
Assignment 5
(I can’t get no) Satisfaction

15-414: Bug Catching: Automated Program Verification

Due Thursday, March 30, 2023
80 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/s22/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file asst5.zip to Assignment 5 (Code). You can generate this file by running
make handin. This will include your solutions baby-sat.mlw, and the proof sessions in
baby-sat/.

• Submit a PDF containing your answers to the written questions to Assignment 5 (Written).
You may use the file asst5.tex as a template and submit asst5.pdf.

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the answer to your written questions to be typeset in LaTeX, but as long as you hand
in a readable PDF with your solutions it is not a requirement. We package the assignment source
asst5.tex with handout to get you started on this.
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1 Propagations and Conflicts (25 pts)

The pigeonhole problem asks us to find a one-to-one mapping between n pigeons and m holes.
Obviously, this isn’t possible when n > m. Consider an encoding of this problem as SAT for n
pigeons and n−1 holes, where the propositional variable pij asserts that pigeon i is placed in hole
j. There are two conditions that a correct assignment should satisfy.

• Pigeon clauses: Each pigeon 1 ≤ i ≤ n is placed in a hole.

• Hole clauses: Each hole 1 ≤ j < n contains at most one pigeon.

Task 1 (5 pts). Write down a CNF for the pigeonhole problem for n = 3.

Task 2 (10 pts). Using your pigeonhole CNF for n = 3, use the resolution rule to prove that the
formula is unsatisfiable. You should state your answers as shown below for the example formula
(p ∨ ¬q) ∧ ¬p ∧ q:

(1) p ∨ ¬q (Given)

(2) ¬p (Given)

(3) q (Given)

(4) ¬q (1, 2)

(5) ⊥ (3, 4)

Task 3 (10 pts). Using your pigeonhole CNF for n = 3, apply the DPLL algorithm with clause
learning to it. You should write down the steps of your evaluation in the following form, as
illustrated in the example from Section 7.1 of Lecture 14.

(1) Decide p

(2) Unit propagate q from clause C2

(3) Decide ¬r

(4) Unit propagate s from clause C1

(5) Conflicted clause C1

(6) Backtrack to r

(7) Learn conflict clause ¬p ∨ r

(8) ...

2 Pure SAT (55 pts)

In this assignment, we will explore simple operations that can be performed over formulas in the
conjunctive normal form before we build our first verified SAT solver.

Consider the following types that define a variable (var), literal (lit: which is define as a pos-
itive or negative variable), clause, cnf formula, and valuation. Assume that the variables range
from 0 to nvars − 1 and that the cnf formulas have 0 or more variables.
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1 type var = int

2 type lit = { var : var ; sign : bool }

3 type clause = list lit

4 type cnf = {

5 clauses : array clause ;

6 nvars : int ;

7 mutable ghost model : list clause

8 }

9 type valuation = array bool

An example of how a CNF is represented using this type is provided Figure 1 (note that for
brevity we do not specify the ghost model, as it is just a functional copy of the clause array).
Besides, a valuation (also called interpretation in some lecture notes) is represented as an array of
booleans whose ith component is the value of xi.

{ nvars = 4;

clauses = [

[ {var=3; sign=false} ];

[ {var=0; sign=true}; {var=2; sign=false}; {var=3; sign=true} ];

[ {var=1; sign=false}; {var=2; sign=true} ] ] }

Figure 1: Representation of the formula ¬x3 ∧ (x0 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2).

Task 4 (10 pts). Specify and implement a function eval_clause that takes a valuation ρ and a
clause c as its arguments and returns true if c is true for valuation ρ and false otherwise.

Task 5 (10 pts). Specify and implement a function eval_cnf that takes a valuation ρ and a formula
cnf in conjunctive normal form as its arguments and returns true if cnf is true for valuation ρ
and false otherwise.
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Pure Literals

Any variable that only appears in either positive or negative literals is called pure, and their cor-
responding variables can always be assigned in a way that satisfies the literal. Thus, they do not
constrain the problem in a meaningful way, and can be assigned without making a choice. This is
called pure literal elimination and is one type of simplification that can be applied to CNF formulas.
Consider the following CNF formula:

(x1 ∨ x2)︸ ︷︷ ︸
C0

∧ (¬x1 ∨ x2)︸ ︷︷ ︸
C1

∧ (x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
C2

∧ (¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
C3

Notice that x3 appears only as a positive literal in this formula. Hence, we can assign x3 to true
and satisfy the literal. This procedure will simplify the above formula into:

(x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x1 ∨ x3)

↔ (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ ⊤) ∧ (¬x1 ∨ x1 ∨ ⊤)

↔ (x1 ∨ x2) ∧ (¬x1 ∨ x2)

Note that if a formula is satisfiable and if a literal l is pure, then it is always possible to have an
interpretation that satisfies the literal, i.e., assigns l to true if l is positive or to false if l is negative.
In lecture, we proved such a property:

1 let lemma pure_literal_safe (clauses : list clause) (l : lit) =

2 requires { is_pure_literal l clauses }

3 requires { 0 <= l.var }

4 ensures { clauses_unsat clauses <-> clauses_unsat (remove_lit l clauses) }

However, there were two parts of the proof that remained unfinished.

Task 6 (10 pts). Show that it is always possible to extend a valuation so that it satisfies a given
literal by implementing extend_valuation.

Task 7 (25 pts). While we were able to prove pure_literal_safe without induction, we found
that it was necessary to introduce the following lemma, which does (in all likelihood) require
induction.

∀L, T,M . is pure literal(L, T ) ∧M ⊨ remove lit(L, T ) ∧M(L.var) = L.sign → M ⊨ T

Prove this lemma by completing remove_l_diff_sat in baby-sat.mlw.
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