
Assignment 6: Procedures
15-414/15-424 Bug Catching: Automated Program Verification

Due: 11:59pm, Thursday 11/2/17
Total Points: 50

1. Context is everything (10 points). Consider the following rule for dealing with procedure contracts.

(rcallcs)
Γ $ A,∆ A $ rmpqsB Γ, B $ P

Γ $ rmpqsP,∆

Is this rule sound? If so, prove it either by derivation or by giving a semantical argument. It it is not
sound, then provide a counterexample proof that is uses this rule, but is unsound (i.e., comes to a false
conclusion).

2. Flawed arguments (10 points). Consider the following syntax for procedure calls with arguments.

mpe1, . . . , enq

In the call mpe1, . . . , enq, the e1, . . . , en are called the actual parameters. For the corresponding decla-
ration,

proc m(x1, . . . , xn) {...}

the x1, . . . , xn are called the formal parameters. The actual parameters are terms that are evaluated
in the calling context, using the current state at the moment the call is made. The formal parameters
are variables that are assigned the corresponding values of the actuals, for later use in the procedure
body. When the procedure finishes, the values stored in variables with the same name as the formal
parameters are restored to their contents before the call. For example, if we defined the factorial
procedure as taking a single argument x:

proc fact(x) { if(x = 0) { y:= 1 } else { fact(x-1); y:=y*x; } }

Then we would expect the following formula to be valid: rx :“ 42; factp100qspx “ 42^ y “ 100!q.
Assume for the sake of simplicity that we don’t allow recursive procedures in our language, and suppose
that we define the semantics of such a procedure call as:

rrmpe1, . . . , enqss “ rrv1 :“ x1; . . . ; vn :“ xn;x1 :“ e1; . . . ;xn :“ en;α;x1 :“ v1; . . . ;xn :“ vnss (1)

In the above, α is the body of m and v1, . . . , vn are fresh variables. What is wrong with the semantics
shown in (1)? Explain how this definition is different from what we expect in a normal language; if it
helps clarify your answer, feel free to give a “counterexample” program that demonstrates the flaw.

3. Mutual correctness (12 points). In lecture we discussed the xrecy rule for reasoning about recursive
programs, presented below in a slightly simplified form.

(xrecy)
p@x̄.A^ ϕ ă nq Ñ xmpqyB $ @x̄.pA^ ϕ “ nq Ñ xαyB A $ ϕ ě 0

$ AÑ xmpqyB
pn freshq

Oftentimes programs rely on some form of mutual recursion. For example, consider the following (very
inefficient) procedures for determining whether a number is even or odd. The input argument is stored
in x, and the return variable is y which the value 1 if x is even (respectively, odd), and 0 otherwise.

proc even() {

if(x = 0) { y := 1; } else { x := x - 1; odd() }

}

proc odd() {

if(x = 0) { y := 0; } else { x := x - 1; even() }

}



Modify xrecy to provide a proof rule that supports two mutually-recursive procedures. You do not
need to give a proof that your rule is sound, but you should give a concise informal argument for why
it is correct. Hint: Make sure that your rule is able to account for procedures that call themselves, in
addition to at most one other mutually-recursive procedure.

4. Even and odd contracts (5 points). Write contracts for the intended behavior of even and odd

from problem 3. That is, you should prove a precondition, postcondition pair for even (resp. odd)
such that if and only if the input x is even (resp. odd), the variable y will contain the value 1 after
terminating. Your contracts should specify total correctness. Note: it is fine if your preconditions
specify that the procedures only work on a subset of the integers.

5. Prove it (13 points). Use your rule from problem 3 and your contracts from problem 4 to give a
sequent calculus proof that the implementation of isodd is correct.


