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1 Introduction

In the previous lecture we saw how to create a Kripke structure whose language is
equivalent to the trace semantics of a program. However, this is problematic for model
checking due to the fact that there are an infinite number of states in the structure. We
began describing a way to address this using predicate abstraction, which overapproxi-
mates the Kripke structure by partitioning Kripke states into a finite number of abstract
states.

Today we will continue with predicate abstraction, and see how to create an abstract
transition structure for an arbitrary program. The good news is that it is always feasible
to do so, as there are a finite number of states and the transitions can be computed using
familiar techniques. The bad news is that often it is the case that crucial information gets
lost in the approximation, leaving us unable to find real bugs or verify their absence.
We’ll see how to incrementally fix this using a technique called refinement, which leads
to interesting new questions about automated software verification.

2 Review: Predicate abstraction

Definition 1. Given a set of predicates A ∈ Σ̂, let γ(A) be the set of program states
σ ∈ S that satisfy the conjunction of predicates in A:

γ(A) = {σ ∈ S : σ |=
∧
a∈A a}

Definition 2 (Abstract Transition Structure). Given a program α, a set of abstract atomic
predicates Σ̂, and control flow transition relation ε(α), let L be a set of locations given
by the inductively-defined function locs(α), ι(α) be the initial locations of α, and κ(α)
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L20.2 CEGAR & Craig Interpolation

be the final locations of α. The abstract transition structure K̂α = (Ŵ , Î, ŷ, v̂) is a tuple
containing:

• Ŵ = locs(α) × ℘(Σ̂) are the states defined as pairs of program locations and sets
of abstraction predicates.

• Î = {〈`, A〉 ∈ Ŵ : ` ∈ ι(α)} are the initial states corresponding to initial program
locations.

• ŷ = {(〈`, A〉, 〈`′, A′〉 : for (`, β, `′) ∈ ε(α) where there exist σ, σ′ such that σ ∈
γ(A), σ′ ∈ γ(A′) and (σ, σ′) ∈ JβK} is the transition relation.

• v̂(〈`, A〉) = 〈`, A〉 is the labeling function, which is in direct correspondence with
states.

Theorem 3. For any trace 〈`0, σ0〉, 〈`1, σ1〉, . . . of Kα, there exists a corresponding trace of K̂α

〈ˆ̀0, A0〉, 〈ˆ̀1, A1〉, . . . such that for all i ≥ 0, `i = ˆ̀
i and σi ∈ γ(Ai).

Theorem 4. Let A,B ⊆ Σ̂ be sets of predicates over program states, and β be a program.
Then for σ ∈ γ(A), there exists a state σ′ ∈ γ(B) such that (σ, σ′) ∈ JβK if and only if∧
a∈A a→ [β]

∨
b∈B ¬b is not valid.

Spurious counterexamples We looked at a modification of the earlier example from
bounded model checking.
`0: i := abs(N)+1;

`1: while(0 ≤ x < N) {

`2: i := i - 1;

`3: x := x + 1;

`4: }

This yields the following control flow transitions.
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Consider the following counterexample on the predicate set Σ̂ = {0 ≤ i}.

1. 〈`0, 0 ≤ i〉ŷ〈`1, 0 ≤ i〉. This edge is in K̂α because 0 ≤ i → [i := abs(N) + 1]0 > i
is equivalent to 0 ≤ i→ 0 > abs(N) + 1, which is not valid.

2. 〈`1, 0 ≤ i〉ŷ〈`2, 0 ≤ i〉. This edge exists because 0 ≤ i → [?0 ≤ x < N ]0 > i is
equivalent to 0 ≤ i→ 0 ≤ x < N → 0 > i, which is not valid.

3. 〈`2, 0 ≤ i〉ŷ〈`3, 0 > i〉. This edge exists because 0 ≤ i → [i := i − 1]0 ≤ i is
equivalent to 0 ≤ i→ 0 ≤ i− 1 and is not valid, seen from the assignment i = 0.

4. 〈`3, 0 > i〉ŷ〈`1, 0 > i〉. This edge exists because 0 > i → [x := x + 1]0 ≤ i is
equivalent to 0 > i→ 0 ≤ i, which is not valid.

5. 〈`1, 0 > i〉ŷ〈`4, 0 > i〉. This edge exists because 0 > i → [?¬(0 ≤ x < N)]0 ≤ i is
equivalent to 0 > i→ ¬(0 ≤ x < N)→ 0 ≤ i is not valid.

At this point, K̂α is in a state satisfying `4 ∧ ¬(0 ≤ i). As before, we need to determine
whether this counterexample is spurious. We consider a path which starts in a state
where 0 ≤ i, and transitions through `0, `1, `2, `3, `1, `4, ending in a state where 0 > i.
This leads us to ask whether the following DL formula is valid:

0 ≤ i→ [i := abs(N) + 1; ?0 ≤ x < N ; i := i− 1;x := x+ 1; ?¬(0 ≤ x < N)]0 ≤ i

Multiple applications of [;],[?],[:=] leave us with the valid formula:

0 ≤ i→ 0 ≤ x < N → ¬(0 ≤ x+ 1 < N)→ 0 ≤ abs(N)

The validity of this formula tells us that executing the statements in this counterexam-
ple will necessarily lead to a program state where 0 ≤ i, which does not violate the
property �`4 → 0 ≤ i. So this counterexample is spurious: it exists in the abstraction
K̂α, but not in the true transition system Kα corresponding to the program.

3 Automatic Refinement

We’ll see how to refine abstractions automatically using information derived from spu-
rious counterexamples. While the refinements computed by this approach may not
necessarily be strong enough to verify the original program, they are strong enough to
preclude the counterexample that they are derived from. In other words, after refine-
ment, no trace corresponding to the particular spurious counterexample we observed
will be in the abstraction. But the abstraction will still be an overapproximation, and
subsequent searches may identify more spurious counterexamples.
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Craig interpolation Let P → Q be a valid first-order formula. A Craig interpolant for
P and Q is a formula C that satisfies the following conditions:

• P → C and C → Q are valid.

• All of the variables in C also appear in both P and Q.

Intuitively, a Craig interpolant for P and Q is a fact about the variables shared by P
and Q that is “explained” by P , and in turn explains Q. Theorem 5 states that Craig
interpolants always exist, and in fact, there are often many interpolants for a given pair
of formulas P,Q.

Theorem 5 (Craig’s Interpolation Theorem (1957) [Cra57]). Let P → Q be a valid first
order formula, where P and Q share at least one variable symbol. Then there exists a formula C
containing only variable symbols in both P and Q such that P → C and C → Q.

We present a proof of Theorem 5 for the restricted case of propositional logic, i.e., P
and Q only contain propositional literals.

Proof. In the following, let Atoms(P ) be the set of atomic propositions (i.e., variables)
in P .

First, notice that if Atoms(P ) ∩ Atoms(Q) = ∅, then either ¬P is valid or Q is valid.
In either case, any formula will work as an interpolant. So assume that Atoms(P ) ∩
Atoms(Q) 6= ∅, and proceed by induction on the size of the set Atoms(P ) \Atoms(Q).

Base case: In the base case Atoms(P ) \ Atoms(Q) = ∅. Then P is an interpolant be-
cause P → P is valid, and P → Q is valid by assumption.

Inductive case: Let D ∈ Atoms(P ) \ Atoms(Q). Then define PD 7→> to be the same as
P , but with all instances of D replaced with >, and PD 7→⊥ be the same as P with
all instances of D replaced with ⊥. Then |Atoms(PD 7→> ∨ PD 7→⊥) \ Atoms(Q)| =
|Atoms(P ) \ Atoms(Q)| − 1, so by the inductive hypothesis PD 7→> ∨ PD 7→⊥ → Q
has an interpolant C. Because PD 7→> ∨ PD 7→⊥ ≡ P , C is also an interpolant for
P → D.

The proof given above for Theorem 5 is constructive: it tells us how to find a Craig
interpolant for P → Q. However, because the size of this interpolant may be exponen-
tial due to the splitting of P into disjunctive cases at each step, this interpolant may not
be suitable for use in practice for predicate abstraction. There exist similar constructive
proofs for the more general case of propositional logic, and rather than increasing the
size of the formula exponentially they may introduce quantifiers. Because we would
like to use automated decision procedures to answer queries about our abstractions,
interpolants with quantifiers are also not always useful in practice. Automated tech-
niques for finding concise, quantifier-free interpolants is a challenge, and remains an
active research topic in the verification literature.
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Note that it is equivalent to define a Craig interpolant for P,Q as a formula C that
is implied by P (P → C), inconsistent with Q (C ∧ Q is unsatisfiable), and contains
only shared symbols of P,Q. This formulation is more commonly used in the model
checking literature, and we will use it from this point forward.

Examples Let’s look at a few examples of Craig interpolants before seeing how they
can help with refinement. Consider P,Q, where:

P ≡ ¬(A ∧B)→ (¬D ∧B)
Q ≡ (E → A) ∧ (E → ¬D)

We can find an interpolant in this case by applying the procedure outlined in the proof
of Theorem 5 for propositional logic. The only variable in Atoms(P ) \ Atoms(Q) is B.
So splitting P on B we obtain:

(¬(A ∧ >)→ (¬D ∧ >)) ∨ (¬(A ∧ ⊥)→ (¬D ∧ ⊥))
↔ (¬A→ ¬D)
↔ A ∨ ¬D

Now consider the formula P,Q, where the literals are no longer propositional vari-
ables.

P ≡ (c 6= 0 ∨ d = 0) ∧ c = 0
Q ≡ d = 0

One possible Craig interpolant is d = 0, which we see by applying the same approach
as in the previous example but this time treating the literals c 6= 0, d = 0, c = 0 as we
did propositional variables previously. To save steps, we treat c = 0 and c 6= 0 as one
atom, non-negated in the first case and negated in the latter.

((¬> ∨ d = 0) ∧ >) ∨ ((¬⊥ ∨ d = 0) ∧ ⊥)
↔ d = 0

Another possibile interpolant is d ≤ 0. Both interpolants describe a fact implied by P
sufficient to prove Q. Note that because the interpolant only contains variables in both
formulas, it does not reflect anything about P that is irrelevent to Q. It is a concise
accounting of why P implies Q, which will be useful for our purposes.

In the previous example, the second interpolant d ≤ 0 could not be derived using
the technique from the proof because d ≤ 0 is not an atom in either formula P,Q. The
interpolant doesn’t necessarily need to mention the literals from the original formula,
and in some cases there is no atom shared between P and Q. Consider the following
P,Q:

P ≡ x = c0 ∧ c1 = c0 + 1 ∧ y = c1
Q ≡ x = m ∧ y = m+ 1

An interpolant in this case is y = x + 1. Although there are automated techniques
for producing such literals for formulas in most first-order theories relevant to verifica-
tion [HJMM04, BKRW10], we will not cover them in this course.
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Refinements from interpolants Let us return to the example from previous lecture.
Recall that we found a spurious counterexample for the property �`4 → 0 ≤ i using the
abstraction set Σ̂ = {0 ≤ i}.

1. 〈`0, 0 ≤ i〉ŷ〈`1, 0 ≤ i〉. This edge is in K̂α because 0 ≤ i → [i := abs(N) + 1]0 > i
is equivalent to 0 ≤ i→ 0 > abs(N) + 1, which is not valid.

2. 〈`1, 0 ≤ i〉ŷ〈`2, 0 ≤ i〉. This edge exists because 0 ≤ i → [?0 ≤ x < N ]0 > i is
equivalent to 0 ≤ i→ 0 ≤ x < N → 0 > i, which is not valid.

3. 〈`2, 0 ≤ i〉ŷ〈`3, 0 > i〉. This edge exists because 0 ≤ i → [i := i − 1]0 ≤ i is
equivalent to 0 ≤ i→ 0 ≤ i− 1 and is not valid, seen from the assignment i = 0.

4. 〈`3, 0 > i〉ŷ〈`1, 0 > i〉. This edge exists because 0 > i → [x := x + 1]0 ≤ i is
equivalent to 0 > i→ 0 ≤ i, which is not valid.

5. 〈`1, 0 > i〉ŷ〈`4, 0 > i〉. This edge exists because 0 > i → [?¬(0 ≤ x < N)]0 ≤ i is
equivalent to 0 > i→ ¬(0 ≤ x < N)→ 0 ≤ i is not valid.

We know that this is a spurious counterexample because we can construct a formula
that is valid if and only if the path corresponding to the counterexample satisfies the
safety property, which in this case is that 0 ≤ i at the end of the path. Namely, the
following is valid:

[i := abs(N) + 1; ?0 ≤ x < N ; i := i− 1;x := x+ 1; ?¬(0 ≤ x < N)]0 ≤ i

Consider the following incomplete deduction:

[;],[:=]=

[?],→R

[:=]=,[:=]=

[?]
i0 = |N |+ 1, 0 ≤ x < N, i1 = i0 − 1, x1 = x+ 1, 0 ≤ x1 < N ` 0 ≤ i1

i0 = |N |+ 1, 0 ≤ x < N, i1 = i0 − 1, x1 = x+ 1 ` [?¬(0 ≤ x1 < N)]0 ≤ i1
i0 = |N |+ 1, 0 ≤ x < N ` [i := i0 − 1][x := x+ 1][?¬(0 ≤ x < N)]0 ≤ i
i0 = |N |+ 1 ` [?0 ≤ x < N ][i := i0 − 1][x := x+ 1][?¬(0 ≤ x < N)]0 ≤ i
` [i := abs(N) + 1; ?0 ≤ x < N ; i := i− 1;x := x+ 1; ?¬(0 ≤ x < N)]0 ≤ i

The last sequent is valid if and only if the following formula is unsatisfiable:

i0 = |N |+ 1 ∧ 0 ≤ x < N ∧ i1 = i0 − 1 ∧ x1 = x+ 1 ∧ 0 ≤ x1 < N ∧ 0 > i1

This is called the path formula for the counterexample. Each conjunct on the left of the
implication corresponds to a constraint imposed by executing one of the statements
on the path. Assignments introduce equalities, and tests introduce direct assertions;
updates to variables are accounted for by indexing variable names in the manner of
static single-assignment (SSA) form. The final conjunct is the negated safety property

Now consider the interpolant corresponding to:

P ≡ i0 = |N |+ 1
Q ≡ 0 ≤ x < N ∧ i1 = i0 − 1 ∧ x1 = x+ 1 ∧ 0 ≤ x1 < N ∧ 0 > i1
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Such an interpolant is a fact about the program state immediately after the assignment
i := abs(N) + 1 that must hold after executing the assignment. One such fact is i0 =
|N | + 1 (i.e., just P ). But another is i > |N | − x. We can do this for each step of the
counterexample, deriving interpolants along the way to learn useful facts.

• P ≡ i0 = |N |+ 1,
Q ≡ 0 ≤ x < N ∧ i1 = i0 − 1 ∧ x1 = x+ 1 ∧ 0 ≤ x1 < N ∧ 0 > i1
C ≡ i0 > 0

• P ≡ i0 = |N |+ 1 ∧ 0 ≤ x < N ,
Q ≡ i1 = i0 − 1 ∧ x1 = x+ 1 ∧ 0 ≤ x1 < N ∧ 0 > i1,
C ≡ i0 > |N | − x ∧ 0 ≤ x < N

• P ≡ i0 = |N |+ 1 ∧ 0 ≤ x < N ∧ i1 = i0 − 1,
Q ≡ x1 = x+ 1 ∧ 0 ≤ x1 < N ∧ 0 > i1,
C ≡ i1 ≥ |N | − x ∧ 0 ≤ x < N

• P ≡ i0 = |N |+ 1 ∧ 0 ≤ x < N ∧ i1 = i0 − 1 ∧ x1 = x+ 1,
Q ≡ 0 ≤ x1 < N ∧ 0 > i1,
C ≡ i1 > |N | − x1 ∧ 0 ≤ x1 ≤ N

• P ≡ i0 = |N |+ 1 ∧ 0 ≤ x < N ∧ i1 = i0 − 1 ∧ x1 = x+ 1 ∧ 0 ≤ x1 < N ,
Q ≡ 0 > i1,
C ≡ 0 ≤ i1

We can obtain a set of predicates to refine our abstraction with by dropping the sub-
scripts from each interpolant above. We would then be left with,

Σ̂ = {0 ≤ i, i > 0, i > |N | − x, i ≥ |N | − x, 0 ≤ x < N, 0 ≤ x ≤ N}

Using these predicates will ensure that we do not encounter the same spurious coun-
terexample again in future attempts at model checking. To see why, notice the following
sequence of observations.

1. After executing the first assignment i := abs(N) + 1, we have that i > 0 must
hold. In other words, [i := abs(N) + 1]i > 0↔ |N |+ 1 > 0 is valid.

2. After executing the test ?0 ≤ x < N (i.e., entering the loop) starting in a state
where i > 0 holds, i > |N | − x ∧ 0 ≤ x < N must hold. This follows from the
validity of (i > 0 → [?0 ≤ x < N ]i > |N | − x ∧ 0 ≤ x < N) ↔ (i > 0 ∧ 0 ≤ x <
N → i > |N | − |x| ∧ 0 ≤ x < N).

3. Starting in a state where i > |N | − x ∧ 0 ≤ x < N holds and executing the assign-
ment i := i− 1 lands in a state where i ≥ |N | − x ∧ 0 ≤ x < N holds. This follows
from the validity of (i > |N |−x∧0 ≤ i < N → [i := i−1]i ≥ |N | − x ∧ 0 ≤ x < N)↔
(i > |N | − x ∧ 0 ≤ x < N → i− 1 ≥ |N | − x ∧ 0 ≤ x < N).
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4. Starting in a state where i ≥ |N | − x ∧ 0 ≤ x < N holds and executing the
assignment x := x + 1 yields a state where i > |N | − x ∧ 0 ≤ x ≤ N holds.
This follows from the validity of (i ≥ |N | − x ∧ 0 ≤ x < N → [x := x +
1]i > |N | − x ∧ 0 ≤ x ≤ N)↔ (i ≥ |N | − x∧ 0 < x < N → i > |N | − (x+ 1)∧ 0 ≤
x+ 1 ≤ N).

5. Starting in a state where i > |N | − x ∧ 0 ≤ x ≤ N holds and executing the test
?> (i.e., going back to the top of the loop) leads to a state where i > 0 necessarily
holds. This follows from the validity of (i > |N | − x ∧ 0 ≤ x ≤ N → [?>]i > 0)↔
(i > |N | − x ∧ 0 ≤ x ≤ N → i > 0).

6. Starting in a state where i > 0 holds and executing the test ?¬(0 ≤ x < N) (i.e.,
exiting the loop) leads to a state where 0 ≤ i necessarily holds. This follows from
the validity of (i > 0→ [?¬(0 ≤ x < N)]0 ≤ i)↔ (i > 0∧¬(0 ≤ x < N)→ 0 ≤ i).

Most automated techniques for deriving interpolants from counterexample path for-
mulas do so in a way that the interpolant for at each step through the path formula
is sufficient to prove the interpolant at the following [HJMM04]. In other words, if
Ci, Ci+1 are the interpolants for steps i and i + 1 of the counterexample, and α is the
statement executed at that step, then Ci → [α]Ci+1. This guarantees that the coun-
terexample used to refine the abstraction will no longer be a trace in the new transition
structure.

Localizing abstraction The way in which we derived these predicates gives us more
information yet. In particular, we derived each interpolant by splitting the counterex-
ample path formula at all of the program locations along the path. So in addition to
telling us which predicates are relevant to refining out the counterexample, this proce-
dure also tells us where in the program they are relevant at. We can use this information
to greatly reduce the statespace of the abstraction by localizing the set of abstraction
predicates to each control flow location. So rather than using as the statespace of the
abstraction Ŵ = S × ℘(Σ̂), we define Σ̂ to be a function from control flow locations to
sets of predicates:

Σ̂ : locs(α)→ ℘(predicates over program states),

where Σ̂(`) is the set of predicates interpolated at location `

Applying this to our running example, we are left with the abstraction depicted below.
Notice that there are no paths to a state where 0 > i holds, so we can perform exhaustive
model checking to conclude that the safety property always holds.
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This approach is called lazy abstraction [HJMS02], because the abstraction is con-
structed as needed and only in relevant locations as required by counterexamples. It
is the standard approach used for unbounded software model checking, and has been
implemented in numerous tools available today.
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