Lab 4 - Part II: verifying a SAT solver with
unit propagation and improvements

15-414: Automated program verification

Lab goals

In this lab, you will continue your work on verifying a SAT solver with unit propagation.
You will also improve your SAT solver with at least one of the techniques described in

this lab handout.

Lab instructions

This lab is due on Tuesday, 4th December. You should now have a functional correct version
of your SAT solver with unit propagation. However, to guarantee that your SAT solver is fully
correct, you must augment your code with correct and complete specifications and
prove their validity using Why3. Your SAT solver can be further improved by implementing
at least one of the following techniques:

e Pure literal rule;

Failed literal rule;

Probing;

Adding clauses via resolution;

Variable elimination;

Adjacency data structures.



These techniques are briefly described in this handout. E| You can choose any of these
techniques E| and you are not restricted to the template provided in this lab handout (i.e.,
you can change the signature of the functions). Since fully verifying these additional im-
provements can be challenging, we will accept partially verified solutions. If you implement
and verify more than one improvement or are able to fully verify your code than you will
receive bonus points. The final submission of this lab will be used in the SAT verified

competition where the authors of the best SAT solvers will receive Amazon vouchers.

1 Lab 4 - Part II

Every subsection below corresponds to a section in the template file. In this lab handout
we only describe the sections for improving your SAT solver. We assume that this will be an
extension to your existing code and you will reuse your fully verified SAT solver with unit
propagation. Please refer to the previous lab handout for the description of the functions
for unit propagation. Note that you do only need to implement at least one of these
improvements. If you choose of the of the suggestions from Sections 1.1 to 1.5 than you
should read Section 1.6 to see how you can integrate these techniques with your current

SAT solver.

!"'We refer to the lecture notes for more details on each technique. Available at https://www.cs.cmu.

edu/~15414/lectures/20-sat-techniques.pdf.
“Tf you want to implement a technique not in this list (e.g., clause learning, lazy data structures) then

contact the instructors and we will provide you with further assistance.


https://www.cs.cmu.edu/~15414/lectures/20-sat-techniques.pdf
https://www.cs.cmu.edu/~15414/lectures/20-sat-techniques.pdf

1.1 Pure literal rule

Any atom that only appears in either positive or negative literals is called pure, and their
corresponding atoms must always be assigned in a way that makes the literal true. Thus,
they do not constrain the problem in a meaningful way, and can be assigned without
making a choice. This is called pure literal elimination and is one type of simplification
that can be applied to CNF formulas. Consider the following CNF formula:

(1 Vo) A(—z1 V) A(x1 V—xe V) A(—xy Vxe V x3)

—— ~
C 0 C 1 CQ CS

Notice that x5 appears only as a positive literal in this formula. Hence, we can assign

x3 to true and satisfy the literal. This procedure will simplify the above formula into:

(xl vV xg) A (—\.7}1 V .TQ) A (.%1 V —x9 V ZL‘3) A (—&'1 VaxrV :E3)
(Vo)A (mzr Va) Al Vg VT)A (g Vo V)

— (.Tl V 1’2) A (—\.7}1 vV xg)

Task Implement the pure_literal_rule function, which is specified as follows:
let pure_literal_rule (1: 1lit) (cnf: cnf) : bool =

This function should return true if the literal 1 is a pure literal in the CNF formula
cnf and false otherwise. Notice that if a literal is pure than you can add it to the formula
as a unit clause. You can use this function to check if there exists any pure literals in
cnf. The pure literal rule is one of the simplest improvements that can be done and
verified. However, oftentimes there are no pure literals in a formula and there may be no

performance gains to sat solver.

1.2 Failed literal rule

BCP can also be used as a simplification technique. Let ¢ be a propositional formula, and

l; (—l;) a literal to be propagated. If propagating I; (—l;) in ¢ leads to a conflict, than we



can conclude that [; (—l;) must be assigned to false (true) in all interpretations I of ¢. We
call this procedure the failed literal rule.

Consider the following CNF formula:

(.%'2 V 1'3) A (—L%'l V ﬁ1‘3) A (—|$1 V —xo V .%'3) VAN (1‘0 ViV —|:L'3) AN (—L%'() VoV 373)
——
Co Cl Cz 03 C4

Performing BCP with the interpretation I = {z;} leads to:

xaVas) AN(LV-x3) A (LV-xaVas)A(xgVTV-oxs)A(—zoV T Vaes)
(2 Va3) A (mx3) A (—z2 V x3)
< (z2VL)A(T)A(mag VvV L)

<~

(
(
(
(z2) A (72)

Since propagating z; leads to a conflict and no other decision has been made, then it
means that 1 needs to be assigned to false in all interpretations of ¢, i.e. we can add the

unit clause () to the formula.

Task Implement the failed_literal_rule function, which is specified as follows:
let failed_literal_rule (1: 1lit) (cnf: cnf) : bool =

This function should return true if the literal 1 is a failed literal and false otherwise.
Notice that you should take advantage of your set_and propagate function to find out if
a literal 1 is a failed literal or not. You can use this function to check if there exists any
failed literals in cnf. Notice that if [ is a failed literal then you can add (—l) as a unit

clause to the formula.

1.3 Probing

BCP can also be used for probing. The key idea behind probing is to propagate [; and —i;
and see if any literal /; is implied by both propagations. If this is the case than we can

conclude that /; must be assigned to true in all interpretations of (.



Consider the following CNF formula:

(ZL‘l V 1‘2) VAN (—|ZL‘1 V 1‘2) VAN (:L‘1 V —x9 V 1'3) VAN (—|1'1 V a2 V :Eg)
—— ~~

C 0 C 1 02 CS

When we propagate x1 and —x1, we have the following:
e BCP(p,71) = {22}
b BCP(QO7 _‘1'1) = {xQ}

Therefore, we can conclude that xo must be assigned to true in all interpretations of

the formula.

Task Implement the probing function, which is specified as follows:
let probing (v: var) (cnf: cnf) : list lit =

This function should use set_and propagate to propagate v with values true and
false. The output should be the list of literals that are propagates with both values.
The list should be empty if no such literal exists. These literals can then be added to the

formula as unit clauses.

1.4 Adding clauses via resolution
We refer to the lecture notes of Lecture 20 on how to use resolution to derive resolvents:

https://www.cs.cmu.edu/~15414/lectures/20-sat-techniques.pdf

Task Implement the resolve function, which is specified as follows:
let resolve (a: clause) (b: clause) (1: lit) : option clause =

This function should resolve this two clauses and return its resolvent. If the clauses
cannot be resolved (i.e., the literal 1 does not appear with different values in a and b) then
the function should return None.

It may also be helpful to check if the resolved clause is a tautology. A clause is a

tautology if it contains a literal 1 with both true and false values.


https://www.cs.cmu.edu/~15414/lectures/20-sat-techniques.pdf

Task Implement the tautology function, which is specified as follows:
let tautology (a: clause) : bool =

This function returns true if the clause a is a tautology and false otherwise.

1.5 Variable elimination

We refer to the lecture notes of Lecture 20 on how to use resolution to perform variable

elimination:

https://www.cs.cmu.edu/~15414/lectures/20-sat-techniques.pdf

Task Implement the eliminate function, which is specified as follows:
let eliminate (v: var) (cnf: cnf) : cnf =

This function will eliminate variable v from the cnf formula and return a new formula
with one less variable and with the resolvents of all clauses that contained the literal with
var=v and value=true/false.

You may want to declare an auxiliary function that returns the list of clauses of all

resolvents:

Task Implement the eliminate_clauses function, which is specified as follows:
let eliminate_clauses (v: var) (cnf: cnf) : list clause =

This function will return the resolvents of all clauses that contained the literal with
var=v and value=true with the clauses that contained the this literal with value=false.
See the lecture notes for an example of variable elimination. Note that in practice, you
may want to perform bounded variable elimination, i.e. if the number of clauses that you
eliminated from the formula is smaller or equal to the number of clauses that you are
adding to the formula than you eliminate the variable; otherwise you don’t. Eliminating
all variables will incur an exponential blow up in memory and is not advisable for practical
SAT solving. Variable elimination is one of the most important simplification techniques

used by SAT solvers. However, its implementation and verification can be very challenging.


https://www.cs.cmu.edu/~15414/lectures/20-sat-techniques.pdf

1.6 Putting all pieces together

All the techniques described up to this point can be seen as transforming a formula ¢ into an
equivalent or equisatisfiable formula ¢. Note that two formulas ¢ and ¢ are equisatisfiable
iff when ¢ is satisfiable then ¢ is also satisfiable. However, the interpretation that satisfies
 does not need to be the same as the one that satisfies ¢. Equisatisfiability is a weaker
specification than equivalence E] but will be accepted for this lab. When proving formula
equivalence, you would need to prove that if a given interpretation I satisfies ¢ then the

same interpretation will satisfy ¢.
Task Implement the transform function, which is specified as follows:
let transform (cnf : cnf) : cnf =

You can use either a specification for formula equivalence:

ensures { forall rho:valuation. sat_with rho cnf <-> sat_with rho result }

ensures { unsat cnf <-> unsat result }
Or a specification for equisatisfiability:

ensures { forall rho:valuation. sat_with rho cnf ->

exists rho’:valuation. sat_with rho’ result }
ensures { forall rho’:valuation. sat_with rho’ result ->

exists rho:valuation. sat_with rho result }

ensures { unsat cnf <-> unsat result }

Challenge Can you verify either equisatisfiability or equivalence of your transformation?
You can then integrate the transform function inside the sat function by calling trans-

form before solving the CNF formula:

let sat (cnf : cnf) : option valuation =

ensures { forall rho:valuation. result = Some rho -> sat_with rho cnf }

3From the techniques presented in this handout only variable elimination does not preserve equivalence.



ensures { result = None -> unsat cnf }

let cnf’ = transform cnf in

Challenge Can you still verify your sat function when transforming the formula?

1.7 Adjacency data structures

Contrary to the previous optimizations, changing the underlying data structure will not
modify the CNF formula in any way. One optimization that we discuss in the lecture notes
is to associate each clause with 2 counters. One counter will count the number of current

satisfied literals, whereas the other counter will count the number of unsatisfied literals.

Task Create new types that will map each clause to 2 counters. You will also need a

map between a literal and a list of clauses than contain that literal.

Task Update your code to take advantage of this information:
e partial_eval _clause can be defined without recursion just by checking the counters

e backtrack needs to update the counters by decreasing the corresponding counters of

clauses that contains the literals that are unassigned

e set_and propagate needs to update the counters by increasing the corresponding

counters of clauses that contains the literals that are assigned

Challenge Can you make all your functions verify with these changes? Note that mod-
ifying the above functions to use new types will have a cascade effect and may require
significant effort to be verified. The main advantage of this technique is that avoids the
recursive procedure of partial_eval_clause and will significantly speedup your unit prop-

agation procedure.



2 What to hand back

Since we will use different criteria for the specifications that guarantee the correctness of
your SAT solver with unit propagation (functions from Lab 4 - Part I) and for the functions
describing the improvements (where we will accept partially verified solutions), you must
submit two files, unit-sat.mlw and final-sat.mlw.

Do not forget to save the current proof session when exiting Why3 IDE. Before you do,
though, use the “Clean” command of the IDE on the topmost node of your session tree
in order to remove unsuccessful proof attempts. Then, generate a HTML summary of your

proof sessions using the following command:

why3 session html unit-sat.mlw
why3 session html final-sat.mlw

This should create a HTML file in your session folder. Open it and make sure that every
goal you proved appears in green in the leftmost column. Finally, hand back an archive

containing:
1. The completed unit-sat.mlw file

2. The completed final-sat.mlw file (this will be mostly a copy of unit-sat.mlw
with some additional improvements). This will be the file used for the verified SAT

competition
3. The session folder generated by Why3 IDE for both files, including a HTML summary

4. If appropriate, an ASCII text file ReadMe . txt containing any comment you may want

to share with us



	Lab 4 - Part II
	Pure literal rule
	Failed literal rule
	Probing
	Adding clauses via resolution
	Variable elimination
	Putting all pieces together
	Adjacency data structures

	What to hand back

