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1 Introduction

The programs that we have discussed so far are somewhat limited. By restricting the
statements allowed in programs to simpler forms, we have been able to understand
the fundamental ideas behind the formal semantics and proof techniques for reasoning
about program behavior. Importantly, the relative simplicity of the language allowed
us to do this without becoming overwhelmed with a significant number of cases and
details that need to be considered for rigor, but are not essential to these fundamental
ideas.

“Real” programming languages universally support more advanced ways of struc-
turing programs that encourage abstraction, modularity, and reuse. One such construct
is the procedure, which gives programmers a way to encapsulate some functionality so
that it can be invoked repeatedly in the future. In this lecture we will introduce proce-
dures into the language we have been studying. We will start with the simplest case:
non-recursive procedures that take no explicit arguments, do not provide an explicit re-
turn value, and have access to the same variables as the context in which they are called.
Even with these restrictions, we will see how to reason about procedure calls composi-
tionally, using contracts, so that we can avoid redundant work in proving things about
their behavior.

We will then consider recursive procedures, still with no arguments or return value.
The main challenge with recursive procedures lies in proving that their contracts hold,
and we will see how to use inductive principles to accomplish this. Finally, we will
discuss termination, and learn how to use variant terms to prove this similar to how
we were able to reason about loop convergence. In future lectures, we will add argu-
ments and return values to our procedures, and discuss some additional techniques
that simplify reasoning about the input/output behavior of such procedures.

http://www.cs.cmu.edu/~15414/index.html
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2 Review: programs so far

So far, we’ve defined a fairly simple programming language with support for arrays,
conditionals, and loops.

term syntax e, ẽ ::= x (where x is a variable symbol)
| c (where c is a constant literal)
| a(e) (where a is an array symbol)
| e+ ẽ
| e · ẽ

program syntax α, β ::= x := e (where x is a variable symbol)
| a(e) := ẽ (where a is an array symbol)
| ?Q
| if(Q)α elseβ
| α;β
| while(Q)α

Semantically, we modeled arrays as functions from their domain (Z) to their range (Z),
which meant that the states of our programs are maps from the set of all variables to
Z ∪ (Z→ Z). We then defined the semantics of terms with arrays in them.

Definition 1 (Semantics of terms). The semantics of a term e in a state ω ∈ S is its value
ω[[e]]. It is defined inductively by distinguishing the shape of term e as follows:

• ω[[x]] = ω(x) for variable x

• ω[[c]] = c for number literals c

• ω[[e+ ẽ]] = ω[[e]] + ω[[ẽ]]

• ω[[e · ẽ]] = ω[[e]] · ω[[ẽ]]

Definition 2 (Transition semantics of programs). Each program α is interpreted seman-
tically as a binary reachability relation [[α]] ⊆ S × S over states, defined inductively by

1. [[x := e]] = {(ω, ν) : ν = ω except that ν[[x]] = ω[[e]]}
The final state ν is identical to the initial state ω except in its interpretation of the
variable x, which is changed to the value that e has in initial state ω.

2. Ja(e) := ẽK = {(ω, ν) : ω = ν except ν(a) = ω(a){ωJeK 7→ ωJẽK}}
The final state ν is identical to the initial state ω except in its interpretation of the
array symbol a, which is updated at position ωJeK to take the value ωJẽK.

3. [[?Q]] = {(ω, ω) : ω |= Q}
The test ?Q stays in its state ω if formula Q holds in ω, otherwise there is no
transition.
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4. [[if(Q)α elseβ]] = {(ω, ν) : ω |= Q and (ω, ν) ∈ [[α]] or ω 6|= Q and (ω, ν) ∈ [[β]]}
The if(Q)α elseβ program runs α if Q is true in the initial state and otherwise
runs β.

5. [[α;β]] = [[α]] ◦ [[β]] = {(ω, ν) : (ω, µ) ∈ [[α]], (µ, ν) ∈ [[β]]}
The relation [[α;β]] is the composition [[α]] ◦ [[β]] of relation [[β]] after [[α]] and can,
thus, follow any transition of α through any intermediate state µ to a transition of
β.

6. [[while(Q)α]] =
{

(ω, ν) : there are an n and states µ0 = ω, µ1, µ2, . . . , µn = ν
such that for all 0 ≤ i < n: 1© the loop condition is true µi |= Q and 2© from
state µi is state µi+1 reachable by running α so (µi, µi+1) ∈ [[α]] and 3© the loop
condition is false µn 6|= Q in the end

}
The while(Q)α loop runs α repeatedly when Q is true and only stops when Q
is false. It will not reach any final state in case Q remains true all the time. For
example [[while(true)α]] = ∅.

3 Adding procedure calls

Now we will extend our language with procedure calls. We’ll assume that our language
doesn’t have any scoping conventions, so procedures can read and modify any variable
in the state. To start out, we’ll assume that procedures take no arguments, and can
modify any variable or array in the state.

We update the program syntax to add a new alternative for procedure call, distin-
guished by the presence of parenthesis after the procedure name:

program syntax α, β ::= x := e (where x is a variable symbol)
| a(e) := ẽ (where a is an array symbol)
| ?Q
| if(Q)α elseβ
| α;β
| while(Q)α
| m() (where m is a procedure name)

First, no recursion. If we can assume that the body of m does not make any recur-
sive calls, then we can reason about calls to m in a straightforward way. What is the
semantics of m()? We can think of simply inlining the body α into the call site.

[[m()]] = {(ω, ν) : (ω, ν) ∈ [[α]], where α is the body of m} (1)

Now that we have semantics to work from, we can define an axiom to help us reason
about calls. Just as Equation 1 replaces the call with its corresponding body, the axiom
substitutes the call for its body.

([inl]) [m()]P ↔ [α]P (α is body of m)
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It is easy to show that this axiom is sound using a semantic argument. This axiom can
be useful if we know nothing about the behavior of m, because we can reason about it
as though it weren’t invoked by a call in the first place, but instead the program had
been written in long form with the body repeated wherever calls appear.

However, we often know more about procedures because we write contracts, or
precondition-postcondition pairs that specify requirements at the call site and guar-
antees about the state afterwards. If we assume a precondition A and postcondition B
for m, then we can avoid having to prove things directly about the body α and instead
just show that the contract gives us what we need.

Theorem 3. The contract procedure call rule is sound by derivation.

([call])
Γ ` A A ` [m()]B B ` P

Γ ` [m()]P,∆

Proof. We can derive this rule using [inl], M[·], and two applications of cut. The proof is
as follows.

Γ ` A,∆
A ` [α]B

B ` P
M[·][α]B ` [α]P

cut,WL A ` [α]P
cut,WL,WR Γ ` [α]P,∆

[inl] Γ ` [m()]P,∆

The rule [call] is convenient in practice because we can decide on the contract A,B
once and for all before using the procedure, construct a proof of A ` [α]B, and reuse
that proof whenever we need to reason about a call to m. All that we need to do for each
call is derive a proof that the calling context entails the precondition (Γ ` A,∆), and
a corresponding proof that the postcondition gives the property we’re after (B ` P ).
This sort of compositionality lets us reuse past work, and is key to scaling verification
to larger and more complex programs.

4 Dealing with recursion

Now that we’ve seen how to reason compositionally about non-recursive procedure
calls in our code, let’s add recursion into the mix. Consider the following procedure that
implements the factorial function. It assumes that the variable n contains the “input”,
and stores the computed factorial value in y. Because we don’t support arguments yet,
we have to manage modifications made by subsequent calls somewhat carefully, which
is why fact increments n after the recursive call.

proc fact() {

if(n = 0) { y := 1 }

else { n := n - 1; fact (); n := n + 1; y := y*n; }

}
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4.1 Semantics of recursive procedures

Before going further, let’s have another look at the semantics of procedure calls. When
we stated Equation 1, we were only thinking about non-recursive procedures. In these
cases, inlining makes perfect sense: we can imagine replacing all procedure calls with
their corresponding bodies, and repeating that process until there are no further oppor-
tunities to do so. When we reach this point, we will be left with a program that doesn’t
have any procedure calls, and we can apply the semantics for other program constructs
that we have built up over the semester.

Now that we want to account for recursion, things are different. If we use this process
of inlining, we may never finish because each time we replace a call with its body, we
introduce at least one more call to the same procedure! Let’s formalize this a bit, and
see if we can arrive at further insights.

If α is the body of a recursive procedure m, then we will use the notation α(k) to denote
a syntactic approximation of α after k levels of inlining recursive calls. When k = 0, we
simply replace the entire body with abort, which you will recall from earlier is defined
as: abort ≡?false, with semantics [[abort]] = ∅. To be precise, we define the syntactic
approximation α(k) inductively on k as follows:

α(0) = abort

α(k+1) = αα
(k)

m()

(2)

Where αα
(k)

m() denotes α with all instances of m() replaced with α(k).
We will write m(k) to denote the procedure obtained by replacing the body with α(k).

So, for example applying this to the fact procedure from before, fact(1) would corre-
spond to the program:

proc fact(1)() {

if(n = 0) { y := 1 }

else { n := n - 1; abort; n := n + 1; y := y*n; }

}

The second approximation fact(2) would give us:

proc fact(2)() {

if(n = 0) { y := 1 }

else {

n := n - 1;

if(n = 0) { y := 1 }

else { n := n - 1; abort; n := n + 1; y := y*n; };

n := n + 1; y := y*n

}

}

In general, we would write fact(k) when k > 0 as:
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proc fact(k)() {

if(n = 0) { y := 1 }

else { n := n - 1; factk−1(); n := n + 1; y := y*n; }

}

Let’s think about this in the context of concrete executions of fact. If we call fact()
in a state where n = 0, then we can reason about the behavior of this by considering
fact(1). The reason is that we will never encounter the “else” branch, and return the
correct answer y = 1 = 0!. So we know that:

[[α(1)]] ⊆ [[fact()]]

Similarly, if we call fact() with n = 1, then we can reason about the behavior by con-
sidering fact(2). Looking back at the second approximation of fact listed above, we
see that n will be decremented immediately in the “else” branch, and tested against 0
before the abort is ever reached. So we know that:

[[α(1)]] ∪ [[α(2)]] ⊆ [[fact()]]

Continuing with this line of reasoning, the pattern is clear. If we want to account for
the behavior of calling fact in a state where n is at most k, then we need to ensure that,

[[α(1)]] ∪ · · · ∪ [[α(k+1)]] ⊆ [[fact()]]

But we want to characterize the full semantics of fact, imposing no upper bound on
the value of n from which we call it. We can take our reasoning to its logical conclusion,
and define the semantics of a procedure call as shown in Definition 4.

Definition 4 (Semantics of procedure calls (with recursion)). Let α(k) be the kth approx-
imation of the program α, where α(0) ≡ abort and α(k+1) = αα

(k)

m() . Then if α is the body
of procedure m, the semantics of m() are as follows:

[[m()]] = {(ω, ν) : (ω, ν) ∈
⋃
k≥0 [[α(k)]], where α is the body of m} (3)

Although we did not talk about the inclusion of α(0) on our way to this definition,
note that because [[α(0)]] = ∅, it follows trivially.

4.2 Correctness

The obvious contract for fact is,

A ≡ n ≥ 0, B ≡ y = n!

We can see right away that applying [call] does not get us very far, because α makes a
call to fact. We would again need to apply [call], and so on.

To make progress on this, we should recall how we tend to think about the correct-
ness of recursive procedures informally. When writing recursive code, the first thing
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that we do is determine what the base cases are, for which we can return a value with-
out making further recursive calls. After convincing ourselves that we’ve accounted
for the base cases correctly, we move on to those that do require a recursive call. Each
time we need to make such a call, we assume that the value we get back will be correct,
and use it to ultimately return a new value for the argument we’re dealing with.

Our assumption that the procedure returns correct values on smaller arguments, and
leveraging that to construct a correct value for larger arguments, is clearly a form of
inductive reasoning. What if we construct a rule that lets us assume that a procedure
we’re considering is correct, so that we can reason that each recursive call is correct as
a result? The rule might look something like the following.

([rec])
Γ, ∀x1, . . . , xn.A→ [m()]B ` A→ [α]B,∆

Γ ` A→ [m()]B,∆
(α is body of m, x1, . . . , xn used in α)

The [rec] rule makes reference to all variables x1, . . . , xn that are used in α. What does
this mean, and why is it necessary? First, this requirement means that in the premise,
we must quantify over all of the variables that appear in the procedure body α. Because
our procedures don’t take any arguments, and have access to the same set of variables
as the context in which they are invoked, it is appropriate to think of the set of variables
that are read in the body as its arguments. Universally quantifying over them in the
premise formalizes the notion that no matter what value we give to the arguments to m

when we call it, as long as the precondition holds (on those values) then the postcondi-
tion will as well.

But before we commit to this rule, we must ask ourselves whether it is sound. A
search through the verification literature may serve to give us some assurance, as many
conference papers, journal articles, and textbooks have introduced this rule as sound.
However, consider the following example.

[rec]

∀L

[inl]

id
∗

n ≥ 0→ [α]y = 42 ` n ≥ 0→ [α]y = 42

n ≥ 0→ [fact()]y = 42 ` n ≥ 0→ [α]y = 42

∀n, y.n ≥ 0→ [fact()]y = 42 ` n ≥ 0→ [α]y = 42

` n ≥ 0→ [fact()]y = 42

Using [rec] we showed that all terminating runs of fact() leave y with the value 42.
In fact, notice that we could have substituted any procedure in place of fact, and any
contract, and written essentially the same proof. So, this rule is certainly not sound. We
will need to come up with something else.

5 Total correctness of procedure calls and contracts

So far, we have developed an intuition that in order to reason about recursive procedure
calls, we will need to use induction. We have also observed a number of similarities be-
tween the reasoning needed for recursive procedures and that needed for loops. Just
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as when reasoning about loops we need to find an inductive loop invariant that allows
us to conclude things about executions that may continue for arbitrarily many steps,
when reasoning about procedures we needed to find a contract that allowed us to rea-
son about calls, recursive or otherwise.

Recall from our discussion of loop convergence the var rule.

(var)
Γ ` J,∆ J,Q, ϕ = n ` 〈α〉(J ∧ ϕ < n) J,Q ` ϕ ≥ 0 J,¬Q ` P

Γ ` 〈while(Q)α〉P,∆
(n fresh)

This rule requires that we select a term ϕ whose value will decrease with each iteration
of the loop. It should stay nonnegative as long as the loop continues executing, assum-
ing that we declare 0 to be the lower bound towards which ϕ converges. As long as
it never violates this bound, the invariance of ϕ’s decreasing lets us conclude that the
loop terminates.

How can we use similar reasoning with a recursive procedure m? Intuitively, we want
to associate a similar term ϕ with each call to m, and argue that this term decreases each
time m makes a recursive call. As with [rec], we will embody this obligation in an as-
sumption about recursive calls that allows us to make conclusions about the procedure
body. The rule 〈rec〉 below captures this reasoning.

(〈rec〉)
Γ,∀x̄.A ∧ ϕ < n→ 〈α〉B ` ∀x̄.A ∧ ϕ = n→ 〈α〉B,∆ A ` ϕ ≥ 0

Γ ` A→ 〈m()〉B,∆
(n fresh)

Intuitively, this rule says that is we want to conclude that m terminates in a state de-
scribed by B when starting in one described by A, then we reason about the body as-
suming that the variant term ϕ = nwhen it begins executing. We are allowed to assume
that recursive calls beginning in a state where ϕ < n will terminate in one described by
B.

Theorem 5. The rule 〈rec〉 is sound. That is, if we have

|= (∀x̄.A ∧ ϕ < n→ 〈α〉B)→ (∀x̄.A ∧ ϕ = n→ 〈α〉B) (4)

and
|= A→ ϕ ≥ 0 (5)

then it is the case that
|= A→ 〈m()〉B (6)

Proof. The following proof is adapted from [AdBO09].
Note that because n does not appear inA or ϕ, we can conclude thatA ≡ ∃n.(A∧ϕ <

n). So using the fact that |= A→ ϕ ≥ 0, we have ∃n.(A∧ϕ < n)→ ∃n ≥ 0.(A∧ϕ < n).
From this we see that it is sufficient to show that the following is implied by (4) and (5).

|= ∃n ≥ 0.A ∧ ϕ < n→ 〈m()〉B
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Furthermore, because n does not appear in α or B, ∃n ≥ 0.(A∧ϕ < n)→ 〈m()〉B is true
if A ∧ ϕ < n→ 〈m()〉B is true for all n ≥ 0. We then write our goal as follows:

|= A ∧ ϕ < n→ 〈m()〉B

and proceed by induction on n.

Basis n = 0. We want to show:

|= A ∧ ϕ < 0→ 〈m()〉B

Fix an arbitrary state ω. We have that ω |= A→ ϕ ≥ 0, so ω 6|= A ∧ ϕ < 0. This
gives us ω |= A ∧ ϕ < 0→ 〈m()〉B.

Induction step n > 0. We want to show:

|= A ∧ ϕ < n+ 1→ 〈m()〉B

Fix an arbitrary state ω. The inductive hypothesis gives us that ω |= A ∧ ϕ < n→ 〈α〉B.
From this, (4) and 〈inl〉, we have that ω |= A ∧ ϕ = n→ 〈m()〉B. But ϕ < n + 1 ≡
(ϕ < n ∨ ϕ = n), so then ω |= A ∧ ϕ < n+ 1→ 〈m()〉B. This concludes the induc-
tive case.

Back to fact. Let’s apply this to fact from before, and prove that it terminates. One
minor annoyance is that 〈rec〉 relies on a fresh variable n, which we also used in fact.
We’ll modify the program slightly to ensure that the steps of our proof line up with the
symbols in 〈rec〉.

proc fact() {

if(x = 0) { y := 1 }

else { x := x - 1; fact (); x := x + 1; y := y*x; }

}

Recall the contract we stated earlier.

A ≡ x ≥ 0
B ≡ y = x!

In the proof, we’ll use the following shorthand to keep the proof steps more concise:

P ≡ ∀x, y.x ≥ 0 ∧ ϕ < n→ 〈fact()〉y = x!

We have only to decide what to use as a variant. Looking at the code, each time fact is
called, x decreases from the value that it had on entry to the procedure. So we will use
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ϕ ≡ x. The proof is then as follows, where α denotes the body of fact.

〈rec〉

∀R

→R,∧L

〈if〉,→R,Z

a© 〈;〉,〈:=〉
P, x = n, x > 0 ` 〈x := x− 1〉〈fact()〉y ∗ (x+ 1) = (x+ 1)!

P, x = n, x > 0 ` 〈x := x− 1; fact();x := x+ 1; y := y ∗ x〉y = x!

P, x ≥ 0, x = n ` 〈α〉y = x!

P ` x ≥ 0 ∧ x = n→ 〈α〉y = x!

P ` ∀x, y.x ≥ 0 ∧ x = n→ 〈α〉y = x!
id

∗
x ≥ 0 ` x ≥ 0

` x ≥ 0→ 〈fact()〉y = x!

The proof a© corresponds to the branch of the conditional where x = 0, and follows
easily as seen below:

〈:=〉

Z
∗

P,ϕ = n, x = 0 ` 1 = x!

P,ϕ = n, x = 0 ` 〈y := 1〉y = x!

Now we continue with the other branch where the main proof left off. We have to deal
with the minor annoyance of the assignment x := x+ 1 occuring before the call to fact.
We will start the proof off with an application of [:=]=, introducing the fresh variable
z into the context to track the value x − 1. We see that this allows us to cancel the
addition of 1 to x after the call, which is as we would expect from our understanding
of the program’s behavior.

[:=]=

=R
P, x = n, x > 0, u = x− 1 ` 〈fact()〉y ∗ x = x!

P, x = n, x > 0, u = x− 1 ` 〈fact()〉y ∗ (u+ 1) = (u+ 1)!

P, x = n, x > 0 ` 〈x := x− 1〉〈fact()〉y ∗ (x+ 1) = (x+ 1)!

At this point, we are ready to deal with the call to fact. Here is where the fact that we
have universally quantified over x, y will help, as we can instantiate x with u to reflect
the fact that this is the value the recursive call was given. We will leave y the same.

∀L

=L

→L

Z
∗

u = x− 1, x > 0 ` u ≥ 0 ∧ u < x
M[·]

=L,=R

Z
∗

y = (x− 1)!, x = n, x > 0, u = x− 1 ` (x− 1)! ∗ x = x!

y = u!, x = n, x > 0, u = x− 1 ` y ∗ x = x!

〈fact()〉y = u!, x = n, x > 0, u = x− 1 ` 〈fact()〉y ∗ x = x!

(u ≥ 0 ∧ u < x)→ 〈fact()〉y = u!, x = n, x > 0, u = x− 1 ` 〈fact()〉y ∗ x = x!

(u ≥ 0 ∧ u < n)→ 〈fact()〉y = u!, x = n, x > 0, u = x− 1 ` 〈fact()〉y ∗ x = x!

∀x, y.x ≥ 0 ∧ ϕ < n→ 〈fact()〉y = x!, x = n, x > 0, u = x− 1 ` 〈fact()〉y ∗ x = x!

This completes the proof.

6 Summary of today’s rules

([inl]) [α]P ↔ [α]P (α is body of m)
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([call])
Γ ` A,∆ A ` [α]B B ` P

Γ ` [m()]P,∆

(〈inl〉) 〈m()〉P ↔ 〈α〉P (α is body of m)

(〈call〉)
Γ ` A,∆ A ` 〈α〉B B ` P

Γ ` 〈m()〉P,∆

(〈rec〉)
Γ, ∀x̄.A ∧ ϕ < n→ 〈α〉B ` ∀x̄.A ∧ ϕ = n→ 〈α〉B,∆ A ` ϕ ≥ 0

Γ ` A→ 〈m()〉B,∆
(n fresh)
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