
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Sequential Programs and Compositional

Reasoning

Matt Fredrikson André Platzer

Carnegie Mellon University
Lecture 4

1 Introduction

This lecture will focus on developing systematic logical reasoning principles for se-
quential programs. Writing programs with correctness specifications is one thing. But
proving them to be correct is a different matter. Both are exceedingly useful, because
the clear expression of our expectations on a program often already make it more cor-
rect as it will more likely occur to us if our expectations and the program’s realization
are out of sync. But, of course, we might still fail to notice that a program does not meet
its correctness specification if all we do is look at them.

The fact that we unambiguously rendered program contracts in logic now plays to
our advantage. Not only did this make it clear what a precondition and postcondition
of a program really means. But logic also provides ways of reasoning logically (go
figure) about the programs by systematically transforming one logical formula into a
simpler logical formula to find out whether it is true. This will lead us to discover a
very systematic logical way of reasoning about the correctness of sequential programs.
More information on the topic of axioms for reasoning about the behavior of programs
in dynamic logic can also be found in the literature [Pla17b].

2 Semantical Considerations on Programs

Recall the dynamic logic formula for the program swapping two variables x and y in
place:

x = a ∧ y = b→ [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a) (1)

15-414 LECTURE NOTESMATT FREDRIKSON , ANDRÉ PLATZER

http://www.cs.cmu.edu/~15414/index.html

L4.2 Sequential Programs and Compositional Reasoning

Its meaning, and thus the meaning of the program contract that it came from, are now
mathematically defined precisely. What can we do with its mathematical semantics?
Well, we could, for example, follow the definitions of the semantics to find out how a
specific initial state ω changes as the program is executing. Consider the initial state ω
with ω(x) = 5 and ω(y) = 7. For this state to satisfy the preconditions, it also needs to
have the following values ω(a) = 5 and ω(b) = 7 for variables a and b. Thus,

ω |= x = a ∧ y = b

Since the swap program only changes the variables x and y, we only need to track
their values, since everything else stays unchanged. After running the first assignment
x := x + y, the program reaches state a µ1 with µ1(x) = 12, µ1(y) = 7. After running
the second assignment y := x − y; from state µ1 the program reaches a state µ2 with
µ2(x) = 12, µ2(y) = 5. After running the third assignment x := x− y; from state µ2 the
program reaches a state ν with ν(x) = 7, ν(y) = 5. Let’s write the respective program
statements in the first row and the states in between these in the next rows:

x := x+ y; y := x− y; x := x− y
ω(x) = 5 µ1(x) = 12 µ2(x) = 12 ν(x) = 7
ω(y) = 7 µ1(y) = 7 µ2(y) = 5 ν(y) = 5

All those states agree that a has the value 5 and b the value 7. So indeed, the (only) final
state ν satisfies the postcondition:

ω |= x = b ∧ y = a

Well that’s nice. We followed the semantics of program execution from the particular
initial state ω with ω(x) = 5 and ω(y) = 7 and found out that all its final states (well ν
is the only one) satisfy the postcondition that formula (1) claims. This justifies that (1)
is true in state ω:

ω |= x = a ∧ y = b→ [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)

In fact, since we just saw there is a final state ν in which the postcondition is true, this
also justifies the diamond modality case is true in state ω:

ω |= x = a ∧ y = b→ 〈x := x+ y; y := x− y;x := x− y〉(x = b ∧ y = a)

Lovely. Now all we need to do to justify that DL formula (1) is not just true in this
particular initial state ω but is valid in all states, is to consider one state at a time and
follow the semantics to show the same.

The only downside of that approach of following the semantics through concrete
states is that it will keep us busy till the end of the universe because there are infinitely
many different states. Even among those initial states that satisfy the precondition x =
a ∧ y = b (otherwise there is nothing to show for (1) since implications are true if their
left hand sides are false), there are still infinitely many such states. That’s not very
practical for such a simple program nor, in fact, for any other interesting program with
input.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

Sequential Programs and Compositional Reasoning L4.3

3 Axioms for Programs

Our approach to understanding programs with logic is to design one reasoning princ-
ple for each program operator that describes its effect in logic with simpler logical op-
erators. If we succeed doing that for every operator that a program can have, then we
will understand even the most complicated programs just by repeatedly making use of
the respective logical reasoning principles.

3.1 Conditionals

The first case we choose to look at is what we need to prove in order to show the
formula [if(Q)α elseβ]P , which expresses that formula P always holds after running
the if-then-else conditional if(Q)α elseβ that runs program α if formula Q is true and
runs β otherwise. In order to understand it from a logical perspective, how could we
express [if(Q)α elseβ]P in easier ways?

If Q holds then [if(Q)α elseβ]P says that P always holds after running α. If Q does
not hold then the same formula [if(Q)α elseβ]P says that P always holds after run-
ning β. It is easy to say with a logical formula that P always holds after running α,
which is precisely what [α]P is good for. Likewise [β]P directly expresses in logic that
P always holds after running β. Both of those formulas [α]P as well as [β]P are simpler
than the original formula [if(Q)α elseβ]P . But, of course, they express something
else, because the program if(Q)α elseβ only runs the respective programs condition-
ally depending on the truth-value of Q.

Yet, there still is a way of expressing [if(Q)α elseβ]P in logic in easier ways with
the help of other logical operators. Implications are perfect at expressing the condi-
tions that an if-then statement states in a program. Indeed, if Q holds then [α]P needs
to be true and if Q does not hold then [β]P for [if(Q)α elseβ]P to hold. Indeed,
[if(Q)α elseβ]P is true if and only if (Q→ [α]P) ∧ (¬Q→ [β]P) is true. We capture
this argument once and for all in the if-then-else axiom [if]:

([if]) [if(Q)α elseβ]P ↔ (Q→ [α]P) ∧ (¬Q→ [β]P)

From now on, every time we want to make use of this equivalence, we just refer to
it by name: [if]. And, indeed, this axiom tells us everything we need to know about if-
then-else statements. When using the equivalence [if] from left to right, we can use it to
simplify every question about an if-then-else statement of the form [if(Q)α elseβ]P
by a corresponding structurally simpler formula (Q→ [α]P) ∧ (¬Q→ [β]P) that does
not use the if-then-else statement any more but is logically equivalent. The axiom will
enable us, for example to conclude this equivalence:

[if(x≥0) y := x else y :=−x]y=|x| ↔ (x≥0→ [y := x]y=|x|) ∧ (¬x≥0→ [y :=−x]y=|x|)

This formula uses |x| as notation for the absolute value of x.
Whether the right hand side of axiom [if] is really seriously simpler than its left hand

side needs a moment’s thought because it is longer. But the point is that, even if it may

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

L4.4 Sequential Programs and Compositional Reasoning

be textually longer, the right hand side is structurally simpler, because it does not use
the if-then-else statement anymore but subprograms and simpler logical operators.

Also, since axiom [if] justifies this equivalence, we will be able to reduce a question
about whether its left hand side is valid with axiom [if] to the question whether its
corresponding right hand side is valid. In sequent calculus proofs, we will, thus, mark
the use of such an axiom by giving its name [if]:

` (x≥0→ [y := x]y=|x|) ∧ (¬x≥0→ [y :=−x]y=|x|)
[if] ` [if(x≥0) y := x else y :=−x]y=|x|

Almost always will we take care to only use axioms for reducing its left hand side to
the structurally simpler right hand side in order to make sure the proof makes progress
toward simpler formulas.

This proof step with axiom [if] beautifully took care of the if-then-else statement in
the conclusion and reduced it to a formula without if-then-else statements. That took
us closer to a proof, but we still need other axioms, e.g., for assignments to complete
the proof of the remaining formula even if the propositional logical proof rules such as
∧R and→R will already excel at handling the ∧ and→ operators in the premise. But
observe how nicely the [if] axiom allows us to reduce a proof of an if-then-else program
to a logical combination of questions about subprograms. We will try to identify sim-
ilar axioms that reduce a property of a composed program to a logical combination of
properties of subprograms also for all the other statements in a program. That way we
will obtain a compositional reasoning technique that reduces the correctness of any ar-
bitrary big program to a number of questions about smaller and smaller subprograms,
of which there are only finitely many.

3.2 Test

The if-then-else statement branches execution of the program depending on the truth-
value of its condition in the current state. The test statement ?Q also checks a condition
on the current state. The difference is that it has no effect on the state if Q is indeed
true, but aborts and discards the execution if Q is not true. How can we express [?Q]P
in logic in structurally simpler ways? In fact, let’s preferably express [?Q]P equivalently
in simpler ways, because that equivalence principle worked so well in axiom [if].

The formula [?Q]P is true iff formula P holds always after running the test ?Q, which
can only run if Q is true. What happens if the test program ?Q cannot run because Q is
false? Well in that case nothing needs to be shown, because [?Q]P merely expresses that
P holds after all runs of the program ?Q, which is vacuously true for any postcondition
if there simply isn’t a run of ?Q at all because Q is false in the current state.

Consequently P holds after all runs of the program ?Q iff postcondition P is true if
the test Q is. That is iff the test formula Q implies the postcondition P . This is captured
in the test axiom [?]:

([?]) [?Q]P ↔ (Q→ P)

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

Sequential Programs and Compositional Reasoning L4.5

3.3 Assignments

The next case to look into is what we need to prove in order to show the formula
[x := e]p(x), which expresses that the formula p(x) holds after the assignment x := e
that assigns the value of term e to variable x. How could we reduce this to another
logical formula that is simpler?

If we want to show that the formula p(x) holds after assigning the new value e to
variable x then we might as well show p(e) right away. And, in fact, p is true of x
after assigning e to x if and only if p is true of its new value e. That is, the formula
[x := e]p(x) is equivalent to the formula p(e). We capture this argument once and for all
in the assignment axiom [:=]:

([:=]) [x := e]p(x)↔ p(e)

In the assignment axiom [:=], the formula p(e) has the term e everywhere in place of
where the formula p(x) has the variable x. Of course, it is important for this substitu-
tion of e for x to avoid capture of variables and not make any replacements under the
scope of a quantifier or modality binding an affected variable [Pla17a]. For example,
the following formula is an instance of [:=]:

[x := x2 − 1]x(x+ 1) ≥ x+ y ↔ (x2 − 1)(x2 − 1 + 1) ≥ (x2 − 1) + y

But the following is not because it would capture the replacement y that is used for x:

[x := y](x ≥ 0 ∧ ∀y (x ≥ y))↔ (y ≥ 0 ∧ ∀y (y ≥ y))

Instead, if we first rename ∀y to ∀z then the substitution works:

[x := y](x ≥ 0 ∧ ∀z (x ≥ z))↔ (y ≥ 0 ∧ ∀z (y ≥ z))

The axioms we saw so far already enable us to do a first proof:

∗
Z x≥0 ` x=|x|

[:=]x≥0 ` [y := x] y=|x|
→R ` x≥0→ [y := x] y=|x|

∗
Z ¬x≥0 ` −x=|x|

[:=]¬x≥0 ` [y :=−x] y=|x|
→R ` ¬x≥0→ [y :=−x] y=|x|

∧R ` (x≥0→ [y := x] y=|x|) ∧ (¬x≥0→ [y :=−x] y=|x|)
[if] ` [if(x≥0) y := x else y :=−x] y=|x|

This proof shows validity of the following formula, which says that the given pro-
gram correctly implements the absolute value function |·| from mathematics:

[if(x≥0) y := x else y :=−x] y=|x|

The proof refers to propositional logic sequent calculus rules such as ∧R and →R as
well as the dynamic logic axioms [if] and [:=]. The proof is developed starting with
the desired conclusion at the bottom and working with proof rules to the top as usual

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

L4.6 Sequential Programs and Compositional Reasoning

in sequent calculus. The proof also makes use of integer arithmetic reasoning (marked
by Z) to show that, indeed, if x is nonnegative then x equals the absolute value of x
(on the left branch). Likewise, integer arithmetic reasoning is needed to show that if
x is negative then −x equals the absolute value of x (on the right branch). It is quite
common for nontrivial arithmetic to be needed during program verification.

3.4 Sequential Compositions

The axioms we investigated so far already handle some programs, but sequential com-
positions are missing quite noticeably and we won’t get very far in programs without
them. So how can we equivalently express [α;β]P in simpler logic without sequential
compositions? This formula expresses that P holds after all runs of α;β, which first
runs α and then runs β. How can this be expressed in an easier way in logic, again
using just the subprograms α as well as β of α;β then?

In order to express [α;β]P what we need to say is that after all runs of α it is the case
that P holds after all runs of β. It is comparably easy to say that P holds after all runs
of β just with the formula [β]P . But where does this formula need to hold? After all
runs of α. In particular, all we need to say is that [β]P holds after all runs of α, which
is exactly what the formula [α][β]P says. We capture these insights in the sequential
composition axiom [;]:

([;]) [α;β]P ↔ [α][β]P

Indeed, after all runs of α;β does P hold if and only if after all runs of α it is the case
that after all runs of β does P hold.

These axioms already enable us to prove the correctness of the integer-based swap-
ping function

x = a ∧ y = b→ [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)

All we need to do is turn it into a sequent and start with this as the desired conclusion at
the bottom of a sequent proof and successively apply axioms until the proof completes:

∗
Z x=a ∧ y=b ` y = b ∧ x = a
Z x=a ∧ y=b ` x+ y − (x+ y − y) = b ∧ x+ y − y = a

[:=]x=a ∧ y=b ` [x := x+ y](x− (x− y) = b ∧ x− y = a)
[:=]x=a ∧ y=b ` [x := x+ y][y := x− y](x− y = b ∧ y = a)
[:=]x=a ∧ y=b ` [x := x+ y][y := x− y][x := x− y](x = b ∧ y = a)
[;] x=a ∧ y=b ` [x := x+ y][y := x− y;x := x− y](x = b ∧ y = a)
[;] x=a ∧ y=b ` [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)
→R ` x = a ∧ y = b→ [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)

Remember how we mark the use of arithmetic reasoning as Z. In practice, this is where
verification tools use SMT solvers to handle satisfiability modulo theories, especially
certain classes of arithmetical formulas. In our paper proofs we will take care to make

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

Sequential Programs and Compositional Reasoning L4.7

sure we have a good reason why an arithmetic fact is true in all states and make a note
of it below the proof. Here, for example, we might say:

the arithmetic proves since x+ y cancels −(x+ y) and y cancels −y

Note how this is now a proof of correctness of the swap program from (1) that, in a
finite amount of work, justifies correctness for all states and, thus, implies its validity:

� x = a ∧ y = b→ [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)

The above sequent calculus proof used the assignment axiom inside out, so starting
with handling the last assignment first. It would also have been possible to start outside
in handling the first assignment first. That would have led to the following proof step:

. . .
[:=]x=a ∧ y=b ` [y := x+ y − y][x := x+ y − y](x = b ∧ y = a)
[:=]x=a ∧ y=b ` [x := x+ y][y := x− y][x := x− y](x = b ∧ y = a)
[;] x=a ∧ y=b ` [x := x+ y][y := x− y;x := x− y](x = b ∧ y = a)
[;] x=a ∧ y=b ` [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)
→R ` x = a ∧ y = b→ [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)

3.5 Loop the Loop

The final and most difficult case is that of the loop. How can we prove [while(Q)α]P in
another way by rephrasing it equivalently in logic? What the loop while(Q)α does is
to test whether formula Q is true and, if so, run α, and then repeating that process until
Q is false (if it ever is, otherwise the loop just keeps running α until the end of time).

Let’s try to understand that by cases. If Q holds then [while(Q)α]P runs α and then
runs the while loop afterwards yet again. If Q does not hold then the loop has no effect
and just stops right away. That is why while(Q)α is equivalent to if(Q) {α; while(Q)α},
because both have no effect ifQ is false but repeat α as long asQ is true. We can capture
these thoughts in the following axiom:

([unwind]) [while(Q)α]P ↔ [if(Q) {α; while(Q)α}]P

By applying the [if] axiom and the composition axiom [;] on the right hand side of axiom
[unwind], we obtain the following minor variation of axiom [unwind] which we call
[unfold]. But on paper we might just as well accept either name, because both axioms
follow essentially the same idea and one can easily tell which one we refer to:

([unfold]) [while(Q)α]P ↔ (Q→ [α][while(Q)α]P) ∧ (¬Q→ P)

Both the unwinding axiom [unwind] and the closely related unfolding axiom [unfold]
have a slight deficiency that we will get back to. Can you spot it already?

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

L4.8 Sequential Programs and Compositional Reasoning

4 Soundness

Writing down axioms is one thing. Making use of them for proofs is quite helpful, too.
But if the axioms are wrong, then that would not help making the programs any more
correct. Consequently, it is imperative that all axioms we adopt are indeed sound, so
only allow us to prove formulas that are actually valid.

Without any further delay, let us immediately make up for our mistake of using ax-
ioms that we have not proved correct yet by proving them sound before the lecture is
over. An axiom is sound iff all its instances are valid formulas, so true in all states.

Lemma 1. The test axiom [?] is sound, i.e. all its instances are valid:

([?]) [?Q]P ↔ (Q→ P)

Proof. This lemma is so deserving of a proof that you simply must solve assignment 2
to find out how it works.

Lemma 2. The sequential composition axiom [;] is sound, i.e. all its instances are valid:

([;]) [α;β]P ↔ [α][β]P

Proof. Recall the semantics of sequential composition:

[[α;β]] = [[α]] ◦ [[β]] = {(ω, ν) : (ω, µ) ∈ [[α]], (µ, ν) ∈ [[β]]}

In order to show that the formula [α;β]P ↔ [α][β]P is valid, i.e. � [α;β]P ↔ [α][β]P ,
consider any state ω and show that ω |= [α;β]P ↔ [α][β]P . We prove this biimplication
by separately proving both implications.

“←” Assume the right hand side ω |= [α][β]P and show ω |= [α;β]P . To show the lat-
ter, consider any state ν with (ω, ν) ∈ [[α;β]] and show that ν |= P . By the seman-
tics of sequential composition, (ω, ν) ∈ [[α;β]] implies that there is a state µ such
that (ω, µ) ∈ [[α]] and (µ, ν) ∈ [[β]]. The assumption implies with (ω, µ) ∈ [[α]] that
µ |= [β]P . This, in turn, implies with (µ, ν) ∈ [[β]] that ν |= P as desired.

“←” Conversely, assume the left hand side ω |= [α;β]P and show ω |= [α][β]P . To
show ω |= [α][β]P , consider any state µ with (ω, µ) ∈ [[α]] and show µ |= [β]P .
To show the latter, consider any state ν with with (µ, ν) ∈ [[β]] and show ν |= P .
Now (ω, µ) ∈ [[α]] and (µ, ν) ∈ [[β]] imply (ω, ν) ∈ [[α;β]] by the semantics of se-
quential composition. Consequently, the assumption ω |= [α;β]P implies ν |= P
as desired.

Now of course all other axioms we use first need to be proved sound as well, but that
is an excellent exercise.

The [unfold] axiom can be justified to be sound in another way. Rather than arguing
by semantics, which would work, too, we can derive it with a sequent calculus proof
from the other axioms. After all other axioms are proved to be sound the derived axiom
[unfold] is thus sound too.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

Sequential Programs and Compositional Reasoning L4.9

([:=]) [x := e]p(x)↔ p(e)

([?]) [?Q]P ↔ (Q→ P)

([if]) [if(Q)α elseβ]P ↔ (Q→ [α]P) ∧ (¬Q→ [β]P)

([;]) [α;β]P ↔ [α][β]P

([unwind]) [while(Q)α]P ↔ [if(Q) {α; while(Q)α}]P

([unfold]) [while(Q)α]P ↔ (Q→ [α][while(Q)α]P) ∧ (¬Q→ P)

Figure 1: Axioms of the day

Lemma 3. The following axiom is a derived axiom, so can be proved from the other axioms in
sequent calculus, and is, thus, sound:

([unfold]) [while(Q)α]P ↔ (Q→ [α][while(Q)α]P) ∧ (¬Q→ P)

Proof. The axiom [unfold] can be proved from the other axioms by using some of them
in the backwards implication direction:

∗
[unwind] ` [while(Q)α]P ↔ [if(Q) {α; while(Q)α}]P

[if] ` [while(Q)α]P ↔ (Q→ [α; while(Q)α]P) ∧ (¬Q→ P)
[;] ` [while(Q)α]P ↔ (Q→ [α][while(Q)α]P) ∧ (¬Q→ P)

Every time we need the derived axiom [unfold], we could instead write down this
sequent proof to prove it. It just won’t be very efficient, so instead we will settle for
deriving axiom [unfold] in the sequent calculus once and then just believing it from
then on.

This gives us two ways of establishing the soundness of an axiom. Either by a math-
ematical proof from the semantics of the operators. Or as a derived axiom by a formal
proof in sequent calculus from other axioms and proof rules that have already been
proved to be sound. Of course, the first time a new operator is mentioned in any of our
axioms, we cannot derive it yet but have to work from its semantics. But the second
time, it may become possible to argue as in a derived axiom.

5 Summary

The axioms introduced in this lecture are summarize in Fig. 1.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

L4.10 Sequential Programs and Compositional Reasoning

References

[Pla17a] André Platzer. A complete uniform substitution calculus for differen-
tial dynamic logic. J. Autom. Reas., 59(2):219–265, 2017. doi:10.1007/

s10817-016-9385-1.
[Pla17b] André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, Switzer-

land, 2017. URL: http://www.springer.com/978-3-319-63587-3.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

http://dx.doi.org/10.1007/s10817-016-9385-1
http://dx.doi.org/10.1007/s10817-016-9385-1
http://www.springer.com/978-3-319-63587-3

	Introduction
	Semantical Considerations on Programs
	Axioms for Programs
	Conditionals
	Test
	Assignments
	Sequential Compositions
	Loop the Loop

	Soundness
	Summary

