
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Recursive Procedures

Matt Fredrikson André Platzer

Carnegie Mellon University
Lecture 12

1 Introduction

Now we’ve introduced procedures into the language, and seen how to reason about
their use modularly using contracts. But so far we’ve limited ourselves to non-recursive
procedures, and although such procedures are widely-used in practice, most languages
support recursive calls. As we discussed at the end of the last lecture, recursion intro-
duces significant complications into formal reasoning, as we can no longer understand
procedures by reducing them to programs without procedures by inlining. How can
we show that a recursive procedure satisfies its contract?

In today’s lecture we will focus on this problem. Reasoning about recursion demands
that we consider potentially unbounded behaviors. We have dealt with this before,
namely when we considered loops and programs with nondeterministic repetition. In
that setting, we dealt with the unbounded nature of the verification task using induc-
tion, and in particular saw how inductive invariants can be used to write proofs about
such programs.

We will make another appeal to induction today, this time to deal with recursive
procedures. We will introduce a proof rule that lets us assume that the behavior of a
procedure is correct when proving that the procedure body satisfies its contract. How-
ever, we need to be careful when using such reasoning to ensure that we are ultimately
making an inductive argument; if we do not require that recursive calls operate on
“smaller” arguments, then our proofs quickly become unsound. Just as when reason-
ing about loop convergence, we introduce a variant to show how recursive calls always
decrease the context from which they are made. A benefit of this approach is that it al-
lows us to show total correctness, which will be our “default” goal when dealing with
recursion.

http://www.cs.cmu.edu/~15414/index.html

L12.2 Recursive Procedures

2 Review: adding procedures

In the last lecture we extended our language with procedure calls. We assumed that the
language doesn’t have any scoping conventions, so procedures can read and modify
any variable in the state. We also assumed that procedures take no arguments, and can
modify any variable or array in the state.

We updated the program syntax to add a new alternative for procedure call, distin-
guished by the presence of parenthesis after the procedure name:

program syntax α, β ::= x := e (where x is a variable symbol)
| a(e) := ẽ (where a is an array symbol)
| ?Q
| if(Q)α elseβ
| α;β
| while(Q)α
| m() (where m is a procedure name)

We then introduced some new reasoning principles for procedure calls. Because we
assumed that the body of m does not make any recursive calls, we reasoned about calls
to m in a straightforward way by simply inlining the body α into the call site.

[[m()]] = {(ω, ν) : (ω, ν) ∈ [[α]], where α is the body of m} (1)

This led to the [inl] axiom.

([inl]) [m()]P ↔ [α]P (α is body of m)

This axiom allows us to reason about program behavior as though the program had
originally been written in long form with the body repeated wherever calls appear.

However, we often know more about procedures because we write contracts, or
precondition-postcondition pairs that specify requirements at the call site and guar-
antees about the state afterwards. If we assume a precondition A and postcondition B
for m, then we can avoid having to prove things directly about the body α and instead
just show that the contract gives us what we need. The [call] rule encapsulates this.

([call])
Γ ` A,∆ A ` [m()]B B ` P

Γ ` [m()]P,∆

The rule [call] is convenient in practice because we can decide on the contractA,B once
and for all before using the procedure, construct a proof of A ` [α]B, and reuse that
proof whenever we need to reason about a call to m. All that we need to do for each
call is derive a proof that the calling context entails the precondition (Γ ` A,∆), and
a corresponding proof that the postcondition gives the property we’re after (B ` P).
This sort of compositionality lets us reuse past work, and is key to scaling verification
to larger and more complex programs.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

Recursive Procedures L12.3

3 Dealing with recursion

Now that we’ve seen how to reason compositionally about non-recursive procedure
calls in our code, let’s add recursion into the mix. Consider the following procedure that
implements the factorial function. It assumes that the variable n contains the “input”,
and stores the computed factorial value in y. Because we don’t support arguments yet,
we have to manage modifications made by subsequent calls somewhat carefully, which
is why fact increments n after the recursive call.

proc fact() {

if(n = 0) { y := 1 }

else { n := n - 1; fact (); n := n + 1; y := y*n; }

}

The obvious contract for fact is,

A ≡ n ≥ 0, B ≡ y = n!

We can see right away that applying [call] does not get us very far, because α makes a
call to fact. We would again need to apply [call], and so on.

To make progress on this, we should recall how we tend to think about the correct-
ness of recursive procedures informally. When writing recursive code, the first thing
that we do is determine what the base cases are, for which we can return a value with-
out making further recursive calls. After convincing ourselves that we’ve accounted
for the base cases correctly, we move on to those that do require a recursive call. Each
time we need to make such a call, we assume that the value we get back will be correct,
and use it to ultimately return a new value for the argument we’re dealing with.

Our assumption that the procedure returns correct values on smaller arguments, and
leveraging that to construct a correct value for larger arguments, is clearly a form of
inductive reasoning. What if we construct a rule that lets us assume that a procedure
we’re considering is correct, so that we can reason that each recursive call is correct as
a result? The rule might look something like the following.

([rec])
Γ, ∀x1, . . . , xn.A→ [m()]B ` A→ [α]B,∆

Γ ` A→ [m()]B,∆
(α is body of m, x1, . . . , xn used in α)

The [rec] rule makes reference to all variables x1, . . . , xn that are used in α. What does
this mean, and why is it necessary? First, this requirement means that in the premise,
we must quantify over all of the variables that appear in the procedure body α. Because
our procedures don’t take any arguments, and have access to the same set of variables
as the context in which they are invoked, it is appropriate to think of the set of variables
that are read in the body as its arguments. Universally quantifying over them in the
premise formalizes the notion that no matter what value we give to the arguments to m

when we call it, as long as the precondition holds (on those values) then the postcondi-
tion will as well.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

L12.4 Recursive Procedures

Does this allow us to prove fact from above? In the following, let

Q ≡ ∀n.n ≥ 0→ [fact()]y = n!

Then we can begin our proof as follows.

[rec]

→R,[if],∧R

→R,[:=]

Z
∗

Q,n = 0 ` 1 = n!

Q,n ≥ 0 ` n = 0→ [y := 1]y = n!
Q,n ≥ 0 ` n 6= 0→ [β]y = n!

Q ` n ≥ 0→ [if(n = 0) y := 1 elseβ]y = n!

` n ≥ 0→ [fact()]y = n!

Now we need to finish the proof for the “else” branch β, which is where the recursion
happens.

→R,[;],[:=]

[:=]=

=R

∀L

→L

Z
∗

n > 0, z = n− 1 ` z ≥ 0
M[·]

=R,=R

Z
∗

y = z!, n > 0, z = n− 1 ` (n− 1)! ∗ n = n!

y = z!, n > 0, z = n− 1 ` y ∗ n = n!

[fact()]y = z!, n > 0, z = n− 1 ` [fact()]y ∗ n = n!

z ≥ 0→ [fact()]y = z!, n > 0, z = n− 1 ` [fact()]y ∗ n = n!

∀n.n ≥ 0→ [fact()]y = n!, n > 0, z = n− 1 ` [fact()]y ∗ n = n!

∀n.n ≥ 0→ [fact()]y = n!, n > 0, z = n− 1 ` [fact()]y ∗ (z + 1) = (z + 1)!

∀n.n ≥ 0→ [fact()]y = n!, n > 0 ` [n := n− 1][fact()]y ∗ (n+ 1) = (n+ 1)!

Q,n ≥ 0 ` n 6= 0→ [n := n− 1; fact();n := n+ 1; y := y ∗ n]y = n!

Great! It looks like this rule will let us prove things about recursive procedures. But
before we commit to this rule, we must ask ourselves whether it is sound. A search
through the verification literature may serve to give us some assurance, as many confer-
ence papers, journal articles, and textbooks have introduced this rule as sound [AdBO09,
Cla77, Cou90, Hes93, Hoa71, vO99]. However, consider the following example.

[rec]

∀L

[inl]

id
∗

n ≥ 0→ [α]y = 42 ` n ≥ 0→ [α]y = 42

n ≥ 0→ [fact()]y = 42 ` n ≥ 0→ [α]y = 42

∀n, y.n ≥ 0→ [fact()]y = 42 ` n ≥ 0→ [α]y = 42

` n ≥ 0→ [fact()]y = 42

Using [rec] we showed that all terminating runs of fact() leave y with the value 42.
In fact, notice that we could have substituted any procedure in place of fact, and any
contract, and written essentially the same proof. So, this rule is certainly not sound. We
will need to come up with something else.

4 Semantics of recursive procedures

Before going further, let’s have another look at the semantics of procedure calls. When
we stated Equation 1, we were only thinking about non-recursive procedures. In these

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

Recursive Procedures L12.5

cases, inlining makes perfect sense: we can imagine replacing all procedure calls with
their corresponding bodies, and repeating that process until there are no further oppor-
tunities to do so. When we reach this point, we will be left with a program that doesn’t
have any procedure calls, and we can apply the semantics for other program constructs
that we have built up over the semester.

Now that we want to account for recursion, things are different. If we use this process
of inlining, we may never finish because each time we replace a call with its body, we
introduce at least one more call to the same procedure! Let’s formalize this a bit, and
see if we can arrive at further insights.

If α is the body of a recursive procedure m, then we will use the notation α(k) to denote
a syntactic approximation of α after k levels of inlining recursive calls. When k = 0, we
simply replace the entire body with abort, which you will recall from earlier is defined
as: abort ≡?false, with semantics [[abort]] = ∅. To be precise, we define the syntactic
approximation α(k) inductively on k as follows:

α(0) = abort

α(k+1) = αα
(k)

m()

(2)

Where αα
(k)

m() denotes α with all instances of m() replaced with α(k).
We will write m(k) to denote the procedure obtained by replacing the body with α(k).

So, for example applying this to the fact procedure from before, fact(1) would corre-
spond to the program:

proc fact(1)() {

if(n = 0) { y := 1 }

else { n := n - 1; abort; n := n + 1; y := y*n; }

}

The second approximation fact(2) would give us:

proc fact(2)() {

if(n = 0) { y := 1 }

else {

n := n - 1;

if(n = 0) { y := 1 }

else { n := n - 1; abort; n := n + 1; y := y*n; };

n := n + 1; y := y*n

}

}

In general, we would write fact(k) when k > 0 as:

proc fact(k)() {

if(n = 0) { y := 1 }

else { n := n - 1; factk−1(); n := n + 1; y := y*n; }

}

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

L12.6 Recursive Procedures

Let’s think about this in the context of concrete executions of fact. If we call fact()
in a state where n = 0, then we can reason about the behavior of this by considering
fact(1). The reason is that we will never encounter the “else” branch, and return the
correct answer y = 1 = 0!. So we know that:

[[α(1)]] ⊆ [[fact()]]

Similarly, if we call fact() with n = 1, then we can reason about the behavior by con-
sidering fact(2). Looking back at the second approximation of fact listed above, we
see that n will be decremented immediately in the “else” branch, and tested against 0
before the abort is ever reached. So we know that:

[[α(1)]] ∪ [[α(2)]] ⊆ [[fact()]]

Continuing with this line of reasoning, the pattern is clear. If we want to account for
the behavior of calling fact in a state where n is at most k, then we need to ensure that,

[[α(1)]] ∪ · · · ∪ [[α(k+1)]] ⊆ [[fact()]]

But we want to characterize the full semantics of fact, imposing no upper bound on
the value of n from which we call it. We can take our reasoning to its logical conclusion,
and define the semantics of a procedure call as shown in Definition 1.

Definition 1 (Semantics of procedure calls (with recursion)). Let α(k) be the kth approx-
imation of the program α, where α(0) ≡ abort and α(k+1) = αα

(k)

m() . Then if α is the body
of procedure m, the semantics of m() are as follows:

[[m()]] = {(ω, ν) : (ω, ν) ∈
⋃
k≥0 [[α(k)]], where α is the body of m} (3)

Although we did not talk about the inclusion of α(0) on our way to this definition,
note that because [[α(0)]] = ∅, it follows trivially.

5 Correctness of procedure calls and contracts

So far, we have developed an intuition that in order to reason about recursive procedure
calls, we will need to use induction. We have also observed a number of similarities be-
tween the reasoning needed for recursive procedures and that needed for loops. Just
as when reasoning about loops we need to find an inductive loop invariant that allows
us to conclude things about executions that may continue for arbitrarily many steps,
when reasoning about procedures we needed to find a contract that allowed us to rea-
son about calls, recursive or otherwise.

Recall from our discussion of loop convergence the var rule.

(var)
Γ ` J,∆ J,Q, ϕ = n ` 〈α〉(J ∧ ϕ < n) J,Q ` ϕ ≥ 0 J,¬Q ` P

Γ ` 〈while(Q)α〉P,∆
(n fresh)

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

Recursive Procedures L12.7

This rule requires that we select a term ϕ whose value will decrease with each iteration
of the loop. It should stay nonnegative as long as the loop continues executing, assum-
ing that we declare 0 to be the lower bound towards which ϕ converges. As long as
it never violates this bound, the invariance of ϕ’s decreasing lets us conclude that the
loop terminates.

How can we use similar reasoning with a recursive procedure m? Intuitively, we want
to associate a similar term ϕ with each call to m, and argue that this term decreases each
time m makes a recursive call. As with [rec], we will embody this obligation in an as-
sumption about recursive calls that allows us to make conclusions about the procedure
body. The rule 〈rec〉 below captures this reasoning.

(〈rec〉)
Γ, (∀x̄.A ∧ ϕ < n)→ 〈m()〉B ` ∀x̄.(A ∧ ϕ = n)→ 〈α〉B,∆ A ` ϕ ≥ 0

Γ ` A→ 〈m()〉B,∆
(n fresh)

Intuitively, this rule says that is we want to conclude that m terminates in a state de-
scribed by B when starting in one described by A, then we reason about the body as-
suming that the variant term ϕ = nwhen it begins executing. We are allowed to assume
that recursive calls beginning in a state where ϕ < n will terminate in one described by
B.

Theorem 2. The rule 〈rec〉 is sound. That is, if we have

|= (∀x̄.A ∧ ϕ < n→ 〈m()〉B)→ (∀x̄.A ∧ ϕ = n→ 〈α〉B) (4)

and
|= A→ ϕ ≥ 0 (5)

then it is the case that
|= A→ 〈m()〉B (6)

Proof. The following proof is adapted from [AdBO09].
Note that because n does not appear inA or ϕ, we can conclude thatA ≡ ∃n.(A∧ϕ <

n). So using the fact that |= A→ ϕ ≥ 0, we have ∃n.(A∧ϕ < n)→ ∃n ≥ 0.(A∧ϕ < n).
From this we see that it is sufficient to show that the following is implied by (4) and (5),
for all n ≥ 0.

|= ∃n > 0.A ∧ ϕ < n→ 〈m()〉B

Furthermore, because n does not appear in α or B, ∃n ≥ 0.(A∧ϕ < n)→ 〈m()〉B is true
if A ∧ ϕ < n→ 〈m()〉B is true for all n ≥ 0. We then write our goal as:

|= A ∧ ϕ < n→ 〈m()〉B

The proof proceeds by induction on n.

Basis n = 0. Fix an arbitrary state ω. We have that ω |= A→ ϕ ≥ 0, so ω 6|= A ∧ ϕ < 0.
This gives us ω |= A ∧ ϕ < 0→ 〈m()〉B.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

L12.8 Recursive Procedures

Induction step n > 0. Fix an arbitrary state ω. The inductive hypothesis gives us that
ω |= A ∧ ϕ < n→ 〈m()〉B. From this and (4), we have that ω |= A ∧ ϕ = n→ 〈α〉B,
and by 〈inl〉 that ω |= A ∧ ϕ = n→ 〈m()〉B. But ϕ < n + 1 ≡ (ϕ < n ∨ ϕ = n), so
then ω |= A ∧ ϕ < n+ 1→ 〈m()〉B. This concludes the inductive case.

Back to fact. Let’s apply this to fact from before, and prove that it terminates. One
minor annoyance is that 〈rec〉 relies on a fresh variable n, which we also used in fact.
We’ll modify the program slightly to ensure that the steps of our proof line up with the
symbols in 〈rec〉.

proc fact() {

if(x = 0) { y := 1 }

else { x := x - 1; fact (); x := x + 1; y := y*x; }

}

Recall the contract we stated earlier.

A ≡ x ≥ 0
B ≡ y = x!

In the proof, we’ll use the following shorthand to keep the proof steps more concise:

P ≡ ∀x, y.x ≥ 0 ∧ ϕ < n→ 〈fact()〉y = x!

We have only to decide what to use as a variant. Looking at the code, each time fact is
called, x decreases from the value that it had on entry to the procedure. So we will use
ϕ ≡ x. The proof is then as follows, where α denotes the body of fact.

〈rec〉

∀R

→R,∧L

〈if〉,→R,Z

a© 〈;〉,〈:=〉
P, x = n, x > 0 ` 〈x := x− 1〉〈fact()〉y ∗ (x+ 1) = (x+ 1)!

P, x = n, x > 0 ` 〈x := x− 1; fact();x := x+ 1; y := y ∗ x〉y = x!

P, x ≥ 0, x = n ` 〈α〉y = x!

P ` x ≥ 0 ∧ x = n→ 〈α〉y = x!

P ` ∀x, y.x ≥ 0 ∧ x = n→ 〈α〉y = x!
id

∗
x ≥ 0 ` x ≥ 0

` x ≥ 0→ 〈fact()〉y = x!

The proof a© corresponds to the branch of the conditional where x = 0, and follows
easily as seen below:

〈:=〉

Z
∗

P,ϕ = n, x = 0 ` 1 = x!

P,ϕ = n, x = 0 ` 〈y := 1〉y = x!

Now we continue with the other branch where the main proof left off. We have to deal
with the minor annoyance of the assignment x := x+ 1 occuring before the call to fact.
We will start the proof off with an application of [:=]=, introducing the fresh variable
z into the context to track the value x − 1. We see that this allows us to cancel the

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

Recursive Procedures L12.9

addition of 1 to x after the call, which is as we would expect from our understanding
of the program’s behavior.

[:=]=

=R
P, x = n, x > 0, u = x− 1 ` 〈fact()〉y ∗ x = x!

P, x = n, x > 0, u = x− 1 ` 〈fact()〉y ∗ (u+ 1) = (u+ 1)!

P, x = n, x > 0 ` 〈x := x− 1〉〈fact()〉y ∗ (x+ 1) = (x+ 1)!

At this point, we are ready to deal with the call to fact. Here is where the fact that we
have universally quantified over x, y will help, as we can instantiate x with u to reflect
the fact that this is the value the recursive call was given. We will leave y the same.

∀L

=L

→L

Z
∗

u = x− 1, x > 0 ` u ≥ 0 ∧ u < x
M[·]

=L,=R

Z
∗

y = (x− 1)!, x = n, x > 0, u = x− 1 ` (x− 1)! ∗ x = x!

y = u!, x = n, x > 0, u = x− 1 ` y ∗ x = x!

〈fact()〉y = u!, x = n, x > 0, u = x− 1 ` 〈fact()〉y ∗ x = x!

(u ≥ 0 ∧ u < x)→ 〈fact()〉y = u!, x = n, x > 0, u = x− 1 ` 〈fact()〉y ∗ x = x!

(u ≥ 0 ∧ u < n)→ 〈fact()〉y = u!, x = n, x > 0, u = x− 1 ` 〈fact()〉y ∗ x = x!

∀x, y.x ≥ 0 ∧ ϕ < n→ 〈fact()〉y = x!, x = n, x > 0, u = x− 1 ` 〈fact()〉y ∗ x = x!

This completes the proof.

6 Tying it all together

Now that we know 〈rec〉 is sound, we can use it to prove that a recursive function
satisfies its contract. This was not possible before, for much the same reason that we
needed the loop rule to prove postconditions for programs that used while(Q)α state-
ments. For nonrecursive procedures, we don’t need 〈rec〉, because we can reason about
the body as though it were its own independent program. Once we have proved the
procedure satisfies its contract, we can use 〈call〉 when calling the procedure, inserting
the contract proof where needed to avoid redundant work. To summarize, we reason
about programs with procedures with the following steps.

1. For each procedure m that will be invoked, write a contract A,B consisting of a
precondition and postcondition, respectively. If we intend to call m in contexts
requiring proofs for Γ1 ` 〈m()〉P1, . . ., Γn ` 〈m()〉Pn, then in order to ensure that
we can apply 〈call〉 to discharge these obligations we need to choose A,B such
that there are proofs for Γ1 ` A, . . ., Γn ` A as well asA ` P1, . . ., A ` Pn. In other
words, we need to be able to prove that the precondition holds each time we call
m, and that the postcondition is strong enough to let us prove everything we need
from our use of m.

2. For each procedure m with contract A,B, prove that the procedure upholds the
contract. That is, assuming that A holds when m is called, then B holds when it
terminates: A ` 〈m()〉B.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

L12.10 Recursive Procedures

a) If m is not recursive, then we can use 〈inl〉 to prove this by replacing the call
with m’s body. After doing so, there will no longer be procedure calls in the
program, and we can prove the contract using the same axioms and rules as
we would for programs that do not contain procedures.

b) If m is recursive, then we must use 〈rec〉. This rule allows us to reason about
the body of m while making the assumption that m does in fact satisfy its
contract. Each time we encounter a recursive call to m, we can apply this
assumption to make progress without unfolding the body again, and thus
construct a finite proof that the contract holds.

3. Once the contract for each procedure has a proof, use 〈call〉 each time a procedure
is invoked. This rule requires a proof of A ` 〈α〉B, where α is the body of m, but
we can supply this with little effort by copying the contract proof from earlier. The
remaining obligations are a proof that the precondition holds when the procedure
is called, and a proof that the postcondition implies the current goal.

Note that this discussion has focused on proving total correctness. We did not present
any reasoning principles for proving partial correctness of recursive procedures. This is
by design: now that we know how to prove total correctness, we should always insist
on demonstrating correctness with termination.

References

[AdBO09] Krzysztof R. Apt, Frank de Boer, and Ernst-Rdiger Olderog. Verification of
Sequential and Concurrent Programs. Springer, 3rd edition, 2009.

[Cla77] Edmund Clarke. Program invariants as fixed points. 1977 Symposium on
Foundations of Computer Science, pages 18–29, 1977.

[Cou90] Patrick Cousot. Handbook of theoretical computer science (Vol. B). chap-
ter Methods and Logics for Proving Programs, pages 841–993. MIT Press,
Cambridge, MA, USA, 1990.

[Hes93] Wim Hesselink. Proof rules for recursive procedures. 5, 11 1993.
[Hoa71] C. Hoare. Procedures and parameters: An axiomatic approach. pages 102–

116. 1971.
[vO99] David von Oheimb. Hoare Logic for Mutual Recursion and Local Variables,

pages 168–180. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

	Introduction
	Review: adding procedures
	Dealing with recursion
	Semantics of recursive procedures
	Correctness of procedure calls and contracts
	Tying it all together

