Due:

Assignment 2: Program it Out
15-414/15-424 Bug Catching: Automated Program Verification

11:59pm, Tuesday, February 4

Total Points: 50

1.

Find the precondition (10 points) Consider the following program.
a=z:=z+1;7(x>0)y:=y+x

Your job is to find a precondition P that makes the following DL formula valid, and prove that this is
the case using the axioms introduced in lecture.

P = [a](z+ 2y > 3)

Be sure to explain how you arrived at your precondition. Hint: can you use the axioms directly to
figure out the precondition, and reuse your work for the proof?

. Not so fast... (15 points) In the notes for Lecture 2, we somewhat casually concluded that the

following two contracts for the gcd program were equivalent.

[gcd]postdiv A [ged|postgrt
[gcd](postdiv A postgrt)

Justify our conclusion by showing that the box modality distributes across conjunction. That is, use
the semantics of DL to prove that the following formula is valid.

[a]P A []@  [a](P A Q)

Distributing disjunction (5 points) Unfortunately, the box does not necessarily distribute over
disjunction. In particular, if we extend our language with a command that assigns an arbitrary value
to a variable, as shown in the following semantics, then distributivity may not hold.

[z := %] = {(w,v) : for all variables y except z, v[y] = w[y]}

That is, the only possible difference between the initial and final states after running x := * is in v[z];
it need not be equal to w[z], whereas for all other variables y, v[y] = w[y].

Give an example of a program « that makes use of this command, and a postcondition P A @, for
which [a]P V [@]@Q is not equivalent to [a](P V Q).

New axiom (5 points) On further thought, the new command x := * from the previous problem may
be useful to keep around. Design an axiom that allows you to reason about box modalities around it:

The right side of this equivalence should not contain a box or diamond modality, but only first-order
formulas.

Prove it (15 points) Show that your axiom is sound by adapting the soundness proof from
[:=]| given in Lecture 5.



