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1 Introduction

In the previous lecture, we studied the Nelson-Oppen procedure and the DPLL(T)
framework that allows us to build decision procedures for formulas that use multi-
ple theories. In this lecture, we will present several examples of SMT theories. We will
also take a closer look at the theory of equality with uninterpreted functions and see
how we can solve it with a congruence closure algorithm. 1

2 SMT Theories

SMT supports many different theories such as linear real arithmetic, linear integer arith-
metic, fixed-width bitvectors, arrays, and equality with uninterpreted functions. For-
mulas can combine these theories and we can solve them using the DPLL(T) procedure
as described in the previous lecture. To use DPLL(T), we need a decision procedure for
each of these theories. However, decision procedures for these and other theories have
been developed during the last decades. Even though we will not go into detail on
how these procedures work, we will highlight some of the methods and their respec-
tive complexity. In this lecture, we will restrict ourselves to quantifier-free theories and
will talk about quantified SMT in Lecture 19.

• Linear Real Arithmetic. Consider formulas using linear real arithmetic that are
conjunctions of linear constraints over R. These formulas can be decided in poly-
nomial time but in practice is often solved with the general Simplex method which

1Lecture notes based on [BM07] and [KS16].
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is in the worst-case exponential. It can also be decided by other exponential meth-
ods like the Fourier-Motzkin elimination. If you are interested in known more
about the Simplex algorithm you can take a look at the lecture notes from “15-451
Design and Analysis of Algorithms”.

• Linear Integer Arithmetic. Consider formulas using a conjunction of linear con-
straints over Z. Deciding if a formula is satisfiable or not in this domain is NP-
Complete. We refer the interested reader for the same lecture notes of “15-451 De-
sign and Analysis of Algorithms”. These formulas can be solved with techniques
such as branch-and-bound (which are based on Simplex) that are commonly used
in commercial linear integer arithmetic solvers such as Gurobi or CPLEX. Other
approaches include the Omega Test which is an extension of Fourier-Motkzin.

• Fixed-Width Bitvectors. Consider formulas with an arbitrary combination of con-
straints over bitvectors. Deciding if a formula is satisfiable or not in this domain
is NP-Complete. This problem can be reduced to a SAT problem and solved using
SAT solvers.

• Arrays. Consider formulas with constraints over read/write terms in the theory
of arrays. The problem of deciding the satisfiability of these formulas can be re-
duced to TE satisfiability. However, because the reduction introduces disjunctions
this problem is also NP-Complete.

• Equality with uninterpreted functions. Consider formulas with conjunctions
of equality constraints over uninterpreted functions. The satisfiability of these
formulas can be decided by using the congruence closure algorithm that will be
explained in detail in these lecture notes. This algorithm has polynomial time
complexity.

3 Theory of equality with uninterpreted functions

We start by reviewing the signature and axioms of the theory of equality with uninter-
preted functions.

3.1 Preliminaries

ΣE : {=, a, b, c, . . . , f, g, h, . . . , p, q, r, . . .}

consists of

• = (equality), a binary predicate;

• and all constant, function and predicate symbols.

The axioms of TE are the following:

1. ∀x.x = x (reflexivity)
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2. ∀x, y.x = y → y = x (symmetry)

3. ∀x, y, z.x = y ∧ y = z → x = z (transitivity)

4. ∀x̄, ȳ.(
∧n

i=1 xi = yi)→ f(x̄) = f(ȳ) (congruence)

5. ∀x̄, ȳ.(
∧n

i=1 xi = yi)→ (p(x̄)↔ p(ȳ)) (equivalence)

Consider the Σ-formula ϕ

f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) 6= a

ϕ is TE-unsatisfiable. We can make the following intuitive argument: substituting a
for f(f(f(a))) in f(f(f(f(f(a))))) = a by the first equality yields f(f(a)) = a; substi-
tuting a for f(f(a)) in f(f(f(a))) = a according to this new equality yields f(a) = a,
contradicting the literal f(a) 6= a. More formally, we can apply the axioms of TE and
derive the same contradiction:

1. f(f(f(f(a)))) = f(a) first literal of ϕ (congruence)

2. f(f(f(f(f(f(a)))))) = f(f(a)) step 1 (congruence)

3. f(f(a)) = f(f(f(f(f(f(a)))))) step 2 (symmetry)

4. f(f(a)) = a step 3 and second literal of ϕ (transitivity)

Note that even though we have the equivalence axiom, we can transform an instance
of this axiom to an instance of the congruence axiom. This transformation allows us to
disregard the equivalence axiom. For example, given Σ-formula:

x = y → (p(x)↔ p(y))

introduce a fresh constant c and a fresh function fp, and write

x = y → ((fp(x) = c))↔ (fp(y) = c))

In the rest of this lecture, we will consider Σ-formulae without predicates other than
=.

3.2 Congruence closure

Each positive positive literal s = t of a Σ-formula ϕ over TE asserts an equality between
two terms s and t. Applying the axioms of TE produces more equalities over terms that
occur in ϕ. Since there are only a finite number of terms in ϕ, only a finite number
of equalities among these terms are possible. Hence, one of two situations eventually
occurs: either some equality is formed that directly contradicts a negative literal s′ 6=
t′ of ϕ; or the propagation of equalities ends without finding a contradiction. These
cases correspond to TE-unsatisfiability and TE-satisfiability, respectively, of ϕ. In this
section, we will formally describe this procedure as forming the congruence closure of
the equality relation over terms asserted by ϕ.
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Definition 1 (Equivalence relation). A binary relation R over a set S is an equivalence
relation if:

1. Reflexive: ∀s ∈ S.sRs;

2. Symmetric: ∀s1,s2 ∈ S.s1Rs2 → s2Rs1;

3. Transitive: ∀s1,s2,s3 ∈ S.s1Rs2 ∧ s2Rs3 → s1Rs3.

For example, the relation = is an equivalence relation over real numbers and≡2 is an
equivalence relation over Z.

Definition 2 (Congruence relation). Consider a set S equipped with functions F =
{f1, . . . , fn}. A relation R over S is a congruence relation if it is an equivalence relation
and for every n-ary function f ∈ F :

∀s̄,t̄
n∧

i=1

siRti → f(s̄)Rf(t̄)

Definition 3 (Equivalence and congruence classes). For a given equivalence relation
over S, every member of S belongs to an equivalence class. The equivalence class of
s ∈ S under R is the set:

[s]R
def
= {s′ ∈ S : sRs′}

If R is a congruence relation then this set is called a congruence class.

For example, the equivalence class of 1 under≡2 are the odd numbers, and the equiv-
alence class f 6 under ≡3 the multiples of 3.

Definition 4 (Equivalence closure). The equivalence closure RE of the binary relation
R over S is the equivalence relation such that:

• R ⊆ RE ;

• for all other equivalence relations R′ s.t. R ⊆ R′, RE ⊆ R′.

Thus, RE is the smallest equivalence relation that includes R.

Let S = {a, b, c, d} and R = {aRb, bRc, dRd} then

• aRb, bRc, dRd ∈ RE since R ⊆ RE ;

• aRa, bRb, cRc ∈ RE by reflexivity;

• bRa, cRb ∈ RE by symmetry;

• aRc ∈ RE by transitivity;

• cRa ∈ RE by symmetry;
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Hence,

RE = {aRb, bRa, aRz, bRb, bRc, cRb, cRc, aRc, cRa, dRd}.

Definition 5 (Subterm set). The subterm set Sϕ of Σ-formula ϕ is the set that contains
precisely the subterms of ϕ.

For example, the subterm set of ϕ:

ϕ : f(a, b) = a ∧ f(f(a, b), b) 6= a

is

Sϕ = {a, b, f(a, b), f(f(a, b), b)}.

Now we relate the congruence closure of a Σ-formula’s subterm set with its TE-
satisfiability. Given Σ-formula ϕ

ϕ : s1 = t1 ∧ . . . ∧ sm = tm ∧ sm+1 6= tm+1 ∧ . . . ∧ sn 6= tn

with subterm set Sϕ, ϕ is TE-satisfiable iff there exists a congruence relation ∼ over
Sϕ such that

• for each i ∈ {1, . . . ,m}, si ∼ ti;

• for each i ∈ {m + 1, . . . , n}, si 6∼ ti.

The goal of the congruence closure algorithm is to construct the congruence relation
of a formula’s subterm set, or to prove that no congruence relation exists. The algorithm
performs the following steps:

1. Construct the congruence closure ∼ of

{s1 = t1, . . . , sm = tm}

over the subterm set Sϕ. Then

∼|= s1 = t1 ∧ . . . ∧ sm = tm

2. If si ∼ ti for any i ∈ {m + 1, . . . , n} then ϕ is unsatisfiable;

3. Otherwise, ∼|= ϕ and ϕ is satisfiable.

How do we actually construct the congruence closure in Step 1? Initially, begin with
the finest congruence relation ∼0 given by the partition

{{s} : s ∈ Sϕ}

in which each term of Sϕ is its own congruence class. Then, for each i ∈ {1, . . . ,m},
impose si = ti by merging the congruence classes
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[si] ∼i−1 and [ti] ∼i−1

to form a new congruence relation ∼i. To accomplish this merging, first form the
union of [si] ∼i−1 and [ti] ∼i−1. Then propagate any new congruence that arise within
this union.

Example 6. Consider the Σ-formula ϕ

ϕ : f(a, b) = a ∧ f(f(a, b), b) 6= a

Construct the following initial partition by letting each member of the subterm set
Sϕ be its own class:

{{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}.

According to the first literal f(a, b) = a, merge

{f(a, b), {a}}

to form partition
{{a, f(a, b)}, {b}, {f(f(a, b), b)}}.

According to the congruence axiom,

f(a, b) ∼ a, b ∼ b implies f(f(a, b), b) ∼ f(a, b),

resulting in the new partition

{{a, f(a, b), f(f(a, b), b)}, {b}}.

This partition represents the congruence closure of Sϕ. Now, it is the case that

{{a, f(a, b), f(f(a, b), b)}, {b}} |= ϕ ?

No! Since f(f(a, b), b) ∼ a but ϕ asserts that f(f(a, b), b) 6= a. Therefore, ϕ is TE-
unsatisfiable.

In summary, the congruence closure algorithm for a formula ϕ in TE work as follows.

1. Construct the subterm set Sϕ and put each term in its own congruence class.

2. Process the equalities ti = tj ∈ ϕ and merge the congruence classes classes {ti}
and {tj}.

3. Compute the congruence closure: given two terms ti, tj that are in the same class
and that f(ti) and f(tj) are terms in Sϕ for some uninterpreted function f , merge
these two classes together. Repeat until fixpoint.

4. If there exists ti 6= tj ∈ ϕ such that ti and tj are in the same class, return unsatisfi-
able. Otherwise, return satisfiable.
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This algorithm can be implemented efficiently using a directed acyclic graph and has
polynomial time complexity.

Let’s apply the congruence closure algorithm to a few other examples.

Example 7. Let’s consider the same formula presented on page 3 of these lecture notes
but now let’s use the congruence closure algorithm to determine its satisfiability.

ϕ : f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) 6= a

From the subterm set Sϕ, the initial partition is

{{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}},

where, for example f3(a) abbreviates f(f(f(a))). According to the literal f3(a) = a
we can merge these two terms. Similarly, we can also merge f5(a) with a.

{{a, f3(a), f5(a)}, {f(a)}, {f2(a)}, {f4(a)}},

Using congruence propagation we can infer that:

f3(a) ∼ a implies f4(a) ∼ f(a)

and

f4(a) ∼ f(a) implies f5(a) ∼ f2(a)

Which gives the partition:

{{a, f2(a), f3(a), f5(a)}, {f(a), f4(a)}},

If we now propagate the congruence

f3(a) ∼ f2(a) implies f4(a) ∼ f3(a)

yields the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}},

which represents the congruence closure in which all of Sϕ are equal. Now since
f(a) ∼ a but ϕ says that f(a) 6= a then ϕ is TE-unsatisfiable.

Example 8. Consider another formula ϕ:

ϕ : f(x) = f(y) ∧ x 6= y

The subterm set Sϕ induces the following initial partition:

{{x}, {y}, {f(x)}, {f(y)}}

Since f(x) = f(y) we can merge those two partitions
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{{x}, {y}, {f(x), f(y)}}

The union {f(x), f(y)} does not yield any new congruences, so this is the final parti-
tion. This formula is satisfiable since x 6= y but x and y belong to different congruence
classes.

4 Summary

• SMT solvers support different SMT theories and each of these have specialized
procedures to solve formulas that only use a given theory.

• Most decision procedures are solving NP-Complete problems.

• “Almost all proofs require reasoning about equalities” (Nelson and Oppen). The
theory of equality with uninterpreted functions is one of the most important the-
ories of SMT solvers.

• Congruence closure can be used to check the satisfiability of a formula with equal-
ity and uninterpreted functions.

• Congruence closure algorithm has polynomial complexity.
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