
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Emptiness Checking, LTL Büchi Automata

Matt Fredrikson Ruben Martins

Carnegie Mellon University
Lecture 21

1 Introduction

We’ve seen how to check Computation Tree Logic (CTL) formulas against computation
structures. The algorithm for doing so directly computes the semantics of formulas, and
makes use of the fixpoint properties of monotone functions to derive the set of states
in a transition structure that satisfy the formula. We saw in a previous lecture that LTL
formulas are defined over traces, of where there are infinitely many in a computation
structure, so a similar approach will not work for LTL.

In this lecture, we will see how to check LTL formulas against computation structures
by reducing the problem to checking whether the language defined by a finite automa-
ton is empty. However, because the traces of a computation structure are infinite, we
cannot use the familiar tools available for nondeterministic finite automata (NFAs), and
instead need to define a new type of automata that can recognize infinite words. These
are called Büchi automata, and we will see that they have useful properties that can be
used to construct effective model checking algorithms for LTL [Var86].

2 Review: Transition structures, LTL

Several lectures ago, we introduced Linear Temporal Logic (LTL). Like CTL, the tempo-
ral modalities of LTL allow us to formalize properties that involve time and sequenc-
ing. While the semantics of CTL formulas are defined over the states of a transition
structure, the truth value of LTL formulas is defined over traces. Definition 1 gives the
meaning of an LTL formula over a trace. Definition 2 extends the semantics to transi-
tion systems, where we require that for all traces σ obtained by running a computation
structure K, σ |= P .

http://www.cs.cmu.edu/~15414/index.html

L21.2 Emptiness Checking, LTL Büchi Automata

Definition 1 (LTL semantics (traces)). The truth of LTL formulas in a trace σ is defined
inductively as follows:

1. σ |= p iff σ0 |= p for atomic propositions p provided that σ0 6= Λ

2. σ |= ¬P iff σ 6|= P , i.e. it is not the case that σ |= P

3. σ |= P ∧Q iff σ |= P and σ |= Q

4. σ |= ◦P iff σ1 |= P

5. σ |= �P iff σi |= P for all i ≥ 0

6. σ |= ♦P iff σi |= P for some i ≥ 0

7. σ |= UPQ iff there is an i ≥ 0 such that σi |= Q and σj |= P for all 0 ≤ j < i

In all cases, the truth-value of a formula is, of course, only defined if the respective
suffixes of the traces are defined.

Definition 2 (LTL semantics (computation structure)). Given an LTL formula P and
computation structure K = (W,y, v), K |= P if and only if σ |= P for all σ where
σi = v(si) for some path s0, s1, s2, . . . in K.

Definition 3 (LTL Semantics (language over traces)). Let P be an LTL formula and Σ a
set of atomic propositions. Then the language of P is defined as:

L(P) = {σ ∈ Σω : σ |= P}

where Σω is the set of infinite strings over Σ, and the truth relation |= is defined induc-
tively in Definition 1.

Definition 4 (Language of a computation structure). Let K = (W,y, v) be a compu-
tation structure defined over a set of atomic propositions Σ. Then the language of K,
denoted L(K), is: L(K) = {σ ∈ Σω : s0, s1, . . . a path in K and σi = v(si)}.

By defining languages for LTL formulas and computation structures, we can case the
LTL model checking problem as one of language inclusion.

L(K) ⊆ L(P) (1)

Equation 1 equivalent to saying that all of the behaviors of K are among the set of
behaviors that are allowed by P . How can we check whether Equation 1 holds for a
given K and P ? Suppose for the moment that L(K) and L(P) were regular languages
containing only finite words. Then we could exploit the fact that regular languages are
closed under intersection and complementation, in addition to the following fact (see
[BKL08] or for a proof):

L(K) ⊆ L(P) if and only if L(K) ∩ L(P) = ∅ (2)

We then defined a type of automaton that characterizes languages with infinite words.

Emptiness Checking, LTL Büchi Automata L21.3

Definition 5 (Nondeterministic Büchi Automaton (NBA)). A nondeterministic Büchi
automaton A is a tuple A = (Q,Σ, δ, Q0, F) where:

1. Q is a finite set of states.

2. Σ is an alphabet.

3. δ : Q× Σ→ ℘(Q) is a transition function.

4. Q0 ⊆ Q is a set of initial states

5. F ⊆ Q is a set of accepting states, which we sometimes call the acceptance set.

A run for (infinite) trace σ = σ0, σ1, σ2, . . . is an infinite sequence of states q0, q1, q2, . . .
in Q such that q0 ∈ Q0 and qi+1 ∈ δ(qi, σi) for all i ≥ 0. A run q0, q1, q2, . . . is accepting
if qi ∈ F for infinitely many indices i ≥ 0. The language of A is:

L(A) = {σ ∈ Σω : there exists an accepting run for σ in A}

In the above, Σω is the set of all infinite words over alphabet symbols in Σ.

Running example We demonstrated the concepts and ideas from the previous lecture
on a running example of a mutual exclusion protocol. The computation corresponded
to the following NBA.

ι

q0

q1

q2

q4

q3

q5

q6

q8

q7

nn

tn nt

ct tc tc

cn tt

ct

tt ncnt tn

nn nn

We wrote two useful properties for this computation.

• The mutual exclusion safety property �(¬c1 ∨ ¬c2) characterizes traces where it
is never the case that both processes are in the critical section at the same time.
Equivalently, traces where at all times it is true that either ¬c1 or ¬c2.

L21.4 Emptiness Checking, LTL Büchi Automata

• The liveness property �(t1 → ♦c1)∧�(t2 → ♦c2) characterizes traces that satisfy
the requirement that whenever a process tries to enter its critical section (ti is
true), it eventually succeeds (ci becomes true).

We found that the safety property gives the following NBA.

q0 q1
c1 ∧ c2

¬c1 ∨ ¬c2 true

Its complement was easy to obtain as well.

q0 q1
c1 ∧ c2

¬c1 ∨ ¬c2 true

In order to determine whether the mutual exclusion protocol models this property,
we need to construct an automaton for the intersection of their languages.

3 Intersecting Büchi automata with Kripke structures

As it turns out, NBAs are closed under intersection just as are their NFA counter-
parts over finite words. The proof of this fact is given directly by construction of a
product automaton that accepts exactly the language of the intersection of its compo-
nents [CGP99, BKL08].

While this construction is straightforward, one does need to be careful about the
acceptance set of the product NBA. In particular, when taking the product of A1 =
(Q1,Σ1, δ1, Q

0
1, F1) andA2 = (Q2,Σ2, δ2, Q

0
2, F2), we need to ensure that words accepted

by A1 ∩ A2 go through states corresponding to F1 and F2 an infinite number of times.
To accomplish this, the product construction splits states into three distinct parts 0, 1, 2
function intuitively as follows:

1. The product construction has all its initial states in part 0.

2. When entering a state corresponding to F1, the product moves to a state in part 1.

3. When entering a state corresponding to F2, the product moves to a state in part 2.

4. When the product is in a state from part 2, and enters a state not in F2, transition
back to a state in part 0.

Emptiness Checking, LTL Büchi Automata L21.5

Further details of this construction are given in [CGP99]. For the purposes of our
goals, we can use a simplified product construction that relies on the fact that the NBA
obtained from a computation structure has an acceptance set corresponding to its entire
state space.

Theorem 6. Given two nondeterministic Büchi automata A1 = (Q1,Σ, δ1, Q
0
1, Q1) and A2 =

(Q2,Σ, δ2, Q
0
2, F), the product A1∩2 = (Q1 × Q2,Σ, δ

′, Q0
1 × Q0

2, Q1 × F), where (q′1, q
′
2) ∈

δ′((q1, q2), σ) iff (q′i) ∈ δi(qi, σ) for i = 1, 2, satisfies L(A1∩2) = L(A1) ∩ L(A2).

To see Theorem 6 in action, let’s return to the task of checking the mutual exclusion
safety property on the NBA corresponding to the mutual exclusion computation struc-
ture. We’ll start by renaming the states in the NBA for the safety property, and updating
the transition labels to make them consistent with those used in the computation struc-
ture’s NBA.

r0 r1
cc

{nn,tn,nt,cn,nc,tt,ct,tc} true

We can now proceed with the intersection. The resulting automaton shown below con-
sists of two disconnected components, the first corresponding to states containing r0
and the second to states containing r1. They are disconnected because in the property
NBA, the only transition between r0 and r1 is labeled cc. However, the computation
NBA has no transitions labeled cc, and the δ′ from Theorem 6 requires corresponding
transitions in both constituent NBA.

ι, r0

q0, r0

q1, r0

q2, r0

q4, r0

q3, r0

q5, r0

q6, r0

q8, r0

q7, r0

nn

tn nt

ct tc tc

cn tt

ct

tt nc
nt tn

nn nn

ι, r1

q0, r1

q1, r1

q2, r1

q4, r1

q3, r1

q5, r1

q6, r1

q8, r1

q7, r1

nn

tn nt

ct tc tc

cn tt

ct

tt nc
nt tn

nn nn

Importantly, the initial state in the product is one containing r0, and the acceptance set
consists entirely of those containing r1. It is evident that the language of this NBA is
the empty set, which confirms our expectation that the original computation structure
satisfies the mutual exclusion safety property.

L21.6 Emptiness Checking, LTL Büchi Automata

4 Emptiness checking via cycle detection

The previous example was easy to check “visually” by inspection, because none of the
accepting states were reachable from the single initial state. In general of course this
heuristic will not apply, so we need a more general algorithm for determining whether
the product NBA corresponds to the empty language.

Consider an NBA A and accepting run ρ = q0, q1, Because ρ is accepting, it con-
tains infinitely many accepting states from F , and moreover, because F ⊆ Q is finite,
there is some suffix ρ′ of ρ such that every state on it appears infinitely many times. In
order for this to happen each state in ρ′ must be reachable from every other state in ρ′,
which means that these states comprise a strongly-connected component in A. From
this we can conclude that any strongly connected component in A that (1) is reachable
from the initial state, and (2) contains at least one accepting state, will generate an ac-
cepting run of the automaton. Exploiting this observation, we see that it suffices to use
any algorithm for detecting strongly-connected components, such as Tarjan’s depth-
first search algorithm [Tar72], for LTL model checking.

The asymptotic complexity of Tarjan’s algorithm is O(|Q| + |δ|), i.e., linear in the
number of states and transitions. We can’t expect to do better than this in the worst
case, but in practice it is not an ideal solution because it always constructs the entire
product automaton in memory, and returns each strongly-connected component. This
functionality is more than we need for LTL model checking, because it suffices to find
just one counterexample to demonstrate that the computation structure fails to satisfy
a property.

A notable alternative approach is based on nested depth-first cycle detection algo-
rithm [CVWY92]. To see why detecting cycles solves LTL model checking, observe that
whenever a reachable strongly-connected component with an accepting state exists in
the product NBA, there will necessarily be a cycle from some accepting state back to
itself. Given a strongly-connected component with an accepting state, it is always pos-
sible to find such a cycle, and the converse clearly holds.

The nested depth-first search routine for emptiness checking, isempty proceeds by
enumerating over all of the initial states, calling the outerdfs algorithm on each one. If
a cycle is reachable from one of these states, then outerdfs will raise a Found exception
terminating execution early. If no exception is raised throughout this enumeration, then
isempty returns false to signify that no such cycle exists.

let isempty A =

let (Q, Σ, δ, Q0, F) = A in

foreach q0 in Q0 do

try

outerdfs q0 Nil A

with Found -> true

done;

false

The first depth-first search implemented in outerdfs, which takes a state from which

Emptiness Checking, LTL Büchi Automata L21.7

to begin the search, a list of states that have already been visited in this phase of the
search, and the original automaton.

let rec outerdfs q visited A =

let (Q, Σ, δ, Q0, F) = A in

let visited ’ = Cons q visited in

foreach q’ in δ(q) do

if not (mem q visited ’) then (outerdfs q’ visited ’ A);

done;

if (mem q F) then (innerdfs q visited ’ Nil A)

outerdfs proceeds recursively in typical depth-first fashion, exploring all immediate
successors that have not already been visited by the outer search. When it is ready to
backtrack, it calls the nested innerdfs if the state currently being considered is accept-
ing.

Finally, the second DFS search innerdfs takes a state from which to begin searching,
the list of states visited by the outer DFS that invoked it, the list of states visited by the
current inner DFS, and the automaton.

let rec innerdfs q outervisited innervisited A =

let (Q, Σ, δ, Q0, F) = A in

let innervisited ’ = Cons q innervisited in

foreach q’ in δ(q) do

if (mem q’ outervisited) then

raise Found

else

if not (mem q’ innervisited ’) then

(innerdfs q’ outervisited innervisited ’ A);

done

If innerdfs ever encounters a state visited by the invoking outerdfs, then it termi-
nates the search with the result Found. This is correct, because innerdfs is only called
from accepting states; because it reached a previously-visited state following transi-
tions, there must be a reachable cycle back to the accepting state from which innerdfs

was called.
We can construct a counterexample to the emptiness claim by extracting a finite prefix

from an initial state to a cycle by traversing the visited list of outerdfs. Let q1 be the
state from which the call to innerdfs was started, and q2 the state that terminates it.
Then the visited list of innerdfs contains cyclical path from q1 to q2. Concatenating
this cycle to the finite prefix yields a cycle through an accepting state that is rechable
from an initial state, and serves as the counterexample.

Otherwise, innerdfs continues again in recursive depth-first fashion avoiding work
by not descending on states which have already been visited by this level of the DFS.
If it never encounters a state visited by outerdfs, then it returns without raising an
exception.

L21.8 Emptiness Checking, LTL Büchi Automata

5 Translating LTL into Büchi automata

Let’s look at how we can convert arbitrary LTL formulas into Büchi automata that ac-
cept the same language. The approach that we take, which is due to [GPVW95], uses
some ideas that are related to those we observed when checking CTL formulas. In
particular, just as we could write expansion axioms for CTL formulas that reduced rea-
soning about their satisfaction to local reasoning about the current state, along with
eventual reasoning about future states, we can do so for LTL formulas as well. We have
the following axioms.

UP1P2 ↔ P2 ∨ (P1 ∧ ◦(UP1P2)) (3)
♦P ↔ P ∨ ◦♦P (4)
�P ↔ P ∧ ◦�P (5)

To perform the LTL-Büchi conversion, we will first construct a directed graph whose
nodes contain information about the truth value of formulas. To keep track of this
information, each node is labeled with three sets of formulas that we will call old, now,
and next. The nodes of this graph will become the states in the final NBA, and the
formulas in these sets correspond to properties that must be satisfied by traces that
enter the corresponding nodes. The distinction between the sets is described as follows.

old: Formulas that have already been processed. As the conversion proceeds, old will
grow to contain all of the formulas relevant to the state corresponding to this
node.

now: Formulas that have not yet been processed. Eventually, all of the formulas in
now will be processed, and subsequently moved to old.

next: Formulas that must be satisfied by direct successors of states satisfying the prop-
erties in old.

We also keep track of the set of incoming edges at each node.
We’ll first see how the conversion works by considering the example formula R ≡

UPQ. To begin, we create a single node, setting its incoming edges to the special sym-
bol init, as well as now = {UPQ}, and old = next = ∅.

old: ∅
now: {Q}
next: ∅

Then at each step, we check the current set of nodes to see if there are remaining
formulas to process in now. If there are, then we select a formula from now to remove
from the set and proceed with updating the graph. In the current example, we have
one node with one formula R in now. The expansion axiom shown in Eq. 3 tells us that
R is true either when Q holds in the current instant, or P holds in the current instant
and UPQ holds at the next instant. We encode this by splitting the current node into
two:

Emptiness Checking, LTL Büchi Automata L21.9

• In one of the new nodes, Q is added to now. This corresponds to the case where
Q holds in the current instant.

• In the other new node, P is added to now, and UPQ is added to next. This
corresponds to the case where P holds in the current instant, and UPQ in the
next.

The new state of our graph is:

old: {UPQ}
now: {Q}
next: ∅

old: {UPQ}
now: {P}
next: {UPQ}

Continuing on, both of the nodes in our graph now contain now sets comprised of a
single literal. In general, when we process a literal from now, we first check to see if its
negation is in old. If it is, then we discard the current node, because it is a contradiction:
no trace can satisfy both P ∧ ¬P . If the negation of the literal is not in old, then we
simply update the graph by removing the literal from now and adding it to old. This
brings our running example to the following graph.

old: {UPQ,Q}
now: ∅
next: ∅

old: {UPQ,P}
now: ∅
next: {UPQ}

At this point both of the nodes in our graph have empty now sets. We proceed by se-
lecting a node for which to create a successor, by setting the now set of the successor to
the next set of the selected node. The old and next sets of the successor are initialized
to be empty. In the following graph, we have taken this step for both nodes.

old: {UPQ,Q}
now: ∅
next: ∅

old: {UPQ,P}
now: ∅
next: {UPQ}

old: ∅
now: {UPQ}
next: ∅

old: ∅
now: ∅
next: ∅

We continue processing nodes with non-empty now sets just as we did before. Be-
cause the new node with now = {UPQ} is exactly the same as the one we started out
with, we arrive at the following after multiple steps of processing.

L21.10 Emptiness Checking, LTL Büchi Automata

old: {UPQ,Q}
now: ∅
next: ∅

old: {UPQ,P}
now: ∅
next: {UPQ}

old: {UPQ,Q}
now: ∅
next: ∅

old: {UPQ,P}
now: ∅
next: {UPQ}

old: ∅
now: ∅
next: ∅

old: ∅
now: ∅
next: ∅

We currently have a graph with nodes that share old and next sets, and have empty
now sets. These are redundant, and we remove the more recent copy of each such
redundant node by adding its incoming edges to the other’s incoming set.

old: {UPQ,Q}
now: ∅
next: ∅

old: {UPQ,P}
now: ∅
next: {UPQ}

old: ∅
now: ∅
next: ∅

At this point, none of the nodes in our graph have non-empty now sets. There is no
further processing to be done, so we can finish by constructing a generalized Büchi au-
tomaton corresponding to the graph. We clearly want the alphabet to consist of sets of
atomic propositions from Σ. The set of states in the automaton will correspond exactly
to the set of states in the graph above, in addition to a new initial state. Likewise, the
edges will also remain the same, except with the addition of edges from the new initial
state to the states that represent nodes with init in their set of incoming edges.

What about the transition labels and accepting states? To assign transition labels, we
look to the old sets of each node in the graph. The labels on each edge will correspond
to the conjunction of all of the atomic propositions in the old set of the post-state. The
only “corner case” to deal with appears in our example, where one of the node has an
empty old set. The meaning of such a node is that there are no conditions on the traces

Emptiness Checking, LTL Büchi Automata L21.11

reaching the corresponding state; in these cases the transition is labeled with true to
reflect this fact. We are left with the following automaton.

Q P

Q

P

true

true

Finally, we need to assign the accepting states. Notice that not every infinite path
through the automaton belongs in the language of UPQ. In particular, the wordP, P, . . .
follows transitions on the automaton, staying in the rightmost state. Indeed, although
the node in our graph construction for this state contained UPQ, this word does not tra-
verse a successor state at any point that containsQ as required for inclusion inL(UPQ).
This is solved by setting as accepting any node for which UPQ 6∈ old, or Q ∈ old. This
leaves us with the following automaton.

Q P

Q

P

true

true

Note that this is by no means the simplest automaton that accepts the language. It
is not hard to see that we can simplify the structure to the following, which is perhaps
more natural.

Q

Ptrue

Other operators We just saw how to systematically convert the LTL formula UPQ
into a nondeterministic Büchi automaton. In order to generalize the approach to other
formulas, we need to consider how to process other operators that appear in the now

L21.12 Emptiness Checking, LTL Büchi Automata

sets of nodes. When processing a formula consisting of until, we split the current node
into two new ones using the expansion axiom for UPQ. We can handle the remaining
cases by considering the temporal operator ◦P , the Boolean operators P ∧Q, P ∨Q, and
a new temporal operator RPQ. The release operator is defined to be exactly the dual
of until:

RPQ ≡ ¬(U¬P¬Q) (6)

The addition of the release operator to LTL formulas allows us to define a useful nega-
tion normal form.

Definition 7 (LTL negation normal form). An LTL formula P is said to be in negation
normal form if it contains the operators ◦, U, R, ∧, ∨, and ¬. Additionally, negation in
P only occurs over atomic propositions.

Theorem 8. Any LTL formula has an equivalent representation in negation normal form.

Proof. Much as in the case of propositional logic, an LTL formula can be converted to
its NNF equivalent with the use of DeMorgan’s law and the following equivalences.

♦P ↔ UtrueP (7)
�P ↔ RfalseP (8)
¬◦P ↔ ◦¬P (9)

¬(UPQ)↔ R¬P¬Q (10)
¬(RPQ)↔ U¬P¬Q (11)

Proving the validity of these equivalences is a good exercise.

Assuming the formula we wish to convert is in NNF, we can use the following steps
to process nodes with ◦, R, ∧, and ∨ formulas in now.

P ∧Q: On selecting a conjunction, P ∧ Q is removed from now and replaced with P
and Q.

P ∨Q: On selecting a disjunction, the current node q is split into q1 and q2. P is added
to now of q1, and Q to now of q2.

◦P : On selecting ◦P from now in node q, simply remove ◦P from now and add it to
next.

RPQ: As in the case of U, when processing RPQ the current node q is split into two
new ones q1, q2. The expansion axiom for release is,

RPQ↔ Q ∧ (P ∨ ◦(RPQ))↔ (Q ∧ P) ∨ (Q ∧ ◦(RPQ)) (12)

So, Q is added to now in both q1 and q2, P is added to now in q1, and RPQ is
added to next of q2.

Emptiness Checking, LTL Büchi Automata L21.13

Finally, to handle the general case of arbitrary LTL formulas, we need to expand the
way in which accepting states are assigned as well. The most natural way to describe
the construction constructs a generalized Büchi automaton (GBA), which is exactly like
a NBA but for the syntax and semantics of the accepting states. Namely, a GBA has
potentially multiple distinct sets of accepting states; the acceptance criterion for a word
then requires the existence of a run that visits each set of accepting states infinitely often.

Definition 9 (Generalized Büchi Automaton (GBA)). A nondeterministic Büchi au-
tomaton A is a tuple A = (Q,Σ, δ, Q0, F) where:

1. Q is a finite set of states.

2. Σ is an alphabet.

3. δ : Q× Σ→ ℘(Q) is a transition function.

4. Q0 ⊆ Q is a set of initial states

5. F ⊆ ℘(Q) is a set of accepting sets.

A run for (infinite) trace σ = σ0, σ1, σ2, . . . is an infinite sequence of states q0, q1, q2, . . .
in Q such that q0 ∈ Q0 and qi+1 ∈ δ(qi, σi) for all i ≥ 0. A run q0, q1, q2, . . . is accepting
if for each Fj ∈ F , qi ∈ Fj for infinitely many indices i ≥ 0. The language of A is:

L(A) = {σ ∈ Σω : there exists an accepting run for σ in A}

In the above, Σω is the set of all infinite words over alphabet symbols in Σ.

While the more complex syntax of GBA make it simpler to describe many algorithms,
these automata are no more powerful than NBA. There is a straightforward translation
from a GBA to a NBA that accepts the same language. Intuitively, if there are n ac-
cepting sets in the GBA, then we make n copies of the automaton each with a single
acceptance set. There is a single accepting state in the NBA, which can only be entered
when at least one state from all of the original GBA acceptance sets have been traversed.

General acceptance criteria, complexity Wrapping up the conversion algorithm,
the general criteria for selecting acceptance conditions is as follows. For every subfor-
mula of the form UPQ, there is a new acceptance set Fi ∈ F in the GBA containing
the nodes where either UPQ 6∈ old, or Q ∈ old. This results in an automaton whose
size (i.e., number of states) is at most 2O(|P |), i.e., exponential in the size of the number
of subformulas of the original LTL formula. We will not prove the correctness of this
algorithm or its complexity here, but please consult the original paper [GPVW95] for a
clearly-written proof of both.

The worst-case exponential time and space requirements may seem dire, and indeed
they do pose a problem for some practical applications of the technique. However, two
points bear mentioning.

L21.14 Emptiness Checking, LTL Büchi Automata

First, the worst-case behavior of the algorithm is oftentimes not encountered in prac-
tice. In the example we worked out, there are three subformulas ({P,Q,UPQ}, but
the resulting automaton only had four states and we saw that simple heuristic opti-
mizations could bring the number of states down to just two. Gerth et al. [GPVW95]
showed in their original publication of the approach that many useful commonly-used
property formulas yielded small automata well below the worst-case bound. Second,
LTL model checking is known to be a hard problem, so it is unlikely that one can do bet-
ter. See [BKL08] for a proof that the LTL model checking problem is PSPACE-complete.

References

[BKL08] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles
of Model Checking. MIT Press, 2008.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, Cambridge, 1999.

[CVWY92] Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yan-
nakakis. Memory-Efficient Algorithms for the Verification of Temporal
Properties. Formal Methods in System Design, 1(2/3):275–288, 1992.

[GPVW95] Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-
the-fly automatic verification of linear temporal logic. In International Sym-
posium on Protocol Specification, Testing and Verification, pages 3–18. Chapman
& Hall, 1995.

[Tar72] Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms.
SIAM J. Comput., 1(2):146–160, 1972.

[Var86] Moshe Y. Vardi. On epistemic logic and logical omniscience. In Joseph Y.
Halpern, editor, Proceedings of the 1st Conference on Theoretical Aspects of Rea-
soning about Knowledge, Monterey, CA, USA, March 1986, pages 293–305.
Morgan Kaufmann, 1986.

	Introduction
	Review: Transition structures, LTL
	Intersecting Büchi automata with Kripke structures
	Emptiness checking via cycle detection
	Translating LTL into Büchi automata

