
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Software Model Checking

Matt Fredrikson André Platzer

Carnegie Mellon University
Lecture 19

1 Introduction

So far we’ve focused on model checking algorithms that assume a computation struc-
ture is given. It should come as no surprise that our goal is to perform model check-
ing of programs given as code, so today we’ll describe techniques that allow us to ap-
ply model checking in this setting. There are several challenges to doing so, foremost
among them the fact that the statespace of programs may be infinite. We’ll describe two
approaches for dealing with this: bounded model checking and predicate abstraction.

Each of these techniques addresses the problem by computing an approximation.
Bounded model checking computes an underapproximation of the reachable states-
pace by assuming a fixed computation depth in advance, and treating paths within
this depth limit symbolically to explore all possible states. Predicate abstraction com-
putes an overapproximation of reachable states by constructing a transition structure
that treats distinct program states identically, in a way that makes it possible to reason
over a finite number of states. While either approach has its limitations, both are used
effectively in practice, and are the core techniques that make software model checking
possible.

2 Review: Transition structures, LTL

Definition 1 (Trace semantics of programs). The trace semantics, τ(α), of a program α, is
the set of all its possible traces and is defined inductively as follows:

1. τ(x := e) = {(ω, ν) : ν = ω except that ν(x) = ω[[e]] for ω ∈ S}

2. τ(?Q) = {(ω) : ω |= Q} ∪ {(ω,Λ) : ω 6|= Q}

http://www.cs.cmu.edu/~15414/index.html

L19.2 Software Model Checking

3. τ(if(Q)α elseβ) = {σ ∈ τ(α) : σ0 |= Q} ∪ {σ ∈ τ(β) : σ0 6|= Q}

4. τ(α;β) = {σ ◦ ς : σ ∈ τ(α) , ς ∈ τ(β)};
the composition of σ = (σ0, σ1, σ2, . . .) and ς = (ς0, ς1, ς2, . . .) is

σ ◦ ς :=

(σ0, . . . , σn, ς1, ς2, . . .) if σ terminates in σn and σn = ς0

σ if σ does not terminate
not defined otherwise

5. τ(while(Q)α) ={σ(0) ◦σ(1) ◦ · · · ◦σ(n) : for some n ≥ 0 such that for all 0 ≤ i < n:
1© the loop condition is true σ(i)0 |= Q and 2© σ(i) ∈ [[α]] and 3© σ(n) either does not
terminate or it terminates in σ(n)m and σ(n)m 6|= Q in the end

}
∪ {σ(0) ◦ σ(1) ◦ σ(2) ◦ . . . : for all i ∈ N: 1© σ

(i)
0 |= Q and 2© σ(i) ∈ [[α]]}

∪ {(ω) : ω 6|= Q}
That is, the loop either runs a nonzero finite number of times with the last iteration
either terminating or running forever, or the loop itself repeats infinitely often and
never stops, or the loop does not even run a single time.

6. τ(α∗) =
⋃
n∈N τ(α

n) whereαn+1 def≡ (αn;α) for n ≥ 1, andα1 def≡ α andα0 def≡ (?true).

Definition 2 (Kripke structure). A Kripke frame (W, I,y) consists of a set W with a
transition relation y ⊆ W ×W where s y t indicates that there is a direct transition
from s to t in the Kripke frame (W,y). The elements s ∈ W are also called states, and
I ⊆ W are the set of initial states. A Kripke structure K = (W, I,y, v) is a Kripke frame
(W,y) with a mapping v : W → Σ → {true, false} assigning truth-values to all the
propositional atoms in all states.

The program semantics [[α]] which was defined as a relation of initial and final states
in Lecture 3 is an example of a Kripke structure.

Definition 3 (Computation structure). A Kripke structure K = (W, I,y, v) is called a
computation structure ifW is a finite set of states, I ⊆W is a set of initial states, and every
element s ∈W has at least one direct successor t ∈W with sy t. A (computation) path
in a computation structure is an infinite sequence s0, s1, s2, s3, . . . of states si ∈ W such
that si y si+1 for all i.

A computation structure is a special case of a Kripke structure. Although we could
simply refer to both types of structures as Kripke structures, we will often refer to the
general class of all such structures as “transition structures” when we don’t care to
distinguish between the two.

3 Bounded Model Checking

The first approach that we consider computes an underapproximation of τ(α): not all
possible traces will appear in the approximation, but all those that do appear are cer-
tain to be in the true trace semantics. In principle Bounded Model Checking (BMC)

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

Software Model Checking L19.3

can be used to verify arbitrary temporal properties, but it is most commonly used to
check invariants of the form �terminated → P , and we will focus on this case for the
remainder.

The way in which BMC approximates τ(α) is by assuming that all loops in the pro-
gram are unrolled to some fixed, pre-determined finite depth k. There are two useful
ways to think about this operation. The first, which might have occurred to you natu-
rally before having taken this course, is to transform the original program, which may
contain loops, into a loop-free program using the bound k. Recall from a much earlier
lecture the [unwind] axiom, which allows us to replace a loop with a conditional state-
ment, within which is a copy of the original loop.

([unwind]) [while(Q)α]P ↔ [if(Q) {α; while(Q)α}]P

Axiom [unwind] tells us that it is perfectly acceptable when reasoning about a safety
property to replace while statements with if statements in this way. To perform bounded
model checking, we first apply [unwind] to each loop in the program up to k times.
When we are finished, we replace any remaining loops with skip statements (or equiv-
alently, ?Q).

Let’s see an example. Consider the following program, which doesn’t do anything
useful but is simple enough to illustrate the key ideas here.

i := N;

while (0 ≤ x < N) {

i := i - 1;

x := x + 1;

}

Suppose that we want to check that �terminated → 0 ≤ i holds, up to a bound of k =
2. We begin by applying [unwind] twice to the loop. When we stop, we replace the
remaining loop with an empty statement.

i := N;

if(0 ≤ x < N) {

i := i - 1;

x := x + 1;

if(0 ≤ x < N) {

i := i - 1;

x := x + 1;

}

}

With all of the loops removed from the program, verification is straightforward using
the deductive techniques covered earlier in the semester: the formula we need to prove
is just [α]0 ≤ i. In particular, we can apply [if], [;], and [:=] repeatedly until we are left
with a term containing no modalities and literals involving only integer operations. In

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

L19.4 Software Model Checking

the current example, we have the following after applying the necessary steps.

(¬(0 ≤ x < N)→ 0 ≤ N)
∧ (0 ≤ x < N → ¬(0 ≤ x+ 1 < N)→ 0 ≤ N − 1)
∧ (0 ≤ x < N → 0 ≤ x+ 1 < N → 0 ≤ N − 2)

If this formula is valid (which it is not), then the original property holds. In practice,
these formulas are converted into satisfiability problems and given to a decision proce-
dure.

Notice that there are three clauses in this formula, one for each possible path through
the program after unwinding at k = 2. What bounded model checking essentially
does is to “symbolically” evaluate each path through the program up to the unwinding
depth. Each path corresponds to a conjunctive clause, so that if the formula is not
valid, there will be a clause that the model checker can identify as being at fault. The
corresponding path gives a counterexample, and a satisfying solution to its negation a
valuation of the input variables that will violate the property.

In the example above, we see that the first clause is already invalid. We negate it to
look for a satisfying solution:

¬(¬(0 ≤ x < N)→ 0 ≤ N)↔ (¬(0 ≤ x < N) ∧ ¬(0 ≤ N))

A satisfying solution to the above is x = 0, N = −1. Notice that if we run the original
program starting in a state that matches this assignment, then it terminates immediately
without executing the loop, leaving i = −1.

Limitations Because bounded model checking is an underapproximation, it might
not consider some traces that are in the trace semantics of the program. This means
that if it does not find a property violation, we cannot necessarily conclude that the
program is bug-free. However, in some cases we can. Consider the following variation
of the above example.

i := 3;

while (0 ≤ x < 3) {

i := i - 1;

x := x + 1;

}

While a bound of k = 2 is insufficient to conclude that there are no bugs in this pro-
gram, setting k = 3 is in fact sufficient. Furthermore, we can modify the unwinding
process slightly so that if no bugs are found up to a particular depth, and we’ve chosen
a sufficiently large enough k, we will conclude as much. Likewise, if no bugs are found
but we chose an inadequately large k, we’ll know that to be the case as well.

The approach uses what are called unwinding assertions. Whereas before when we
finished applying [unwind], we replaced the remaining loop with an empty statement,
now we will replace it with a statement that violates safety if the unwinding is insuffi-
cient. In the above example, we would have the following for k = 2.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

Software Model Checking L19.5

i := 3;

if(0 ≤ x < 3) {

i := i - 1;

x := x + 1;

if(0 ≤ x < 3) {

i := i - 1;

x := x + 1;

assert(¬(0 ≤ x < 3));

}

}

Although we haven’t talked about assertions before, we can model them using existing
constructs and safety properties. To check that an assertion isn’t violated, we replace
the assert statement with a corresponding conditional, which makes an assignment to
a special variable whenever its condition is true.

error := 0;

i := 3;

if(0 ≤ x < 3) {

i := i - 1;

x := x + 1;

if(0 ≤ x < 3) {

i := i - 1;

x := x + 1;

if(0 ≤ x < 3) error := 1;

}

}

We can then check the validity of the formula [α]error = 0. In this case, the formula
would be invalid, because x is at most 2 on the path containing the assert. This means
that the unwinding assertion fails to hold, and so we should not conclude that the
program is bug-free by unwinding up to k = 2.

4 Transition Structures for Programs

Moving on, we’ll now look at a different technique that builds an abstraction of the
program’s reachable states. This abstraction will be in the form of a transition structure.
Until now, we’ve been rather informal about the fact that the programs we’ve discussed
all semester can be modeled as transition structures. Now let’s get serious about it and
write the definition.

Definition 4 (Transition Structure of a Program). Given a program α over program
states S, let L be a set of locations given by the inductively-defined function locs(α),
ι(α) be the initial locations of α, and κ(α) be the final locations of α:

• locs(x := e) = {`i, `f},
ι(x := e) = {`i},
κ(x := e) = {`f}

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

L19.6 Software Model Checking

• locs(?Q) = {`i, `f},
ι(?Q) = {`i},
κ(?Q) = {`f}

• locs(if(Q)α elseβ) = {`i} ∪ {`t : ∀` ∈ locs(α)} ∪ {`f : ∀` ∈ locs(β)},
ι(if(Q)α elseβ) = {`i},
κ(if(Q)α elseβ) = κ(α) ∪ κ(β)

• locs(α;β) = {`0 : ∀` ∈ locs(α)} ∪ {`1 : ∀` ∈ locs(β)},
ι(α;β) = ι(α),
κ(α;β) = κ(β)

• locs(while(Q)α) = {`i, `f} ∪ {`t : ∀` ∈ locs(α)},
ι(while(Q)α) = {`i},
κ(while(Q)α) = {`f}

As a convenient shorthand, given a location ` we will write α` to denote the statement
associated with that location. The control flow transition relation ε(α) ⊆ locs(α) ×
progs × locs(α) is given by:

• ε(x := e) = {(`i, x := e, `f) : `i ∈ ι(x := e), `f ∈ κ(x := e)}

• ε(?Q) = {(`i, ?Q, `f) : `i ∈ ι(?Q), `f ∈ κ(?Q)}

• ε(if(Q)α elseβ) = {(`i, ?Q, `ti) : `i ∈ ι(·), `ti ∈ ι(α)} ∪ {(`i, ?¬Q, `fi) : `i ∈
ι(·), `fi ∈ ι(β)} ∪ ε(α) ∪ ε(β), where ι(·) = ι(if(Q)α elseβ).
In other words, transitions go from the initial location `i to the initial locations of
α and β.

• ε(while(Q)α) = {(`i, ?¬Q, `f) : `i ∈ ι(·), `f ∈ κ(·)} ∪ {(`i, ?Q, `ti) : `i ∈ ι(·), `ti ∈
ι(α)} ∪ {(`f , ?>, `i) : `i ∈ ι(·), `f ∈ κ(α)} ∪ ε(α).
In other words, transitions go from the initial location `i to the initial location of α,
as well as from the initial location `i to the final location `f and the final location
of the loop body to the initial location of the loop.

• ε(α;β) = ε(α) ∪ ε(β) ∪ {(`f , ?>, `i) : `i ∈ ι(β), `f ∈ κ(α)}

Notice that control flow transitions are associated with statements. Intuitively, the loca-
tions at the source of a transition correspond to the state immeidately prior to exeucting
a statement, and those at the destination the state immediately after. Then the transition
structure Kα = (W, I,y, v) itself is given by:

• W = locs(α)× {S}, I = {〈`i, σ〉 : `i ∈ ι(α)}.

• y= {(〈`, σ〉, 〈`′, σ′〉) : for (`, β, `′) ∈ ε(α) where (σ, σ′) ∈ JβK}.
In other words, a transition in Kα is possible whenever there is a corresponding
edge in (`, β, `′) ∈ ε(α), and the program state components σ, σ′ in the pre- and
post-states of the transition are in the semantics of β.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

Software Model Checking L19.7

• v(〈`, σ〉) = ` ∧
∧
v∈vars v = σ(v). In other words, states are labeled with formulas

that describe their location and valuation. We assume that program locations
correspond to literals in such formulas.

Definition 4 is consistent with Def. 1, in that if we start at an initial state and transcribe
the program state component in the label of each state entered moving along a possible
transition, then we will generate exactly the trace semantics of Kα. However, note
that we will never obtain a computation structure using Def. 4 because the state space
is infinite: there is at least one state in Kα for each possible valuation of variables as
integers. The model checking techniques that we have discussed all assume that the
computation we work with is described by a computation structure, which seems to
pose problems for us now.

Example 1 Consider the program we looked at in the context of bounded model
checking. Below is a version annotated with location labels.

`0: i := N;

`1: while(0 ≤ x < N) {

`2: i := i - 1;

`3: x := x + 1;

`4: }

We obtain the ε transition relation according to Definition 4 below. Notice that the
construction technically calls for another state after `2, which transitions to `3 on ?>.
This is not necessary, and is only specified in Definition 4 to make the formalisation
easier to understand. We omit it in the diagram below to keep the relation concise.

Example 2 Consider the following example, which uses a variable L in an attempt at
a simple mutual exclusion protocol.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

L19.8 Software Model Checking

L := 0;

C := 0;

while(t > 0) {

b := *;

if(b >= 0) {

L := 1;

C := C + 1;

// critical section

}

if(C > 0)

L := 0;

t := t - 1;

}

This program uses nondeterminism to simulate the fact that a process may not be
granted a lock when requested, in the event that another process already holds it. We
begin by annotating the program with locations.

`0: L := 0;

`1: C := 0;

`2: while(t > 0) {

`3: b := *;

`4: if(b >= 0) {

`5: L := 1;

`6: C := C + 1;

// critical section

`7: }

`8: if(C > 0)

`9: L := 0;

`10: t := t - 1;

`11: }

`13:

The control flow transitions, with guards, are shown below. Note that we can add a
self-loop to the final location `13 to ensure that all states in this structure have a post-
state.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

Software Model Checking L19.9

The transitions we’ve constructed so far correspond to ε(α). Now to constructKα, we
need one state for each location paired with each possible program valuation. However,
we cannot hope to compute such a structure in its entirety, or write it down because of
its infinite size. To address this, we will need to approximate the infinite statespace of
Kα with a finite one using a technique called predicate abstraction.

5 Predicate Abstraction

Bounded model checking approximates the statespace “from below”, by computing a
subset of the reachable states and verifying that the ensuing traces always satisfy the
property. In this sense, bounded model checking gives an underapproximation: any
property violations that it finds are sure to be real, but because not all reachable states
are explored, we might not discover some real violations.

Predicate abstraction is a different approach to the infinite statespace problem, which
in a similar sense gives an overapproximation. That is, it may “find” errors that do
not correspond to real ones, but it will never miss an error that actually exists in the
program. The main idea used in predicate abstraction is to merge states in Kα that
have the same labeling of atomic propositions. This may not seem to get us very far

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

L19.10 Software Model Checking

at first, as the labels used in Definition 4 were the the original source of the infinite
statespace problem. However, by selecting the set of atomic propositions wisely, we
can sidestep this problem while at the same time, in many cases, significantly reducing
the overall number of states that need to be explored.

By example. Consider the mutual exclusion program from before. Crucial to this
sort of protocol is that the lock be taken (`2) and released (`3) in proper order: a process
that does not own a lock should not release it, as this could lead to violation of mutual
exclusion safety.

To check this, we want to ensure what whenever the lock is taken by assigning L := 1
on `2, it is currently the case that L = 0. Likewise, whenever the lock is released on `3,
then it must be that L = 1. This gives us two LTL safety properties.

�`2 → L = 0 (1)
�`4 → L = 1 (2)

In the above, we use the shorthand `i to denote any state 〈`i, σ〉, for any σ. Likewise,
L = x denotes any state 〈`, L = x〉, for any `.

Let’s consider these formulas one at a time. In order to check (1), what states of
Kα could we possibly need to explore? Before the first sequence of assignments are
executed, L and C could take any values. It stands to reason that we must consider
any initial state s where v(s) |= `0. But after executing these assignments, we know
that both variables will take value 0, so we must only consider in addition at this stage
states s where v(s) |= `1 ∧ L = 0 ∧ C = 0. Similarly, the only states that matter at `2 are
those where v(s) |= `2 ∧ b > 0.

Following on these observations, we come to the central idea of predicate abstraction:
find a set of atomic predicates and corresponding abstract labeling function that is con-
cise but sufficient to capture all of the relevant traces in the program. We then merge all
of the states in the “concrete” transition structure Kα that share the same abstract label-
ing into one, and allow transitions liberally. In particular, if ŝ and ŝ′ are abstract states
and v̂ an abstract labeling, then we draw a transition from ŝŷŝ′ iff there are concrete
states s and s′ where sy s′, and additionally v̂(s) = ŝ, v̂(s′) = ŝ′.

We will continue with predicate abstraction in the next lecture, picking up where we
left off.

15-414 LECTURE NOTES MATT FREDRIKSON , ANDRÉ PLATZER

	Introduction
	Review: Transition structures, LTL
	Bounded Model Checking
	Transition Structures for Programs
	Predicate Abstraction

