Assignment 4: Arrays
15-414/15-424 Bug Catching: Automated Program Verification

Due: 11:59pm, Thursday 9/27/18
Total Points: 50

1. Filter a list (10 points) Consider the following program «, which filters all of the 0-elements out of
array a and stores them in b.

c := 0;
i = 0;
while(i < n) {
if(a(i) !'=0) {
b(c) := a(i);
c :=c + 1;
}
}

Construct a postcondition P such that when [«]P is valid, then all of the elements of b between 0 and
numnz(a,n) will hold values that are not 0. Then give a loop invariant that is sufficient to prove this
postcondition using the rule. You do not need to give a proof, but explain why your postcondition
captures the correctness of the code, and why your invariant is sufficient to prove it.

You can assume that numnz is defined as:

0 ifn<0
numnz(a,n) = numnz(a,n — 1) if a(n) =0
1+ numnz(a,n—1) if a(n) #0

2. Existential funk (5 points) Recall the binary search program from lecture 6.

1 :=0;

h := n;

while(1l < h && a(m) !'= k) {
if(a(m) < k)

l:=m+ 1;
else

h := m;
m:= (1 +h) / 2;

}
We decided on the following postcondition as suitable for describing the correctness of this code:
(l<h—>am)=k)A(l=zh->Vi0<i<n—a(i)#k)

At first glance this seems like a convoluted way of capturing the very simple idea that whenever there
exists an index of a between 0 and n taking the value k, then m holds that index on termination.
Suppose instead that we decided to write the following postcondition:

Fi0o<i<n—oa(i)=k—->m=i

Explain why this postcondition fails completely and utterly as a specification of correctness.



3. Invert an array (10 points) Suppose that an array a is an injection: distinct indices map to distinct
elements. Furthermore, we assume that a is defined on all indices i such that 0 < i < n, and that it
only maps to values in this range as well. We want to write a program that inverts a into a second
array b, so that if a for example starts out as (for n = 10):

[3,1,0,2]
Then after the code runs, b has the value:
[2,1,3,0]
Your task is to write a specification for this program by giving pre and post.

4. Implement and prove it (15 points) Now that you have specified the behavior from problem
write a program to implement the functionality. Then, write a loop invariant that will allow you to
prove its correctness with respect to your spec. Then, use the axioms of dynamic logic to conduct a
sequent calculus proof that your implementation is correct.

Hint: your program, especially the loop body, should be very short.

5. And diamonds (10 points) Give an example program « for which the following dynamic logic
formula is valid, or explain why no such program exists.

{a)r <0 Aoy =0

Now consider the formula:
[a]lz <0 A [a]z =0

Does there exist an « that satisfies this? Why or why not?



