
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
SMT Encodings

Ruben Martins

Carnegie Mellon University
Lecture 18

Thursday, April 8, 2021

1 Introduction

In the previous lecture, we studied the congruence closure algorithm to solve formulas
in the theory of equality with uninterpreted functions. In this lecture, we will see how
we can use SMT solvers to prove the equivalence of programs. Uninterpreted functions
can be used to help to verify programs by abstracting complex functions that may be
hard to reason about. When compared to SAT, encoding using SMT is much easier and
allows the combination of different theories. In practice, when the domain is finite and
can be encoded compactly to SAT, then SAT solvers are usually faster than SMT solvers.
However, SMT is more general and allows to solve problems that cannot be encoded to
SAT. 1

2 Proving equivalence of programs

Replacing functions with uninterpreted functions in a given formula is a common tech-
nique for making it easier to reason about (e.g., to prove its validity) At the same time,
this process makes the formula weaker which means that it can make a valid formula in-
valid. This observation is summarized in the following relation, where ϕUF is derived
from a formula ϕ by replacing some or all of its functions with uninterpreted functions:

|= ϕUF → ϕ

1Lectures notes based on [BM07] and [KS16].

http://www.cs.cmu.edu/~15414/s21


L18.2 SMT Encodings

1 i n t power3 ( i n t in )
2 {
3 i n t i , out a ;
4 out a = in ;
5 f o r ( i = 0 ; i < 2 ; i ++)
6 out a = out a ∗ in ;
7 re turn out a ;
8 }

(a)

1 i n t power3 new ( i n t in )
2 {
3 i n t out b ;
4

5 out b = ( in ∗ in ) ∗ in ;
6

7 re turn out b ;
8 }

(b)

Figure 1: Two C functions. We can simplify the proof of their equivalence by replacing
the multiplication operator by an uninterpreted function.

Uninterpreted functions are widely used in calculus and other branches of mathe-
matics, but in the context of reasoning and verification, they are mainly used for sim-
plifying proofs. Under certain conditions, uninterpreted functions let us reason about
systems while ignoring the semantics of all functions, assuming they are not necessary
for the proof.

Assume that we have a method for checking the validity of a Σ-formula in TE. Re-
lying on this assumption, the basic scheme for using uninterpreted functions is the
following:

1. Let ϕ denote a formula of interest that has interpreted functions. Assume that a
validity check of ϕ is too hard (computationally), or even impossible.

2. Assign an uninterpreted function to each interpreted function in ϕ. Substitute
each function in ϕ with the uninterpreted function to which it is mapped. Denote
the new formula by ϕUF .

3. Check the validity of ϕUF . If it is valid then ϕ is valid. Otherwise, we do not
know anything about the validity of ϕ.

As a motivating example consider the problem of proving the equivalence of two C
functions shown in Figure 1. In general, proving the equivalence of two programs is
undecidable, which means there is no sound and complete to prove such an equiva-
lence. However, in this case, equivalence can be decided since the program does not
have unbounded memory usage. A key observation about these programs is that they
have only bounded loops, and therefore it is possible to compute their input/output
relations. The derivation of these relations from these two programs can be as follows:

1. Remove the variable declarations and “return statements”.

2. Unroll the for loop.

3. Replace the left-hand side variable in each assignment with a new auxiliary vari-
able.

15-414 LECTURE NOTES RUBEN MARTINS



SMT Encodings L18.3

out0 a =in0 a ∧
out1 a =out0 a ∗ in0 a ∧
out2 a =out1 a ∗ in0 a

(a) (ϕa)

out0 b =(in0 b ∗ in0 b) ∗ in0 b

(b) (ϕa)

Figure 2: Two formulas corresponding to the programs (a) and (b) in Figure 1.

4. Whenever a variable is read, replace it with the auxiliary variable that replaced it
in the last place where it was assigned.

5. Conjoin all program statements.

These operations result in the two formulas ϕa and ϕb which are shown in Figure 2.
This procedure to transform code into a first-order formula is known as static single
assignment (SSA) and was first introduced in Lecture 15. Even though generalizing SSA
to programs with “if” branches and other constructs can be challenging, we restrict
ourselves to a limited form of SSA to illustrate how uninterpreted functions can be
used to abstract the multiplication operator.

To show that these programs are equivalent with respect to their input-outputs, we
must show that the following formula Φ is valid:

in0 a = in0 b ∧ ϕa ∧ ϕb → out2 a = out0 b

Showing the validity of Φ is equivalent to show the unsatisfiability of ¬Φ. We can
show that ¬Φ is unsatisfiable by using SMT solvers.

3 Using SMT solvers

SMT solvers take as input a formula in a standardized format (SMT2-Lib format). A
detailed description of the SMT2-Lib format is available at:

http://smtlib.cs.uiowa.edu

SMT solvers support a variety of theories, namely: the theory of arrays with exten-
sionality, the theory of bit vectors with an arbitrary size, the core theory defining the
basic Boolean operators, the theory of floating-point numbers, the theory of integer
number, and the theory of reals. 2

If you want to try SMT solving, we recommend doing the z3 tutorial at:

https://rise4fun.com/z3/tutorial

2Further details on each theory are available at http://smtlib.cs.uiowa.edu/theories.shtml.

15-414 LECTURE NOTES RUBEN MARTINS

https://www.cs.cmu.edu/~15414/lectures/15-bmc.pdf
http://smtlib.cs.uiowa.edu
https://rise4fun.com/z3/tutorial
http://smtlib.cs.uiowa.edu/theories.shtml


L18.4 SMT Encodings

1 (declare -fun out0_a () (Int))

2 (declare -fun out1_a () (Int))

3 (declare -fun in0_a () (Int))

4 (declare -fun out2_a () (Int))

5 (declare -fun out0_b () (Int))

6 (declare -fun in0_b () (Int))

7 (define -fun phi_a () Bool

8 (and (= out0_a in0_a) ; out0_a = in0_a

9 (and (= out1_a (* out0_a in0_a)) ; out1_a = out0_a * in0_a

10 (= out2_a (* out1_a in0_a))))) ; out2_a = out1_a * in0_a

11 (define -fun phi_b () Bool

12 (= out0_b (* (* in0_b in0_b) in0_b))) ; out0_b = in0_b * in0_b *

in0_b

13 (define -fun phi_input () Bool

14 (= in0_a in0_b))

15 (define -fun phi_output () Bool

16 (= out2_a out0_b))

17 (assert (not (=> (and phi_input phi_a phi_b) phi_output)))

18 (check -sat)

Figure 3: SMT encoding of Φ using mathematical integers to model integers.

and trying z3 online at:

https://rise4fun.com/z3/

Before using SMT solvers to show that ¬Φ is unsatisfiable, we must decide how we
will model integers since this will restrict the underlying theories used by the SMT
solver.

3.1 Modeling integers as mathematical integers

If we model integers as mathematical integers then the SMT solver will use the theory
of integers and will be able to show that both programs are equivalent. Figure 3 shows
the SMT encoding of Φ when using integers: You can try this encoding online at:

https://rise4fun.com/Z3/BLQpl

When modeling integers as mathematical integers, we can prove the equivalence of
these programs quickly and without any issues. However, integers are not represented
as mathematical integers in C. If we want to model integers as the ones being used in C
then we should model them using bit vectors (of size 32 or 64).

3.2 Modeling integers as bit vectors

Modeling integers as bit vectors has the advantage of capturing the C model and be-
ing able to detect potential overflows. However, using the bit vector theory is not as
efficient as using the theory of integers. In particular, assume we want to show that

15-414 LECTURE NOTES RUBEN MARTINS

https://rise4fun.com/z3/
https://rise4fun.com/Z3/BLQpl


SMT Encodings L18.5

1 (declare -fun out0_a () (_ BitVec 512))

2 (declare -fun out1_a () (_ BitVec 512))

3 (declare -fun in0_a () (_ BitVec 512))

4 (declare -fun out2_a () (_ BitVec 512))

5 (declare -fun out0_b () (_ BitVec 512))

6 (declare -fun in0_b () (_ BitVec 512))

7 (define -fun phi_a () Bool

8 (and (= out0_a in0_a) ; out0_a = in0_a

9 (and (= out1_a (bvmul out0_a in0_a)) ; out1_a = out0_a * in0_a

10 (= out2_a (bvmul out1_a in0_a))))) ; out2_a = out1_a * in0_a

11 (define -fun phi_b () Bool

12 (= out0_b (bvmul (bvmul in0_b in0_b) in0_b))) ; out0_b = in0_b *

in0_b * in0_b

13 (define -fun phi_input () Bool

14 (= in0_a in0_b))

15 (define -fun phi_output () Bool

16 (= out2_a out0_b))

17 (assert (not (=> (and phi_input phi_a phi_b) phi_output)))

18 (check -sat)

Figure 4: SMT encoding of Φ using bit vectors to model integers.

the programs are equivalent to a bit width of 512. The SMT encoding when using bit
vectors is shown in the Figure 5. You can try this encoding online at:

https://rise4fun.com/Z3/ibsw3

This formula is much more challenging to be solved than the previous one and will
become harder as the bit-width increases. For example, if you try it online you will get
an out-of-memory error. You can also try it on your own computer (since you should
have z3 installed) by running the following command:

$ z3 -smt2 formula

where the formula is a file with the contents of Figure 5. The reason for the memory
blowup is the multiplication operator when using bit vectors. Can we avoid this is-
sue altogether? What if we consider the multiplication operator as an uninterpreted
function?

3.3 Using uninterpreted functions

If we consider an uninterpreted function f that takes as input two bit vectors and re-
turns a bit vector then we can replace the bit vector multiplication operator (bvmul) by
f . If we are able to prove that this formula is unsatisfiable, then we can conclude that
the original formula is also unsatisfiable and we are able to show the equivalence be-
tween the two programs when representing integers by bit vectors of width 512. This
formula is much easier to be solved than the one using bit-vector multiplication since

15-414 LECTURE NOTES RUBEN MARTINS

https://rise4fun.com/Z3/ibsw3


L18.6 SMT Encodings

1 (declare -fun out0_a () (_ BitVec 512))

2 (declare -fun out1_a () (_ BitVec 512))

3 (declare -fun in0_a () (_ BitVec 512))

4 (declare -fun out2_a () (_ BitVec 512))

5 (declare -fun out0_b () (_ BitVec 512))

6 (declare -fun in0_b () (_ BitVec 512))

7 (declare -fun f ((_ BitVec 512) (_ BitVec 512)) (_ BitVec 512))

8 (define -fun phi_a () Bool

9 (and (= out0_a in0_a) ; out0_a = in0_a

10 (and (= out1_a (f out0_a in0_a)) ; out1_a = out0_a * in0_a

11 (= out2_a (f out1_a in0_a))))) ; out2_a = out1_a * in0_a

12 (define -fun phi_b () Bool

13 (= out0_b (f (f in0_b in0_b) in0_b))) ; out0_b = in0_b * in0_b *

in0_b

14 (define -fun phi_input () Bool

15 (= in0_a in0_b))

16 (define -fun phi_output () Bool

17 (= out2_a out0_b))

18 (assert (not (=> (and phi_input phi_a phi_b) phi_output)))

19 (check -sat)

Figure 5: SMT encoding of Φ using an uninterpreted function for multiplication.

we abstracted the multiplication function and the SMT solver will not need to reason
about what f does but only that it is a function. You can try this encoding online at:

https://rise4fun.com/Z3/V7Sf

4 Modeling: SAT vs. SMT

Recall the graph coloring problem that we modeled with SAT in Lecture 13.

A E

C

B

D

Figure 6: 3-coloring of a graph.

To encode the 3-coloring problem of the graph presented in Figure 6 to SAT, we re-
quired 15 variables and 38 clauses. However, when encoding this problem to SMT, we

15-414 LECTURE NOTES RUBEN MARTINS

https://rise4fun.com/Z3/V7Sf
https://www.cs.cmu.edu/~15414/lectures/13-sat-encodings.pdf


SMT Encodings L18.7

can see this can be done in a more compact and simpler way. Since we can encode
variables with integers, we can have the integer domain represent the possible colors.

1 (declare -fun A () Int)

2 (declare -fun B () Int)

3 (declare -fun C () Int)

4 (declare -fun D () Int)

5 (declare -fun E () Int)

6 (assert (not (= A E)))

7 (assert (not (= A C)))

8 (assert (not (= B E)))

9 (assert (not (= B C)))

10 (assert (not (= B D)))

11 (assert (not (= C D)))

12 (assert (not (= D E)))

13 (assert (and (>= A 0) (<= A 2)))

14 (assert (and (>= B 0) (<= B 2)))

15 (assert (and (>= C 0) (<= C 2)))

16 (assert (and (>= D 0) (<= D 2)))

17 (assert (and (>= E 0) (<= E 2)))

18 (check -sat)

19 (get -model)

SMT formulas when written in SMT-LIB format also have the advantage that they are
easier to read than CNF formulas since variables can have names and restrictions are
more readable. When modeling problems to logic, unless the performance is critical,
SMT is often more used than SAT.

5 Summary

• Uninterpreted functions can be used to simplify proofs by replacing (complex)
interpreted functions by uninterpreted functions;

• Let ϕUF be ϕ with all its interpreted functions replaced by uninterpreted func-
tions. Then:

|= ϕUF → ϕ

• We can use SMT solvers to check if two programs are equivalent:

– If we represent integers as mathematical integers then the problem is rela-
tively easy to be solved;

– If we represent integers as bit vectors then the problem becomes more chal-
lenging because of bit vector multiplication;

– If we abstract bit vector multiplication with uninterpreted functions then we
can achieve scalability and prove that two programs are equivalent for any
bit width.

• Modeling problems with SMT is easier than with SAT.

15-414 LECTURE NOTES RUBEN MARTINS



L18.8 SMT Encodings

References

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision Pro-
cedures with Applications to Verification. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2007.

[KS16] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic Point
of View. Texts in Theoretical Computer Science. An EATCS Series. Springer,
2016.

15-414 LECTURE NOTES RUBEN MARTINS


	Introduction
	Proving equivalence of programs
	Using SMT solvers
	Modeling integers as mathematical integers
	Modeling integers as bit vectors
	Using uninterpreted functions

	Modeling: SAT vs. SMT
	Summary

