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What This Course is About

Does the software do what it is supposed to do?
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What happens when software misbehaves

▶ April, 2014 OpenSSL announced critical
vulnerability in their implementation of
the Heartbeat Extension.

▶ “The Heartbleed bug allows anyone on
the Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

▶ “...this allows attackers to eavesdrop on
communications, steal data directly
from the services and users and to
impersonate services and users.”
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Heartbleed, explained

Image source: Randall Munroe, xkcd.com
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Does this do what it is supposed to?

1 int binarySearch(int key, int[] a, int n) {
2 int low = 0;
3 int high = n;
4

5 while (low < high) {
6 int mid = (low + high) / 2;
7

8 if(a[mid] == key) return mid; // key found
9 else if(a[mid] < key) {

10 low = mid + 1;
11 } else {
12 high = mid;
13 }
14 }
15 return -1; // key not found.
16 }
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Code Matters

This is a correct binary search algorithm.

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative
▶ Best case: ArrayIndexOutOfBoundsException
▶ Worst case: undefined behavior

Algorithm may be correct. The code, another story...
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How do we fix it?

The culprit: mid = (low + high) / 2

Need to make sure we don’t overflow at any point

Solution: mid = low + (high - low)/2
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The fix

1 int binarySearch(int key, int[] a, int n) {
2 int low = 0;
3 int high = n;
4

5 while (low < high) {
6 int mid = low + (high - low) / 2;
7

8 if(a[mid] == key) return mid; // key found
9 else if(a[mid] < key) {

10 low = mid + 1;
11 } else {
12 high = mid;
13 }
14 }
15 return -1; // key not found.
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The fix

1 int binarySearch(int key, int[] a, int n)
2 //@requires 0 <= n && n <= \length(a);
3 //@requires is_sorted(a, 0, n);
4 /*@ensures (\result == -1 && !is_in(key, A, 0, n))
5 @ || (0 <= \result, \result < n
6 @ && A[\result] == key); @*/
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How do we know if it’s correct?

One solution: test the code
▶ Possibly incomplete −→ uncertain answer
▶ Exhaustive testing usually not feasible

Better: prove that that it’s correct

Specification ⇐⇒ Implementation

▶ Specifications must be precise, unambiguous
▶ Meaning of code must be well-defined

When done well, gives strong indication of correctness
▶ Specifications must be validated
▶ Proofs must be correct
▶ Reasoning must be sound
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Algorithmic Approaches

Formal proofs are tedious,
labor-intensive

We want algorithms to:
▶ Check our work
▶ Fill in low-level details
▶ Give diagnostic info
▶ Verify the system (if possible)

This is called
algorithmic verification

Image source: Daniel Kroening & Ofer Strichman,
Decision Procedures
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Course objectives

▶ Identify and formalize program correctness

▶ Understand the formal semantics of programs

▶ Apply mathematical reasoning to program correctness

▶ Learn how to write correct software, from beginning to end

▶ Use automated tools that assist verifying your code

▶ Understand how verification tools work
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Reasoning about correctness

Functional Correctness
▶ Specification
▶ Proof

Specify behavior with logic
▶ Declarative
▶ Precise
▶ Amenable to proof

Systematic proof techniques
▶ Based on language

semantics
▶ Exhaustive proof rules
▶ Ideally, automatable
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Why3

Deductive verification platform
▶ Programming language
▶ Automated verification tools

Rich specification language
▶ Pre and postconditions, assertions
▶ Pure mathematical functions
▶ Termination metrics

Programmer writes specification, proof annotations

Compiler checks correctness automatically∗!
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Binary search in Why3
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Automated Verification

Algorithms for proving that programs match their specifications

Problem is undecidable!
1. Require annotations
2. Relieve manual burden by

inferring some annotations

Verifiers are non-trivial tools

Basic idea:
1. Translate programs into proof

obligations
2. Encode proof obligations as

satisfiability
3. Solve using a decision

procedure
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Model Checking

Automatic techniques for finding bugs (or proving their absence)

▶ Specifications written in
propositional temporal logic

▶ Verification by exhaustive state
space search

▶ Diagnostic counterexamples
▶ No proofs!
▶ Downside: “State explosion”

1070 atoms 10500000 states

code spec

model
checker

✓ counter-
example
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Model Checking Gets Results

Clever ways of dealing with state explosion:

▶ Partial order reduction
▶ Bounded model checking
▶ Symbolic exploration
▶ Abstraction & refinement

Now widely used for verification & bug-finding:
▶ Hardware, software, protocols, …
▶ Microsoft, Intel, Cadence, IBM, NASA, …

Ed Clarke
Turing Award,

2007
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Grading

Breakdown:
▶ 40% labs
▶ 25% written homework
▶ 30% exams (15% each,

midterm and final)
▶ 5% participation

5 labs

Weekly written homework

In-class exams, closed-book

Participation:
▶ Come to lecture
▶ Ask questions, give answers
▶ Contribute to discussion
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Grading

For the labs, you will:
▶ Implement some functionality (usually)
▶ Specify correctness for that functionality
▶ Prove it correct by annotating your implementation

Most important criterion is correctness.

Full points when you provide the following
▶ Correct implementation
▶ Correct specification
▶ Correct annotations
▶ Sufficient annotations for verification

Partial credit depending on how many of these you achieve

Clarity & conciseness is necessary for partial credit!
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Grading

Written homeworks focus on theory and fundamental skills

Grades are based on:
▶ Correctness of your answer
▶ How you present your reasoning

Strive for clarity & conciseness
▶ Show each step of your reasoning
▶ State your assumptions
▶ Answers without well-explained reasoning don’t count!
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Late Policy

No late days on written homework
▶ Not intended to be time-intensive
▶ 25% deduction for each day past deadline

Can earn back missed points for proofs on labs
▶ Must submit original lab by the deadline
▶ Resubmit once within three days of deadline
▶ If proof is complete & correct, earn back points only on the proof
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Logistics

Website: http://www.cs.cmu.edu/~15414

Course staff contact: Piazza or
15414-staff@lists.andrew.cmu.edu
Lecture: Tuesdays & Thursdays, 10:30-11:50 GHC 4211

Matt Fredrikson, André Platzer
▶ Location: CIC 2126, GHC 9103
▶ Office Hours: TBD
▶ Email: mfredrik@cs, aplatzer@cs

Jonathan Laurent, Tianyu Li
▶ Office Hours: TBD
▶ Email: jonathan.laurent@cs, tli2@cs
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