15-414: Bug Catching: Automated Program Verification

Lecture Notes on
SMT Solving

Ruben Martins

Carnegie Mellon University
Lecture 16
Thursday, April 1, 2021

1 Introduction

In previous lectures, we studied decision procedures for propositional logic. However,
verification conditions that arise in practice often combine expression from different

theories. Consider the following examples:

e A combination of linear arithmetic and uninterpreted functions:

(@2 2 1) A (@1 — 23 =2 2) A3 =2 0) A f(f(21) — fla2)) # fls)
e A combination of linear arithmetic and arrays:
r=v{i<e}[j]\y=v[j]l Nz >enz>Yy
In this lecture, we will show how we can solve formulas that combine multiple theo-

ries by using the Nelson-Oppen combination method and the DPLL(T) framework. !
2 Preliminaries
A first-order theory 7' is defined by the following components.

e It’s signature ¥ is a set of constant, function, and predicate symbols.

1 ecture notes based on [BM07] and [KS16]. Last updated on April 8, 2021.

http://www.cs.cmu.edu/~15414/s21

L16.2 SMT Solving

e It’s set of axioms A is a set of closed first-order logic formulae in which only
constant, function, and predicate symbols of ¥ appear.

Definition 1 (7-valid). A X-formula ¢ is valid in the theory 7" (T-valid), if every inter-
pretation I that satisfies the axioms of T" (i.e., I = A forevery A € A) also satisfies ¢

(ie., I = o).

Definition 2 (T-satisfiable). Let 7' be a X-theory. A Y-formula ¢ is T-satisfiable if there
exists an interpretation I such that I = Aand I |= ¢.

Definition 3 (7-decidable). A theory T is decidable if T' |= ¢ is decidable for every
Y-formula. That is, there exists an algorithm that always terminate with “yes” if ¢ is
T-valid or with “no” if ¢ is T-invalid.
2.1 Example of Theories
Some theories that we will use throughout this lecture are:

o The theory of equality with uninterpreted functions (7).

e The theory of integers (TR).

The theory of equality with uninterpreted functions 7 is the simplest first-order
theory. It’s signature

Ye:{=a,b,c,....f,9,h,....,p,q,7, ...}
consists of
e = (equality), a binary predicate;
¢ and all constant, function and predicate symbols.

The axioms of T¢ are the following:

1. Ve.x =x (reflexivity)
2. Ve, yx =y —>y==x (symmetry)
3. Ve,y,zx=yAy=2z—>x=2=2 (transitivity)
4. Vz,5. (N i = yi) = f(T) = f(y) (congruence)
5. Vz,y. (A=, i = yi) — (p(T) <> p()) (equivalence)

The theory of reals Ti has signature

ER : {Oa 17 +, ==, Z}

where

15-414 LECTURE NOTES RUBEN MARTINS

SMT Solving L16.3

e (0 and 1 are constants;

e + (addition) and - (multiplication) are binary functions;

e - (negation) is a unary function;

e and = (equality) and > (weak inequality) are binary predicates.

Tr has a complex axiomatization and we will not describe all its axioms here since
they are not essential to the understanding of the Nelson-Oppen procedure and the
DPLL(T) framework. We refer the interested student to [BMO07] for a detailed reading
on the axiomatization of the theory of reals.

2.2 Theory combination

Definition 4 (Theory combination). Given two theories 77 and 7, with signatures
and ¥, respectively, the theory combination 77 & T3 is a (X1 U X3)-theory defined by
the axiom set 77 U T5.

Definition 5 (The theory combination problem). Let ¢ be a ¥; U3, formula. The theory
combination problem is to decide whether ¢ is T} & T-valid. Equivalently, the problem
is to decide whether the following holds: 71 & T3 = .

Given a Y-formula ¢ in 7 and a X-formula v in T can we check the satisfiability of
©U1 by checking the satisfiability of ¢ and ¢ independently and combining the results?
No! This is not a sound procedure for the theory combination problem. Consider the
following counterexample:

o= f(x) # f(y)
Yv=2x4+y=0Ax=0

Both ¢ and 1 are satisfiable but ¢ implies that + # y and ¢ implies that z = v,
therefore their combination is not satisfiable!

3 The Nelson-Oppen Combination Procedure

The Nelson-Oppen combination procedure solves the theory combination problem for
theories T and 75 that comply with the following restrictions:

e Both theories T} and 75 are quantifier-free (conjunctive) fragments.

e Equality (=) is the only symbol in the intersection of their signatures, i.e., X1y =
=}

e Both theories are stably infinite.

15-414 LECTURE NOTES RUBEN MARTINS

L16.4 SMT Solving

Definition 6 (Stably infinite). A theory 7" with signature X is stably infinite if, for ev-
ery satisfiable ¥p-formula ¢, there is an interpretation that satisfies ¢ and that has a
universe of infinite cardinality

Consider the theory T, with signature X7 : {a,b,=} where both a and b are con-
stants and with the following axiom:

eVrxxr=aVx=0b (two)

Because of axiom (two), every interpretation I is such that the domain of I has at
most two elements. Therefore, T, is not stably infinite. Note that most of the the-
ories of interest for program verification are stably infinite, e.g. theory of equality of
uninterpreted functions and theory of integers.

The Nelson-Oppen procedure for a formula ¢ that combines different theories con-
sists of:

1. Purification: Purify ¢ into F1,..., F,.

2. Apply the decision procedure for T; to F;. If there exists 7 such that F; is unsatis-
fiable in T;, then ¢ is unsatisfiable.

3. Equality propagation: If there exists ¢, j such that F; T;-implies an equality be-
tween variables of ¢ that is not Tj-implied by F}, add this equality to F; and go
to step 2.

4. If all equalities have been propagated then the formula is satisfiable.

3.1 Purification and equality propagation

Purification is a satisfiability-preserving transformation of the formula, after which
each atom is from a specific theory. In this case, we say that all the atoms are pure.
More specifically, given a formula ¢, purification generates an equisatisfiable formula
¢ as follows:

1. Let ¢/ := .

2. For each “alien” subexpression ¢ in ¢':
e Replace ¢ with a new auxiliary variable a

e Constraint ¢’ with ag = ¢.
Consider the following formula:

o= flz+g(y) <gla)+ f(b)

This formula combines the theories 7 and 7. Below we show the purification of ¢
into ¢’ defined over Tk and " defined over Tg

15-414 LECTURE NOTES RUBEN MARTINS

SMT Solving L16.5

Purification
¢ (Tkr) ¢" (Tg)
ug = +wA | up = g(y)A
us < ug +uz | uz = g(a)A
uz = f(b)A
us = f(us)

Observe that ¢’ only contains atoms from T and ¢” only contains atoms from Tg.
A variable is shared if it occurs in both formulas and local otherwise. For example,
{u1,u2,us,us, us} are shared variables since they appear in both ¢’ and ¢” and variables
{z,y,a,b} are local to either ¢’ ({z}) or ¢" ({y, a,b}).

Consider another formula:

¢=[f(f() = fw) #fEAe<yAy+z<zA0<2

We will show how to determine the satisfiability of ¢ with the Nelson-Oppen proce-
dure. We start by doing purification and then perform equality propagation over the
shared variables.

Purification

¢’ (Ir) ¢" (Tk)

z < yA flw) # f(2)A

y+z<zA u= f(x)A

0<2A v = f(y)

w=u—"0v

Equality propagation

T = yA T = yA

U = VA U = VA

w =2z w = 2z
unsat

Observe that < y, y + 2 < z and 0 < z implies that x = y and z = 0. Therefore,
we add z = y to both formulas. Since x = y this implies that f(z) = f(y) and therefore
u = v. Since u = v and w = u — v than this implies that w = 0 which means that
w = z. However, if w = z than f(w) = f(z) but ¢’ contains f(w) # f(z). Hence, ¢ is
unsatisfiable.

3.2 Convex theories

The Nelson-Oppen procedure described in the previous section is only valid for convex
theories. Note that this procedure can be modified to handle non-convex theories but
for simplification purposes, we omit that version.

15-414 LECTURE NOTES RUBEN MARTINS

L16.6 SMT Solving

Definition 7 (Convex theory). A X-theory T is convex if for every conjunctive ¥-formula

©:
n
(p — \/ x; = y;) is T-valid for some finite n > 1 —
i=1
(¢ — z; = y;) is T-valid for somei € {1,--- ,n}
where z;,y;, fori € {1,--- ,n}, are some variables.

In other words, in a convex theory T, if a formula T-implies a disjunction of equali-
ties, it also T-implies at least one of these equalities separately.
An example of a nonconvex theory is the theory of integers (7%). For instance, while

x1=1Nzog=2AN1<23N23<2— (x3=121V2I3=22)

holds, neither

T1=1AN20=2AN1<23N23<2—>23=101
nor

T1=1AN20=2AN1<23N23<2—23=29
holds.

Consider the following formula defined over the theory of integers (77) and the the-
ory of uninterpreted functions with equality (7g):

p=1<zANz<2Af(x)# f(1)Aflz) # f(2)

We can see that this formula is unsatisfiable since x is either 1 or 2 but f(z) #
1 A f(x) # 2 which means that x has to be different than 1 and 2. However, if we ap-
ply the Nelson-Oppen procedure described in the previous section we will incorrectly
conclude that ¢ is satisfiable:

Purification
¢ (Tz) ¢" (Tg)
T<an | F(0) £ 1(2)
r <2A | f(z) # f(w)

z=1
w=2
Equality propagation
sat | sat

15-414 LECTURE NOTES RUBEN MARTINS

SMT Solving L16.7

4 DPLL(T) framework

The Nelson-Oppen procedure allows us to solve conjunctive first-order theories. To
handle disjunction, we could convert the formula to Disjunctive Normal Form (DNF).
However, this conversion is usually too expensive and is not the most efficient way
of solving disjunctive first-order theories. In Lecture 12 we covered SAT Solving and
the DPLL and one of the strengths of the DPLL algorithm is its ability to handle dis-
junctions. DPLL can be extended into a DPLL(T) framework which allows Satisfiability
Modulo Theory (SMT) solvers to handle disjunctions of first-order theories and forms
the baseline of modern SMT solvers.

The key idea behind this framework is to decompose the SMT problem into parts we
can deal with efficiently:

e Use SAT solver to cope with the Boolean structure of the formula;
e Use dedicated conjunctive theory solver to decide satisfiability in the background
theory.
4.1 Boolean abstraction

We define the Boolean abstraction of a ¥-formula ¢ recursively:

o <literal> ::= <atom>rp | - <atom>p

e <formula> ::= <literal> B (lT)d:ﬁPZ-, where P; is a fresh variable
o <formula> := - <formula> B (—|F)d:d—|B(F)
o <formula> := <formula> A <formula> B (Fy A Fg)d:efB(Fl) N B(F3)
o <formula> ::= <formula> Vv <formula> B(FyV Fg)dZEfB(Fl) V B(Fy)
o <formula> ::= <formula>— <formula> B () — Fg)d:efB(Fl) — B(F3)
o <formula> = <formula>+« <formula> B (Fy < Fg)dZEfB(Fl) — B(F»)

Given a X-formula ¢:

p:g(a) =cA(f(g(a)) # fc)Vgla) =d) Ac#d

The Boolean abstraction of ¢ is the following:

B(F) = B(g(a) = ¢) AB(f(g(a)) # f(c) Vg(a) = d) Nc # d)
= B(g(a) = ¢) NB(f(g(a)) # f(c) V gla) = d)) AB(c # d)
= B(g(a) = ¢) ANB(f(g(a)) # f(c)) V Blg(a) = d) A B(c # d)

15-414 LECTURE NOTES RUBEN MARTINS

L16.8 SMT Solving

Note that we can also define B~! which maps from the Boolean variables back to
the atoms in the original formula. For example B~1(P; A P3 A Py) corresponds to the
formula g(a) = cAgla) =dANc=d.

We call B(y) an abstraction of ¢ since it is an over-approximation of ¢ with respect
to satisfiability. Observe the following properties of this over-approximation:

o If o is satisfiable then B(yp) is also satisfiable;

o If B(yp) is satisfiable then ¢ is not necessarily satisfiable:

p:l<zAz<2Af(x) # f(1)Af(x) # f(2)

¢ is unsatisfiable in the theory of integers (17) since z is either 1 or 2 but f(x) #
f(1) A f(xz) # f(2) implies that z must be different than 1 and 2. However, the
Boolean abstraction B(p) = P A P» A P3 A\ Py is satisfiable.

e If is unsatisfiable then B(y) is not necessarily unsatisfiable:
pil<ana <2Af@) £ f1) A fla) # F(2)

The same example as for the previous case holds for this case as well. ¢ is unsat-
isfiable in the theory of integers (77) but B(y) is satisfiable.

o If B(y) is unsatisfiable then ¢ is also unsatisfiable.

4.2 Combining theory and SAT solvers

The Boolean abstraction provides us with a lazy way to solve SMT. Given a X-formula
¢, we can determine its satisfiability by performing the following procedure:

1. Construct the Boolean abstraction 5();

If B(yp) is unsatisfiable then ¢ is unsatisfiable;
Otherwise, get an interpretation I for B(yp);
Constructw = A\, P, <+ I(F;);

Send B~!(w) to the T-solver;

If T-solver reports that B~!(w) is satisfiable then ¢ is satisfiable;

N o gl WD

Otherwise, update B(y¢) := B(¢) A —w and return to step 2.

This procedure terminates when: (i) B(y) becomes unsatisfiable which implies that ¢
is also unsatisfiable or (ii) T-solver reports that B~!(w) is satisfiable which implies that
¢ is satisfiable. Note that if B~!(w) is unsatisfiable we cannot terminate since there may
be another interpretation w’ to B(ip) that would make B~!(w’) satisfiable. Therefore, we
need to exhaust all interpretations for B(y) before deciding that ¢ is unsatisfiable. On

15-414 LECTURE NOTES RUBEN MARTINS

SMT Solving L16.9

Theory solver SAT solver
g(a) = cA P A (ﬂPg vV P3) APy
(f(g(a)) # f(e) V g(a) = d)A

c#d

Table 1: p and B(yp).

Theory solver SAT solver
g(a) = cN Py A (=PyV P3) NPy
(f(g(a)) # f) Vgla) =d)A | (=PLV PV =PV Fy)
c#d

Table 2: Updated B(y) after checking that the interpretation I = {P, P, P3, Py}
does not satisfy ¢

step 7 we add —w to B(y) since if we did not, we would get the same interpretation /
for B(y). We denote —w as a theory conflict clause that prevents the SAT solver from
going down the same path in future iterations.

Suppose we want to find if the ¥-formula ¢ is satisfiable:

v :g(a) =cn(fga)) # flc)Vgla) =d)ne#d
We start by building its Boolean abstraction B(y):
B((p) P A (—|P2 V Pg) A =Py

Table 1 shows the step 1 of the procedure with ¢ and the corresponding Boolean
abstraction B(y). Next, we query the SAT solver for an interpretation to B(y). Assume
that the SAT solver returns the following interpretation I = {P;,—~FP», P3,—P;}. We
construct w = (P A =P, A P3 A =Py) and send B~!(w) to T-solver. Note that B~!(w)
corresponds to:

B~ (w): gla) = cA f(g(a)) # f(e) Agla) =d Ne#d

B~!(w) is unsatisfiable since if g(a) = d and g(a) = c then ¢ = d but ¢ states that
¢ # d. Therefore, we know that this interpretation is not satisfiable but there may exist
another interpretation I that satisfies . We update B(y) with —w as shown in Table 2
and query the SAT solver for another interpretation.

Assume that the SAT solver returns a new interpretation I = {Py, P», P3,~P;}. We
construct w = (Py A P» A P3 A =P;) and send B~!(w) to T-solver. Note that in this case
B~! corresponds to:

B7'(w) : gla) = e A f(g(a) = f(c) Agla) = dAc#d

We can see that B~!(w) is unsatisfiable for the same reason as before. We update B(¢)
with —w as shown in Table 3 and perform another query to the SAT solver.

15-414 LECTURE NOTES RUBEN MARTINS

L16.10 SMT Solving

Theory solver SAT solver
g(a) = cA P A (—\Pg \Y Pg) NPy
(f(g(a)) # f(e) vgla) =d)N | (mPrV PV B3V Fy)
c#d (—|P1 VP,V -PyV P4)

Table 3: Updated B(y) after checking that the interpretation I = { P, P», P3, =P} does
not satisfy ¢.

Theory solver SAT solver
g(a) = cA P A (—\Pg \Y Pg) NPy
(f(9(a)) # fc)Vgla) =d)N | (~PLV P2V —P3V Py
c#d (‘\Pl VP,V -PyV P4)
("Pl VPV PV P4)

unsat

Table 4: Updated B(y) after checking that the interpretation I = {P;, ~P5, ~P3, Py}
does not satisfy . B(y) becomes unsatisfiable after adding the negation of /.

Assume that the SAT solver returns a new interpretation I = {P;, =P, 7P, Py}
We construct w = (P; A=P> A—~P3 A—P;) and send B~!(w) to T-solver. Note that in this
case B! corresponds to:

B~ (w) 1 g(a) = c A f(g(a)) # f(c) Agla) #dNe#d

We can see that B~!(w) is unsatisfiable since g(a) = cbut f(g(a)) # f(c). We update
B(p) with —w as shown in Table 4 and observe that B(y) becomes unsatisfiable after
adding —w. Since B(¢y) is unsatisfiable, we can conclude that ¢ is also unsatisfiable.

4.3 Improving DPLL(T) framework
Consider the ¥-formula ¢ defined over 77:
p:0<zAhx<lAxz<2A...2<99

The Boolean abstraction B(¢) is the following:
B((p):Po/\Pl/\.../\ng

Note that B() has 2?8 interpretations containing Py A P; and none of them satisfies
¢. The procedure described in the previous section will enumerate all of them one by
one and add a blocking conflict clause that only covers a single assignment! A potential
solution to this issue is to not treat the SAT solver as a black box but instead incremen-
tally query the theory solver as interpretations are made in the SAT solver. If we would
perform this integration then we would be able to stop after adding {0 < z,z < 1}
and would not need to explore the 2% infeasible interpretations. This can be done by
pushing the T-solver into the DPLL algorithm as follows:

15-414 LECTURE NOTES RUBEN MARTINS

SMT Solving L16.11

1. After Boolean Constraint Propagation (BCP), invoke the T-solver on the partial
interpretation;

2. If the T-solver returns unsatisfiable then we can stop the search of the SAT solver
and immediately add —w to By;

3. Otherwise, continue as usual until we have a new partial interpretation.

Recall the example:
¢ :g(a) =cA(f(gla)) # flc)Vgla) =d) Nc#d
And its Boolean abstraction B(y):
B(p): PL A (=P, V P3) NPy

DPLL with being by propagating P, and —P, since they are unit clauses. At this point
the theory axioms imply more propagations:

g(a) = c - f(g(a) = (c)
gla) =chc#d— gla) #d

Deciding =P, or P3 would be wasteful, so we can add the theory lemmas:

(Pl — Pg)
(Pl A —\Pg) — —P3

This procedure is called theory propagation and can guarantee that every Boolean
interpretation is 7-satisfiable. However, in practice doing this at every step can be
expensive and theory propagation is only applied when it is “likely” (using heuristics)
to derive useful implications.

Another optimization that can be performed is to minimize the conflict clause w that
we add to B(¢p) to contain only the root cause of the issue. Consider again the >-formula
@

p:g(a) =cn(flgla)) # flc)Vyla) =d) Ne#d

Notice that the interpretations I = {P;,—P,, P3,—P,} and I' = {P;,—~P,, P3,—P;}
had the same root cause that lead to ¢ being unsatisfiable under that interpretation,
ie. g(a) = d and g(a) which implies that ¢ = d but we know that ¢ # d which is a
contradiction. Can we find the root cause of this issue and learn something stronger
thanw = (=P V P, V —~P3 V P;)? Yes, we can minimize w using unsatisfiable cores!

Definition 8 (Minimal unsatisfiable core). Let ¢ be an unsatisfiable formula and ¢. C .
¢, is a minimal unsatisfiable core if and only if:

e (. is unsatisfiable;

e Removing any element from ¢. makes ¢, satisfiable.

15-414 LECTURE NOTES RUBEN MARTINS

L16.12 SMT Solving

For I = {P\, P2, P;,~P,} we have the following B~!(¢):

B (p) 1 g(a) = c A flg(a)) # f(c) Ngla) =d Ne#d
We can compute the minimal unsatisfiable core of B~1(y) as follows.

1. Drop g(a) = c. Is the formula still unsatisfiable? No! Then it means this constraint
will be part of the minimal unsatisfiable core.

2. Drop f(g(a)) # f(c). Is the formula still unsatisfiable? Yes! Then it means that
we can remove this constraint from the minimal unsatisfiable core.

3. Now we have g(a) = cAg(a) =d A c#d.
4. Drop g(a) = d. Is the formula still unsatisfiable? No, then keep this constraint.
5. Drop c # d. Is the formula still unsatisfiable? No, then keep this constraint.

We can conclude that our minimal unsatisfiable core is g(a) = ¢ A g(a) = d A ¢ # d.
Therefore, we can learn the clause w’ = (=P, V =P3 V Py) instead of w = (=P} V Py V
—P3 vV P;) which would have save one query to the SAT solver in the previous section.

5 Summary

e Nelson-Oppen procedure allows us to decide the satisfiability of a formula that
consists of a combination of conjunctive first-order theories.

e Nelson-Oppen procedure is based on two phases:

1. Purification;

2. Equality propagation of shared variables.

e The DPLL(T) framework can be used to decide the satisfiability of a formula that
consists of a combination of disjunctive first-order theories.

e We can over-approximate a formula using its Boolean abstraction.

o The key ideas behind the DPLL(T) framework is to:
— Use SAT solver to cope with the Boolean structure of the formula;
— Use dedicated conjunctive theory solver to decide satisfiability in the back-
ground theory.
e The basic DPLL(T) framework can be further improved with:
- Theory propagation;

— Minimal unsatisfiable cores.

15-414 LECTURE NOTES RUBEN MARTINS

SMT Solving L16.13

References

[BMO07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision Pro-
cedures with Applications to Verification. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2007.

[KS16] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic Point

of View. Texts in Theoretical Computer Science. An EATCS Series. Springer,
2016.

15-414 LECTURE NOTES RUBEN MARTINS

	Introduction
	Preliminaries
	Example of Theories
	Theory combination

	The Nelson-Oppen Combination Procedure
	Purification and equality propagation
	Convex theories

	DPLL(T) framework
	Boolean abstraction
	Combining theory and SAT solvers
	Improving DPLL(T) framework

	Summary

