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1 Introduction

The programs that we have discussed so far are somewhat limited. By restricting the
statements allowed in programs to simpler forms, we have been able to understand
the fundamental ideas behind the formal semantics and proof techniques for reasoning
about program behavior. Importantly, the relative simplicity of the language allowed
us to do this without becoming overwhelmed with a significant number of cases and
details that need to be considered for rigor, but are not essential to these fundamental
ideas.

“Real” programming languages universally support more advanced ways of struc-
turing programs that encourage abstraction, modularity, and reuse. One such construct
is the procedure, which gives programmers a way to encapsulate some functionality so
that it can be invoked repeatedly in the future. In this lecture we will introduce proce-
dures into the language we have been studying. We will start with the simplest case:
non-recursive procedures that take no explicit arguments, do not provide an explicit re-
turn value, and have access to the same variables as the context in which they are called.
Even with these restrictions, we will see how to reason about procedure calls composi-
tionally, using contracts, so that we can avoid redundant work in proving things about
their behavior.

We will then consider recursive procedures, still with no arguments or return value.
The main challenge with recursive procedures lies in proving that their contracts hold,
and we will see how to use inductive principles to accomplish this. Finally, we will
discuss termination, and learn how to use variant terms to prove this similar to how
we were able to reason about loop convergence. In future lectures, we will add argu-
ments and return values to our procedures, and discuss some additional techniques
that simplify reasoning about the input/output behavior of such procedures.
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2 Review: programs so far

So far, we’ve defined a fairly simple programming language with support for arrays,
conditionals, and loops.

term syntax e, ẽ ::= x (where x is a variable symbol)
| c (where c is a constant literal)
| a(e) (where a is an array symbol)
| e+ ẽ
| e · ẽ

program syntax α, β ::= x := e (where x is a variable symbol)
| a(e) := ẽ (where a is an array symbol)
| ?Q
| if(Q)α elseβ
| α;β
| while(Q)α

Semantically, we modeled arrays as functions from their domain (Z) to their range (Z),
which meant that the states of our programs are maps from the set of all variables to
Z ∪ (Z→ Z). We then defined the semantics of terms with arrays in them.

Definition 1 (Semantics of terms). The semantics of a term e in a state ω ∈ S is its value
ω[[e]]. It is defined inductively by distinguishing the shape of term e as follows:

• ω[[x]] = ω(x) for variable x

• ω[[c]] = c for number literals c

• ω[[e+ ẽ]] = ω[[e]] + ω[[ẽ]]

• ω[[e · ẽ]] = ω[[e]] · ω[[ẽ]]

Definition 2 (Transition semantics of programs). Each program α is interpreted seman-
tically as a binary reachability relation [[α]] ⊆ S × S over states, defined inductively by

1. [[x := e]] = {(ω, ν) : ν = ω except that ν[[x]] = ω[[e]]}
The final state ν is identical to the initial state ω except in its interpretation of the
variable x, which is changed to the value that e has in initial state ω.

2. Ja(e) := ẽK = {(ω, ν) : ω = ν except ν(a) = ω(a){ωJeK 7→ ωJẽK}}
The final state ν is identical to the initial state ω except in its interpretation of the
array symbol a, which is updated at position ωJeK to take the value ωJẽK.

3. [[?Q]] = {(ω, ω) : ω |= Q}
The test ?Q stays in its state ω if formula Q holds in ω, otherwise there is no
transition.
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4. [[if(Q)α elseβ]] = {(ω, ν) : ω |= Q and (ω, ν) ∈ [[α]] or ω 6|= Q and (ω, ν) ∈ [[β]]}
The if(Q)α elseβ program runs α if Q is true in the initial state and otherwise
runs β.

5. [[α;β]] = [[α]] ◦ [[β]] = {(ω, ν) : (ω, µ) ∈ [[α]], (µ, ν) ∈ [[β]]}
The relation [[α;β]] is the composition [[α]] ◦ [[β]] of relation [[β]] after [[α]] and can,
thus, follow any transition of α through any intermediate state µ to a transition of
β.

6. [[while(Q)α]] =
{

(ω, ν) : there are an n and states µ0 = ω, µ1, µ2, . . . , µn = ν
such that for all 0 ≤ i < n: 1© the loop condition is true µi |= Q and 2© from
state µi is state µi+1 reachable by running α so (µi, µi+1) ∈ [[α]] and 3© the loop
condition is false µn 6|= Q in the end

}
The while(Q)α loop runs α repeatedly when Q is true and only stops when Q
is false. It will not reach any final state in case Q remains true all the time. For
example [[while(true)α]] = ∅.

3 Adding procedure calls

Now we will extend our language with procedure calls. We’ll assume that our language
doesn’t have any scoping conventions, so procedures can read and modify any variable
in the state. To start out, we’ll assume that procedures take no arguments, and can
modify any variable or array in the state.

We update the program syntax to add a new alternative for procedure call, distin-
guished by the presence of parenthesis after the procedure name:

program syntax α, β ::= x := e (where x is a variable symbol)
| a(e) := ẽ (where a is an array symbol)
| ?Q
| if(Q)α elseβ
| α;β
| while(Q)α
| m() (where m is a procedure name)

First, no recursion. If we can assume that the body of m does not make any recur-
sive calls, then we can reason about calls to m in a straightforward way. What is the
semantics of m()? We can think of simply inlining the body α into the call site.

[[m()]] = {(ω, ν) : (ω, ν) ∈ [[α]], where α is the body of m} (1)

Now that we have semantics to work from, we can define an axiom to help us reason
about calls. Just as Equation 1 replaces the call with its corresponding body, the axiom
substitutes the call for its body.

([inl]) [m()]P ↔ [α]P (α is body of m)
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It is easy to show that this axiom is sound using a semantic argument. This axiom can
be useful if we know nothing about the behavior of m, because we can reason about it
as though it weren’t invoked by a call in the first place, but instead the program had
been written in long form with the body repeated wherever calls appear.

However, we often know more about procedures because we write contracts, or
precondition-postcondition pairs that specify requirements at the call site and guar-
antees about the state afterwards. If we assume a precondition A and postcondition B
for m, then we can avoid having to prove things directly about the body α and instead
just show that the contract gives us what we need.

Theorem 3. The contract procedure call rule is sound by derivation.

([call])
Γ ` A A ` [m()]B B ` P

Γ ` [m()]P,∆

The rule [call] is convenient in practice because we can decide on the contract A,B
once and for all before using the procedure, construct a proof of A ` [α]B, and reuse
that proof whenever we need to reason about a call to m. All that we need to do for each
call is derive a proof that the calling context entails the precondition (Γ ` A,∆), and
a corresponding proof that the postcondition gives the property we’re after (B ` P ).
This sort of compositionality lets us reuse past work, and is key to scaling verification
to larger and more complex programs.

4 Summary of today’s rules

Today we covered the basics of procedure calls. When a procedure is not recursive,
reasoning about the behavior of calls is fairly straightforward by inlining the body into
the calling context. The [inl] axiom formalizes this reasoning. We can avoid redundant
work by writing contracts, or pre- and postcondition pairs, for procedures. Using the
derived rule [call], contracts can be applied at call sites by showing that the context
implies the precondition, and the postcondition implies the goal.

([inl]) [m()]P ↔ [α]P (α is body of m)

([call])
Γ ` A,∆ A ` [m()]B B ` P

Γ ` [m()]P,∆

It is also worth noting that both of these reasoning principles have corresponding in-
stances with the diamond modality. The proof of this claim is left as an exercise.

(〈inl〉) 〈m()〉P ↔ 〈α〉P (α is body of m)

(〈call〉)
Γ ` A,∆ A ` 〈m()〉B B ` P

Γ ` 〈m()〉P,∆
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