
Lab 4: verifying a sat solver with unit propagation

15-414: Automated program verification

Lab goals

In the previous lab, you wrote a provably correct brute-force search sat solver. This lab

is about making it more efficient by writing and verifying a minimalistic implementation

of the dpll algorithm, which forms the basis of most modern sat-solvers.

Lab instructions

This lab will have two parts. The first part is due on Monday, April 20th. In the first part,

you must submit a working version of all methods in this lab. Note that you do not need

to fully verify them at this stage. The goal of the first part is for you to get feedback on

the performance of your SAT solver and on the parts of your code that are still unverified.

To assess if your code is performing as expected, we will provide some SAT formulae and

instructions on how to compile your Why3 code to OCaml and solve those formulae. Your

algorithm must answer satisfiable/unsatisfiable correctly for each formula.

Since we want to guarantee the correctness of your SAT solver, you must submit the

second part of this lab on Friday, May 1 with all your methods verified. For extra credit,

you may also improve your current SAT solver with a technique from the note for Lecture

19.

1

1 Introduction

1.1 A reminder on DPLL and unit propagation

We define a partial valuation as a partial function from variable identifiers to booleans. A

variable which is not mapped to a value is said to be unassigned. Besides, a literal xi or

¬xi is said to be unassigned if and only if xi is unassigned. Given a partial valuation, a

clause is said to be

• satisfied if one or more of its literals are satisfied

• conflicting if all its literals are assigned but not satisfied

• unit if it is not satisfied and all but one of its literals are assigned

• unresolved otherwise.

The dpll algorithm enhances a naive backtracking search algorithm by implementing an

optimization called unit propagation: if a clause becomes unit during the search process,

it can only be satisfied by making its unique unassigned literal true and so no branching

is necessary. In practice, this rule often applies in cascade, which can reduce the search

space greatly. An example run of the dpll algorithm is shown Figure 1.

Other optimizations are sometimes associated with the dpll algorithm, most notably

pure literals propagation1 and conflict clauses learning. You are not expected to implement

them, although they would make for natural extensions of this lab.

1A literal is said to be pure if its negation does not occur in any clause that is not yet satisfied.

2

F =

C0︷ ︸︸ ︷
(x2 ∨ x3) ∧

C1︷ ︸︸ ︷
(¬x1 ∨ ¬x3) ∧

C2︷ ︸︸ ︷
(¬x1 ∨ ¬x2 ∨ x3) ∧

C3︷ ︸︸ ︷
(x0 ∨ x1 ∨ ¬x3) ∧

C4︷ ︸︸ ︷
(¬x0 ∨ x1 ∨ x3)

Step Partial valuation

Start with an empty partial valuation. {}
Decide x0. {x0 7→ true}

Decide x1. {x0 7→ true, x1 7→ true}
Propagate ¬x3 from unit clause C1. {x0 7→ true, x1 7→ true, x3 7→ false}
Propagate x2 from C0. {x0 7→ true, x1 7→ true, x3 7→ false, x2 7→ true}
Clause C2 is conflicting. Backtracking. {x0 7→ true}

Decide ¬x1. {x0 7→ true, x1 7→ false}
Propagate x3 from C4. {x0 7→ true, x1 7→ false, x3 7→ true}
Every clause is satisfied: F is satisfiable. {x0 7→ true, x1 7→ false, x3 7→ true, x2 7→ ∗}

Figure 1: Unit propagation in action

1.2 General remarks and advice

• Your sat-solver only has to be proven correct in the sense that it should be guaranteed

to always terminate without runtime errors and with the right result. This does not

imply anything about its efficiency or about unit propagation being implemented

properly. In particular, your code must respect the following properties, although we

expect no formal guarantees for them:

– branching must never happen in the presence of unit clauses

– partial valuations must not be copied in an abusive way (see section 2.5)

If your code checks and we can convince ourselves that the two properties above hold,

you will (likely) get full credit.

• In order to make verification and debugging easier, you should keep your code as

simple, concise and readable as possible. In particular,

3

– no single function should be more than 40 or 50 lines2, specification included

– if an ensures or requires statement takes more than two lines to write, you

may consider introducing some auxiliary predicates to make it simpler.

2Also, no line should be longer than 80 characters.

4

2 Lab 4

Every subsection below corresponds to a section in the template file.

2.1 A useful lemma

The template opens with a lemma that you may find useful for proving some termination

properties as you progress in the lab. This lemma states the following: when you modify an

array by updating a single cell from a value v to a different value, the number of occurences

of v in this array decreases by one. Obvious, isn’t it ?

In order to formalize this statement, we use the numof function from the array.NumOfEq

module of the standard library. If t is an array, v is a value and i, j are nonnegative integers,

numof t v i j denotes the number of occurences of v in t between indices i (included) and

j (excluded). For example, if t = [0, 1, 0, 2, 0, 0], then numof t 0 1 5 = 2.

Remarks

• We define the following useful shortcut:

function total_numof (t : array ’a) (v : ’a) : int = numof t v 0 (length t)

• Because numof is defined by a set of axioms (like fib in Lab 1), numof and total_numof

cannot be used in code and must only appear in annotations.

With these definitions, our lemma of interest can be expressed as follows:

lemma numof_decreases: forall v : ’a, t t’ : array ’a, i : int.

length t = length t’ ->

(0 <= i < length t /\ t[i] = v /\ t’[i] <> v) ->

(forall j:int. 0 <= j < length t -> j <> i -> t[j] = t’[j]) ->

total_numof t’ v = total_numof t v - 1

This is all fine, except that no automated prover is able to prove this without help. Indeed,

proving this from the axioms of numof requires a proof by induction featuring a non-trivial

case disjunction. How can we give provers a hint about this?

5

Consider the following lemma:

lemma option_inversion:

forall opt : option ’a. (opt = None) \/ (exists x : ’a. opt = Some x)

A bit of thought should convince us that proving this lemma is equivalent to proving the

correctness of any function with the following specification:

let option_inversion_f (opt : option ’a) : unit

ensures { (opt = None) \/ (exists x : ’a. opt = Some x) }

Then, it is possible to use the body of such a function to hint the structure of a proof for

option_inversion. In this case, we can force the prover into doing a case disjunction on

opt by providing the following body for option_inversion_f:

let option_inversion_f (opt : option ’a) : unit =

ensures { (opt = None) \/ (exists x : ’a. opt = Some x) }

match opt with

| None -> ()

| Some _ -> ()

end

Why3 supports writing and proving lemmas this way. Indeed, a pure function with return

type unit can be automatically turned into a lemma by adding the keyword lemma in its

declaration. Such a function is called a function-lemma, or sometimes a let-lemma.

Task Figure 2 shows the template of a function-lemma for numof_decreases. Complete

the four blanks in it to make it check (each blank should be filled with a small expression).

Observe how the structure of this lemma-function mimics the structure of a proof for

numof_decreases.

6

let lemma numof_decreases (v : option bool) (t t’ : array (option bool)) (i : int) =

requires { length t = length t’ }

requires { 0 <= i < length t /\ t[i] = v /\ t’[i] <> v }

requires { forall j:int. 0 <= j < length t -> j <> i -> t[j] = t’[j] }

ensures { total_numof t’ v = total_numof t v - 1 }

let rec aux (j : int) : int =

variant { j }

requires { 0 <= j <= length t }

ensures { result = numof t v 0 j }

ensures { j <= i -> numof t’ v 0 j = result }

ensures { j > i -> numof t’ v 0 j = result - 1 }

if j = 0 then ...

else if j = i+1 then ...

else if t[j-1] == v then ...

else ...

in let _ = aux (length t) in ()

Figure 2: Template for the numof decreases function-lemma

7

2.2 Basic types and predicates

This section of the template, which defines formulas in conjunctive normal forms and

satisfiability, is copied from Lab 3. Indeed, we expect your new sat-solver to have the

exact same signature and specification it had in the previous lab:

let sat (cnf : cnf) : option valuation =

ensures { forall rho:valuation. result = Some rho -> sat_with rho cnf }

ensures { result = None -> unsat cnf }

Only its implementation should change.

2.3 Partial valuations

In order to implement unit-propagation, we need a type to represent partial valuations.

Not surprisingly, it is defined as follows in the template:

type pval = array (option bool)

This is to be contrasted with the type definition for valuations:

type valuation = array bool

The template also provides a few useful predicates on partial valuations. The most impor-

tant one is certainly the compatible predicate, which is defined as follows:

predicate compatible (pval : pval) (rho : valuation) =

forall i:int, b:bool. 0 <= i < length pval ->

pval[i] = Some b -> rho[i] = b

More informally, a partial valuation p is said to be compatible with a valuation ρ if both

agree on every variable which is assigned by p. In particular, an empty partial valuation

is compatible with any valuation.

8

2.4 Partial evaluation of clauses and formulas

We want to define a function partial_eval_clause that takes a partial valuation p along

with a clause C as its arguments and returns:

• [Satisfied] if and only if p satisfies C

• [Conflicting] if and only if p and C are conflicting

• [Unit l] if C is a unit clause with unassigned literal l (for partial valuation p)

• [Unresolved] in every other case.

This corresponds to the following type definition:

type clause_status = Satisfied | Conflicting | Unit lit | Unresolved

Similarly, we want to define a function partial_eval_cnf that takes a partial valuation p

along with a cnf formula F as its arguments and returns:

• [Sat] if and only if p satisfies every clause of F . In this case, F is true for every

valuation that is compatible with p and the search can stop.

• [Conflict] if p is conflicting with at least one clause of F . In this case, F is false for

every valuation that is compatible with p and backtracking is needed.

• [Unit clause l] only if F admits a unit clause whose unassigned literal is l. If F ad-

mits more than one unit clause, which one is featured in the argument of Unit clause

is unspecified.3

• [Other] in every other case.

This corresponds to the following type definition:

type cnf_status = Sat | Conflict | Unit_clause lit | Other

3An alternative that would also enable a slightly faster implementation of unit propagation would be for

Unit clause to take the list of every unit literal as an argument. This would introduce some additional

complexity though and we do not recommend taking this path.

9

A direct way to turn these definitions into a specification for the partial_eval_cnf func-

tion is to define the cnf_satisfied, cnf_conflicting and cnf_has_unit_clause predi-

cates as in Figure 3 and use them as follows:

let partial_eval_cnf (pval : pval) (cnf : cnf) : cnf_status =

requires { valid_pval pval cnf }

ensures { result = Sat -> cnf_satisfied pval cnf }

ensures { result = Conflict -> cnf_conflicting pval cnf }

ensures { forall l. result = Unit_clause l -> cnf_has_unit_clause pval cnf }

ensures { ... }

We do not recommend this approach though. Indeed, the specification of sat relies mostly

on the sat_with predicate and so you would have to write many auxiliary lemmas to

help the provers understand the connection between sat_with and the definitions from

Figure 3. Besides, the validity of the unit propagation rule does not follow trivially from

the definition of cnf_has_unit_clause that is given Figure 3. A better and maybe more

elegant approach is to use sat_with directly to specify partial_eval_cnf. For example,

the first ensures statement above could be replaced by:

result = Sat -> forall rho:valuation. compatible pval rho -> sat_with rho cnf

Task Specify and implement the partial_eval_clause and partial_eval_cnf functions. Keep

in mind that you do not need to write complete specifications but only specifications that are strong

enough for proving the correctness of the code that depends on these functions.

10

predicate lit_is_true (pval : pval) (l : lit) = pval[l.var] =

Some l.value

predicate lit_is_false (pval : pval) (l : lit) = pval[l.var] =

Some (not l.value)

predicate clause_satisfied (pval : pval) (c : clause) =

exists l:lit. mem l c /\ lit_is_true pval l

predicate clause_conflicting (pval : pval) (c : clause) =

forall l:lit. mem l c -> lit_is_false pval l

predicate clause_is_unit (l : lit) (pval : pval) (c : clause) =

(mem l c /\ pval[l.var] = None) /\

(forall l’:lit. mem l’ c -> l <> l’ -> lit_is_false pval l’)

predicate cnf_satisfied (pval : pval) (cnf : cnf) =

forall i. 0 <= i < length cnf.clauses ->

clause_satisfied pval cnf.clauses[i]

predicate cnf_conflicting (pval : pval) (cnf : cnf) =

exists i. 0 <= i < length cnf.clauses /\

clause_conflicting pval cnf.clauses[i]

predicate cnf_has_unit_clause (l : lit) (pval : pval) (cnf : cnf) =

exists i. 0 <= i < length cnf.clauses /\

clause_is_unit l pval cnf.clauses[i]

Figure 3: A naive way to define the status of clauses and CNFs (do not do this)

11

2.5 Backtracking

In the dpll algorithm, when a conflict arises during search, one has to backtrack before the last

decision point. A naive way to do so would be to create a full copy of the current partial valuation

every time a choice is made but this would be terribly inefficient. A better alternative is to maintain

a list of every variable that has been assigned since the the last decision point and to use this list

as a reference for backtracking.

Let p and p′ two partial valuations and l a list of variables. We say that l is a delta from p to

p′ if p and p′ agree outside of l and the variables of l are unassigned in p. This can be formalized

in Why3 as follows:

predicate delta (diff : list var) (pval pval’ : pval) =

(length pval = length pval’) /\

(forall v:var. mem v diff -> 0 <= v < length pval /\ not (assigned pval v)) /\

(forall v:var. 0 <= v < length pval -> not (mem v diff) -> pval[v] = pval’[v])

Then, we can define a function backtrack that restores an older version of a partial valuation given

a delta from this older version to the current one:

let rec backtrack (diff : list var) (pval : pval) (ghost old_pval : pval) =

requires { delta diff old_pval pval }

ensures { pval_eq old_pval pval }

Note that old_pval is a ghost argument, which means that it will be eliminated during compilation.

Therefore, it cannot be used in the body of backtrack but only in its specification. However, as

opposed to diff and pval, it can be instantiated with ghost code. You can find Figure 4 an example

of how to use the backtrack function. Pay attention to how ghost code is used in this example. In

particular, no array is copied at runtime!

Task Implement the backtrack function.

12

let backtrack_example (pval : pval) : unit =

requires { length pval >= 2 }

requires { not (assigned pval 0) /\ not (assigned pval 1) }

ensures { pval_eq (old pval) pval }

let ghost old_pval = Array.copy pval in

pval[0] <- Some true ;

pval[1] <- Some false ;

let diff = Cons 0 (Cons 1 Nil) in

backtrack diff pval old_pval

Figure 4: An example of using the backtrack function

2.6 Unit propagation

In this section, we want to implement a function set_and_propagate with the following signature:

let rec set_and_propagate (l : lit) (pval : pval) (cnf : cnf) : (bool, list var)

This functions takes as its arguments an unassigned literal l and the current partial valuation p.

It updates p by setting literal l to true and then recursively performing unit propagation until a

conflict is reached or no unit clause remains. Besides:

• It raises a Sat_found exception in case the cnf becomes satisfied.

• It returns a tuple whose first component is a boolean that is true if and only if a conflict

was reached and whose second component is the delta of p (the list of every variable that

was assigned during the call to set_and_propagate).

To go back to the example of Figure 1, calling set and propagate for literal x1 and with pval =

{x0 7→ true} updates pval to {x0 7→ true, x1 7→ true, x3 7→ false, x2 7→ true} and returns the

tuple (true, [2, 3, 1]).

Task Specify and implement the set_and_propagate function. Once again, the specification

does not have to be complete but only strong enough to prove the functional correctness of sat.

13

2.7 Putting all the pieces together

Now, it is times for you to put all the pieces together!

Task Implement the sat function, which is specified as follows:

let sat (cnf : cnf) : option valuation =

ensures { forall rho:valuation. result = Some rho -> sat_with rho cnf }

ensures { result = None -> unsat cnf }

3 What to hand back

Do not forget to save the current proof session when exiting Why3 IDE. Before you do, though,

use the “Clean” command of the IDE on the topmost node of your session tree in order to remove

unsuccessful proof attempts. Then, generate a html summary of your proof session using the

following command:

why3 session html unit-sat.mlw

This should create a html file in your session folder. Open it and make sure that every goal you

proved appears in green in the leftmost column. Finally, hand back an archive containing:

1. The completed unit-sat.mlw file

2. The session folder generated by Why3 IDE, including a html summary

3. If appropriate, an ascii text file ReadMe.txt containing any comment you may want to share

with us

Additional remarks

• Having all your proof goals checked does not necessarily mean that you will get a perfect

grade on your homework. Indeed, you also have to make sure that your specifications are

correct and complete.

• All your archives will be inspected manually, so please make sure it is readable and leave

comments.

14

	Introduction
	A reminder on DPLL and unit propagation
	General remarks and advice

	Lab 4
	A useful lemma
	Basic types and predicates
	Partial valuations
	Partial evaluation of clauses and formulas
	Backtracking
	Unit propagation
	Putting all the pieces together

	What to hand back

