
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Ghosts

Frank Pfenning

Carnegie Mellon University
Lecture 4

February 11, 2021

1 Introduction

Complex data structures are often difficult to reason about. Compare, for example, a
red/black tree implementation of a map to a simple association list. To control this com-
plexity we have introduced the concept of a data structure invariant. In the red/black
tree example, this would include the ordering invariant (keys in left subtrees are all
smaller and keys in the right subtree are all larger than the key in a node), the color
invariant (there are no two adjacent red nodes in the tree), and the black height invariant
(the number of black nodes on any path from a leaf to the root is the same). These are
all internal invariants in the sense that the implementation of the data structure must
maintain them but the client should only care that red/black trees provide a correct
and efficient implementation of a map from keys to values. In this case, we say the
map provides a model of the intended behavior of the data structure. We would like
the model to be logical and as high-level as possible to support reasoning by the client.
Maps and sets are common models. In today’s lecture we exemplify sets as a model of
an ephemeral (mutable) implementation of bit vectors as arrays.

When implementing a data structure we have to maintain the correspondence be-
tween the low-level implementation and the high-level model. The purpose of the
model is to reason about a data structure, but not to compute with it. So we would
like to erase the code that maintains the model: actually computing it would negate all
the advantages of the efficient implementation! This is the primary purpose of ghosts.
They are pieces of code or data that exist solely for the purpose of verification and do
not contribute to the outcome of the computation. This has to be checked by the ver-
ification engine. Ghost variables, or ghost fields of records, can only be used in other
ghost computations. Otherwise, erasing them before the program is run would lead to

http://www.cs.cmu.edu/~15414/s21

L4.2 Ghosts

incorrect code. This condition is related to the fact that executable contracts in C0 can
not have any externally observable effects: running the program with or without exe-
cutable contracts should yield the same answer (as long as all contracts are satisfied, of
course).

We start with a tiny example (Fibonacci, here we go again!) to illustrate the need for
ghosts, and then use sets as a model for bit vectors. Toward the end of the lecture we
illustrate more complex specifications by giving a verified implementation of a regular
expression matcher using Brzozowski derivatives.

Learning goals. After this lecture, you should be able to:

• Use ghosts in verification;

• Model data structures using ghosts;

• Express more complex specifications logically;

• Understand Brzozowski derivatives of regular expressions.

2 Ghost Variables

As a first example, consider the following alternative definition of a recursive Fibonacci
function. Please take a few minutes to ponder this (correct!) definition and think about
why it is correct and how you might verify it before you move on.

1 module Fib

2

3 use int.Int

4

5 function fib (n:int) : int

6 axiom fib0 : fib 0 = 0

7 axiom fib1 : fib 1 = 1

8 axiom fibn : forall n:int.

9 n >= 0 -> fib n + fib (n+1) = fib (n+2)

10

11 let rec fib_alt_rec (a : int) (b : int) (n : int) : int =

12 requires { 0 <= n }

13 variant { n }

14 if n = 0 then a else fib_alt_rec b (a+b) (n-1)

15

16 let fib_alt_top (n : int) : int =

17 requires { 0 <= n }

18 ensures { result = fib n } (* fails *)

19 fib_alt_rec 0 1 n

20

21 end

15-414 LECTURE NOTES FRANK PFENNING

Ghosts L4.3

After staring at the function for a while it seems that it is correct. Initially, a and b are
fib(0) and fib(1) and after i recursive calls, a will continue to hold fib(i). However, we
cannot express this information because the number of iterations is not available to us.
The only recourse we have is to add the integer i as a furhter argument to the function.

1 let rec fib_alt_rec (a:int) (b:int) (i:int) (n:int) : int =

2 requires { 0 <= n /\ 0 <= i }

3 requires { a = fib i /\ b = fib (i+1) }

4 ensures { ... }

5 variant { n }

6 if n = 0 then a else fib_alt_rec b (a+b) (i+1) (n-1)

We already added the requirement and i be nonnegative and a and bmust be the values
of fib(i) and fib(i+ 1).

What can we say about the return value? The result of the original call should be
fib(n). On the first recursive call, it should still be fib(n), but for the original n! Mean-
while, we have decreased n, so as far as the postcondition is concerned it should now
be fib(n+1). And so on. But how do we say this? Please think it through before reading
on

15-414 LECTURE NOTES FRANK PFENNING

L4.4 Ghosts

The key insight here is the i+n remains invariant on each recursive call: we decrease
n and increase i. Initially, i = 0 so i + n = n, the needed answer. When the recursion
terminates, we have n = 0 and i has counted up to the original n, so again i + n is the
correct answer. With this insight it is easy to complete and verify the code.

1 let rec fib_alt_rec (a:int) (b:int) (i:int) (n:int) : int =

2 requires { 0 <= n /\ 0 <= i }

3 requires { a = fib i /\ b = fib (i+1) }

4 ensures { result = fib (i+n) }

5 variant { n }

6 if n = 0 then a else fib_alt_rec b (a+b) (i+1) (n-1)

7

8 let fib_alt_top (n : int) : int =

9 requires { 0 <= n }

10 ensures { result = fib n } (* succeeds! *)

11 fib_alt_rec 0 1 0 n

The sad truth we have to confront now is that we have made our function (marginally)
less efficient by adding another argument just for the correctness proof. But i plays no
computational role; its sole purpose is to express the contracts for fib_alt_rec. This is
where ghosts come to the rescue. we can declare the third argument to fib_alt_rec to
be a ghost argument that can be safely erased before the program is executed.

1 let rec fib_alt_rec (a:int) (b:int) (ghost i:int) (n:int) : int =

2 requires { 0 <= n /\ 0 <= i }

3 requires { a = fib i /\ b = fib (i+1) }

4 ensures { result = fib (i+n) }

5 variant { n }

6 if n = 0 then a else fib_alt_rec b (a+b) (ghost i+1) (n-1)

7

8 let fib_alt_top (n:int) : int =

9 requires { 0 <= n }

10 ensures { result = fib n } (* succeeds! *)

11 fib_alt_rec 0 1 (ghost 0) n

We see three occurrences of the keyword ghost, and all of the expressions marked in
this will be erased before executing the code. The verifier checks that this is indeed safe.
Let’s modify the first function to illegally use i in a computationally relevant context.

1 let rec fib_alt_rec (a:int) (b:int) (ghost i:int) (n:int) : int =

2 requires { 0 <= n /\ 0 <= i }

3 requires { a = fib i /\ b = fib (i+1) }

4 ensures { result = fib (i+n) }

5 variant { n }

6 if n = 0 then a+(i-i) else fib_alt_rec b (a+b) (ghost i+1) (n-1)

Even though the code is still correct (i − i = 0), it will now fail (as it should) even
before any theorem prover is called.

% why3 prove fibalt.mlw

File "fibalt.mlw", line 10, characters 10-21:

Function fib_alt_rec must be explicitly marked ghost

%

15-414 LECTURE NOTES FRANK PFENNING

Ghosts L4.5

This message explains that fib_rec_alt would be admissible, but only if the whole
function were marked as a ghost. If so, the function could only be called in a ghost
context, where the call itself would be erased.

The live code for this alternative implementation of fib can be found in fibalt.mlw.

3 Models

As an example of a model we use the standard set library to model a bit vector imple-
mentation of bounded finite sets. Here is an excerpt of the finite set module.

1 module Fset

2 type fset ’a

3 predicate mem (x: ’a) (s: fset ’a)

4 predicate is_empty (s: fset ’a) = forall x: ’a. not (mem x s)

5 constant empty: fset ’a

6 function add (x: ’a) (s: fset ’a) : fset ’a

7 axiom add_def: forall x: ’a, s: fset ’a, y: ’a.

8 mem y (add x s) <-> (mem y s \/ y = x)

9 function remove (x: ’a) (s: fset ’a) : fset ’a

10 axiom remove_def: forall x: ’a, s: fset ’a, y: ’a.

11 mem y (remove x s) <-> (mem y s /\ y <> x)

12 ...

13 end

We start by defining the Bset module by defining a bset as a record consisting of an
array a and a ghost field called model containing a finite set of integers. Because bsets
are mutable (for example, we actually change a bset by adding an element to it), the
model field must also be mutable.

1 type bset = { a : array bool ;

2 mutable ghost model : Fset.fset int }

3 invariant {forall i. 0 <= i < a.length -> (a[i] <-> Fset.mem i model)}

4 by { a = Array.make 0 false ; model = Fset.empty }

The invariant states that element a[i] of the array is true if and only if the number i is in
the model set. We witness the existence of such a bset with the empty array and empty
model.

To create an empty bset we need a bound on the elements we may add to the set,
which will be the length of the array.

1 let empty_bset (bound : int) : bset =

2 requires { bound >= 0 }

3 ensures { Fset.is_empty result.model}

4 { a = Array.make bound false ; model = Fset.empty }

The model is just the empty set. Note that the postcondition states that empty_bset
models the empty finite set.

To add an element i to a bset we just set the corresponding array element to true
(whether it was already true or not). This requires the precondition that the i is in the
permissible range. Because this operation is destructive, modifying the given bset, the
postcondition needs to state the model after the update is equal to the model before the

15-414 LECTURE NOTES FRANK PFENNING

http://www.cs.cmu.edu/~15414/s21/lectures/04-ghost/fibalt.mlw

L4.6 Ghosts

update, plus the element i. For this purpose we use again the old keyword to refer to
the state of the model at the time the function is called.

1 let add_bset (i : int) (s : bset) : unit =

2 requires { 0 <= i < s.a.length }

3 ensures { s.model = Fset.add i (old s).model }

4 s.a[i] <- true ;

5 s.model <- Fset.add i s.model ;

6 ()

This postcondition will allow the client to reason about the effects of it add operations.
The remove operation is entirely analogous.

1 let remove_bset (i : int) (s : bset) : unit =

2 requires { 0 <= i < s.a.length }

3 ensures { s.model = Fset.remove i (old s).model }

4 s.a[i] <- false ;

5 s.model <- Fset.remove i s.model ;

6 ()

We did not implement any more complex operations such as union or intersection,
even though this would certainly be possible. You can find the live-code Bset module
in the file bset.mlw.

4 Regular Expression Matching

The goal of this section will be to implement a verified matcher for regular expres-
sions. In lecture, we managed to specify and prove the finite fragment (without the r∗

operator). We use the very elegant algorithm proposed by Brzozowski [Brz64] which
has more recently been reexamined from the practical perspective by Owens, Reppy,
and Turon [ORT09]. We do not consider the translation to finite-state automata or the
efficiency improvements by Owens et al., just the basic algorithm.

Besides the intrinsic elegance of the algorithm, the main purpose of this exercise is
to exemplify effective logical specification for relatively complex types such as regular
expressions.

For simplicity, we use integers to represent the basic type of characters. A word is just
a list of characters.

1 module RegExp

2 use int.Int

3 use list.List

4 use list.Append

5

6 type char = int

7 type word = list char

8 ...

9 end

Regular expressions r over characters a are usually defined in the following BNF nota-
tion

r ::= a | 1 | r1 · r2 | 0 | r1 + r2 | r∗

15-414 LECTURE NOTES FRANK PFENNING

http://www.cs.cmu.edu/~15414/s21/lectures/04-ghost/bset.mlw

Ghosts L4.7

In WhyML, the following type definition precisely expresses this grammar.

1 type regexp = Char char (* single character *)

2 | One (* empty string *)

3 | Times regexp regexp (* concatenation *)

4 | Zero (* empty set *)

5 | Plus regexp regexp (* union *)

6 | Star regexp (* repetition *)

4.1 The Language Generated by a Regular Expression

A regular expression defines a language, L(r) which is a set of words over the alphabet
of characters. Rather than explicitly using sets, we define a predicate

1 predicate mem (w : word) (r : regexp)

such that mem w r is true iffw ∈ L(r). The key step is now to translate the mathematical
definition of L(r) into axioms describing the properties of mem.

Characters. Mathematically, we define L(a) = {a}. Axiomatically, it would be cor-
rect but too weak to simply state

1 axiom mem_char : forall a. mem (Cons a Nil) (Char a) (* too weak! *)

It only expresses that a ∈ L(a), or, in other words, {a} ⊆ L(a). To express the equality
we should state

1 axiom mem_char : forall w a. mem w (Char a) <-> w = Cons a Nil

Empty word. We defineL(1) = {ε}, where ε represents the empty word. As an axiom:

1 axiom mem_one : forall w. mem w One <-> w = Nil

Concatenation. We define L(r1 · r2) = {w1 w2 | w1 ∈ L(r1)∧w2 ∈ L(r2)}. To obtain a
suitable axiom we need to say that a word w ∈ L(r1 · r2) iff w can be decomposed into
w1 w2 such that w1 ∈ L(r1) and w2 ∈ L(r2). This requires an existential quantifier.

1 axiom mem_times : forall w r1 r2.

2 mem w (Times r1 r2)

3 <-> exists w1 w2. w = w1 ++ w2 /\ mem w1 r1 /\ mem w2 r2

Here we use list concatenation ++ from the list.Append module.

Empty set. We define L(0) = { }. For consistent style we define

1 axiom mem_zero : forall w. mem w Zero <-> false

but we could have said equivalently ∀w.not (mem w Zero)

15-414 LECTURE NOTES FRANK PFENNING

L4.8 Ghosts

Union. We define L(r1 + r2) = L(r1) ∪ L(r2). In axiomatic form:

1 axiom mem_plus : forall w r1 r2.

2 mem w (Plus r1 r2) <-> mem w r1 \/ mem w r2

Repetition. We can defined inductively that L(r∗) = L(ε + r · r∗). Expanding it, we
would get

1 axiom mem_star0 : forall w r.

2 mem w (Star r)

3 <-> w = Nil \/ exists w1 w2. w = w1 ++ w2

4 /\ mem w1 r /\ mem w2 (Star r)

The difficulty here appears to be the fact that if w1 = ε when w2 = w and the question
if w ∈ r∗ comes again down to w ∈ r∗. While there is nothing wrong with that in
an inductive definition, the automated provers supporting Why3 seem to have some
problems of using it effectively. But we can observe that there is really no point of
using this property when w1 = ε since it does not add to the set L(r∗). So we can
restrict the axiom to non-empty words w1 without affecting L(r∗).

1 axiom mem_star0 : forall w r.

2 mem w (Star r)

3 <-> w = Nil \/ exists a w1 w2. w = Cons a w1 ++ w2

4 /\ mem (Cons a w1) r /\ mem w2 (Star r)

This axiom has the helpful property that when the regular expression r∗ recurs on the
right-hand side, the string w2 is shorter than w on the left-hand side. So progress is be-
ing made in more than one way: when we read the clauses of the definition of mem w r
(expressed via our axioms) from left to right, either the regular expression becomes
smaller, or the regular expression stays the same but then the word becomes shorter.

4.2 Specifying the Brzozowski Derivative

The Brzozowski derivate of a regular expression r with respect to a character a is writ-
ten as ∂ar. We would like to define it such that

aw ∈ L(r) iff w ∈ L(∂ar)

Remarkably, such a derivative exists: if a language is regular (that is, is generated by a
regular expression), then the language of postfixes of any character a is again regular.
Moreover, we can effectively compute ∂ar. We can then define a regular expression
matcher traversing the word left to right, computing the derivative at each step until
the word is empty. Then it remains to decide if ε ∈ L(r) which we call nullable(r), which
can also be done effectively.

The outline of the rest of our program then becomes:

1 let rec nullable (r:regexp) : bool =

2 ensures { result <-> mem Nil r }

3 ...

4

15-414 LECTURE NOTES FRANK PFENNING

Ghosts L4.9

5 let rec deriv (a:char) (r:regexp) : regexp =

6 ensures { forall w. mem (Cons a w) r <-> mem w result }

7 ...

8

9 let rec re_match (w:word) (r:regexp) : bool =

10 ensures { result <-> mem w r }

11 variant { w }

12 match w with

13 | Cons a w’ -> re_match w’ (deriv a r)

14 | Nil -> nullable r

15 end

We have filled in the postconditions for nullable and deriv as well as re_match. You
should study them carefully to make sure you understand they correctly render the
mathematical definitions. We also have filled in the variant guaranteeing the termi-
nation of re_match. We see here a variant declaration for an inductive types such as
list ’a. Such a declaration means that every recursive call will be on a sublist of the
function argument. Here, this is obvious since w′ is just the tail of w.

It remains to write and verify the nullable and deriv functions.

4.3 Nullable Regular Expressions

We have to write a function to determine if a regular expression would generate the
empty word. This is actually quite straightforward. A single character a or the empty
set 0 obviously do not generate the empty word. On the other hand, 1 and r∗ do, by
their definition. A concatenation r1 · r2 generates the empty word if both r1 and r2 do,
and a union r1 + r2 if either r1 or r2 do. This gives us the following definition, which
clearly terminates because r decreases in each recursive call.

1 let rec nullable (r:regexp) : bool =

2 ensures { result <-> mem Nil r }

3 variant { r }

4 match r with

5 | Char _a -> false

6 | One -> true

7 | Times r1 r2 -> nullable r1 && nullable r2

8 | Zero -> false

9 | Plus r1 r2 -> nullable r1 || nullable r2

10 | Star _r -> true

11 end

And, indeed, this function is easily verified against the axioms for mem. We use an
underscore ‘_’ at the beginning of a variable that does not occur in its scope in order to
prevent a spurious warning from the compiler.

4.4 Computing the Brzozowski Derivative

As for nullable, we want to analyze the structure of the regular expression and see
if we can find a way to compute the derivative. We have to keep the specification in

15-414 LECTURE NOTES FRANK PFENNING

L4.10 Ghosts

mind, so we repeat it here.

aw ∈ L(r) iff w ∈ L(∂ar)

We start by defining the derivative in mathematical notation.

∂aa = 1
∂aa
′ = 0 for a 6= a′

∂a1 = 0
∂a(r1 · r2) = (∂ar1) · r2 if not nullable(r1)

The last line is the most interesting. If r1 does not generate the empty string, then
the character a must be matched by r1. The rest of the word is then matched by ∂ar1
followed by r2. But what if r1 is nullable? Then it is also possible that a is at the
beginning of the word generated by r2. So we continue:

∂a(r1 · r2) = (∂ar1) · r2 + ∂ar2 if nullable(r1)
∂a0 = 0
∂a(r1 + r2) = (∂ar1) + (∂ar2)
∂a(r

∗) = (∂ar) · r∗

The last line just says that for aw ∈ L(r∗) the first a has to be matched by a copy of r.
We now observe that in each case any appeal to ∂a on the right-hand side is on a

smaller regular expression. Translating this into WhyML is routine.

1 let rec deriv (a:char) (r:regexp) : regexp =

2 ensures { forall w. mem (Cons a w) r <-> mem w result }

3 variant { r }

4 match r with

5 | Char a’ -> if a = a’ then One else Zero

6 | One -> Zero

7 | Times r1 r2 -> let r1’ = Times (deriv a r1) r2 in

8 if nullable r1 then Plus r1’ (deriv a r2) else r1’

9 | Zero -> Zero

10 | Plus r1 r2 -> Plus (deriv a r1) (deriv a r2)

11 | Star r -> Times (deriv a r) (Star r)

12 end

The complete file can be found in regexp-all.mlw, the live-coded fragment without
repetition is in regexp.mlw.

4.5 Mixed Verification

At this point, trying either of the most common provers (alt-ergo and CVC4) fails. But
they fail on different subgoals in trying to verify the deriv function—both are able to
prove nullable re_match.

% why3 prove -P alt-ergo regexp-all.mlw

regexp-all.mlw RegExp nullable’vc: Valid (0.05s, 546 steps)

15-414 LECTURE NOTES FRANK PFENNING

http://www.cs.cmu.edu/~15414/s21/lectures/04-ghosts/regexp-all.mlw
http://www.cs.cmu.edu/~15414/s21/lectures/04-ghosts/regexp.mlw

Ghosts L4.11

regexp-all.mlw RegExp deriv’vc: Timeout (5.00s)

regexp-all.mlw RegExp re_match’vc: Valid (0.01s, 63 steps)

% why3 prove -P cvc4 regexp-all.mlw

regexp-all.mlw RegExp nullable’vc: Valid (0.44s, 86271 steps)

regexp-all.mlw RegExp deriv’vc: Timeout (5.00s, 357806 steps)

regexp-all.mlw RegExp re_match’vc: Valid (0.05s, 7930 steps)

%

Starting up the IDE and using strategy ‘Auto level 2’ fortunately breaks the verifica-
tion condition into smaller subgoals, each of which can ultimately be proved by one or
the other. Examining the session provides some details and statistics. We show only
the final statistics.

== Statistics per prover: number of proofs, time (minimum/maximum/average) in seconds ==

Alt-Ergo 2.3.1 : 6 0.01 9.00 1.73

CVC4 1.7 : 16 0.03 0.46 0.07

%

References

[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481–494, 1964.

[ORT09] Scott Owens, John H. Reppy, and Aaron Turon. Regular-expression deriva-
tives reexamined. Journal of Functional Programming, 19(2):173–190, 2009.

15-414 LECTURE NOTES FRANK PFENNING

	Introduction
	Ghost Variables
	Models
	Regular Expression Matching
	The Language Generated by a Regular Expression
	Specifying the Brzozowski Derivative
	Nullable Regular Expressions
	Computing the Brzozowski Derivative
	Mixed Verification

