
s; = P for some i >0

» s = APUQ iff all paths s, s1, S, . .. starting in sp = s have some
i >0 such that s; = Q and sj =P forall 0 < j <

» s = EPUQ iff some path sy, s, s, . .. starting in sp = s has some
i >0 such that s; = Q and sj =P forall 0 < j <

Ruben Martins Bug Catching 32 /35

Example: Visualization of CTL formulas

Visualization of a CTL formula: A[PUQ)]

Example: Visualization of CTL formulas

Visualization of a CTL formula: EQP

Exercise: CTL vs. LTL

Show that the following formulas are not equivalent by giving a Kripke
structure that satisfies one formula but not the other:

» LTL formula OOOP (Tug

» CTL f la AFAGP) Q Q
AT (0 (DD
$

S ® -
G

_
@& N
<N 79
r y U
)

Ruben Martins Bug Catching 35 /35

v
A4

G @« @

