
Bug Catching: Automated Program Verification

15414/15614 Spring 2021

Lecture 1: Introduction

Matt Fredrikson

January 17, 2023

Matt Fredrikson Bug Catching 1 / 31

Course staff

Instructor

Matt Fredrikson

Teaching Assistants

Myra Dotzel
Cole Ramos

Joseph Reeves

Matt Fredrikson Bug Catching 2 / 31

Learning objectives

For this lecture

▶ What is this course about?

▶ What are the learning objectives for the course?

▶ How does it fit into the curriculum?

▶ How does the course work?

▶ Remember . . .

Matt Fredrikson Bug Catching 3 / 31

Bad code

▶ April, 2014 OpenSSL announced critical
vulnerability in their implementation of the
Heartbeat Extension.

▶ “The Heartbleed bug allows anyone on the
Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

▶ “...this allows attackers to eavesdrop on
communications, steal data directly from
the services and users and to impersonate
services and users.”

Matt Fredrikson Bug Catching 4 / 31

Bad code

▶ April, 2014 OpenSSL announced critical
vulnerability in their implementation of the
Heartbeat Extension.

▶ “The Heartbleed bug allows anyone on the
Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

▶ “...this allows attackers to eavesdrop on
communications, steal data directly from
the services and users and to impersonate
services and users.”

Matt Fredrikson Bug Catching 4 / 31

Bad code

▶ April, 2014 OpenSSL announced critical
vulnerability in their implementation of the
Heartbeat Extension.

▶ “The Heartbleed bug allows anyone on the
Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

▶ “...this allows attackers to eavesdrop on
communications, steal data directly from
the services and users and to impersonate
services and users.”

Matt Fredrikson Bug Catching 4 / 31

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Bug Catching 5 / 31

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Bug Catching 5 / 31

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Bug Catching 5 / 31

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Bug Catching 5 / 31

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Bug Catching 5 / 31

Heartbleed, explained

Image source: Randall Munroe, xkcd.com

Matt Fredrikson Bug Catching 5 / 31

The cost

▶ Hard to say, but estimates are ∼$500 million

▶ Stolen data
▶ Certificate revocation
▶ Bandwidth
▶ Engineering effort
▶ ...

Matt Fredrikson Bug Catching 6 / 31

The cost

▶ Hard to say, but estimates are ∼$500 million
▶ Stolen data
▶ Certificate revocation
▶ Bandwidth
▶ Engineering effort
▶ ...

Matt Fredrikson Bug Catching 6 / 31

The cost

▶ Hard to say, but estimates are ∼$500 million
▶ Stolen data
▶ Certificate revocation
▶ Bandwidth
▶ Engineering effort
▶ ...

Matt Fredrikson Bug Catching 6 / 31

The cost

▶ Hard to say, but estimates are ∼$500 million
▶ Stolen data
▶ Certificate revocation
▶ Bandwidth
▶ Engineering effort
▶ ...

Matt Fredrikson Bug Catching 6 / 31

Algorithms vs. code

1 int binarySearch(int key , int[] a, int n) {

2 int low = 0;

3 int high = n;

4

5 while (low < high) {

6 int mid = (low + high) / 2;

7

8 if(a[mid] == key) return mid; // key found

9 else if(a[mid] < key) {

10 low = mid + 1;

11 } else {

12 high = mid;

13 }

14 }

15 return -1; // key not found.

16 }

Matt Fredrikson Bug Catching 7 / 31

Code matters

This is a correct binary search algorithm

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative

▶ Best case: ArrayIndexOutOfBoundsException

▶ Worst case: undefined (that is, arbitrary) behavior

Algorithm may be correct—but we run code, not algorithms.

Matt Fredrikson Bug Catching 8 / 31

Code matters

This is a correct binary search algorithm

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative

▶ Best case: ArrayIndexOutOfBoundsException

▶ Worst case: undefined (that is, arbitrary) behavior

Algorithm may be correct—but we run code, not algorithms.

Matt Fredrikson Bug Catching 8 / 31

Code matters

This is a correct binary search algorithm

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative

▶ Best case: ArrayIndexOutOfBoundsException

▶ Worst case: undefined (that is, arbitrary) behavior

Algorithm may be correct—but we run code, not algorithms.

Matt Fredrikson Bug Catching 8 / 31

Code matters

This is a correct binary search algorithm

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative

▶ Best case: ArrayIndexOutOfBoundsException

▶ Worst case: undefined (that is, arbitrary) behavior

Algorithm may be correct—but we run code, not algorithms.

Matt Fredrikson Bug Catching 8 / 31

Code matters

This is a correct binary search algorithm

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative

▶ Best case: ArrayIndexOutOfBoundsException

▶ Worst case: undefined (that is, arbitrary) behavior

Algorithm may be correct—but we run code, not algorithms.

Matt Fredrikson Bug Catching 8 / 31

Code matters

This is a correct binary search algorithm

But what if low + high > 231 − 1?

Then mid = (low + high) / 2 becomes negative

▶ Best case: ArrayIndexOutOfBoundsException

▶ Worst case: undefined (that is, arbitrary) behavior

Algorithm may be correct—but we run code, not algorithms.

Matt Fredrikson Bug Catching 8 / 31

How do we fix it?

The culprit: mid = (low + high) / 2

Solution: mid = low + (high - low)/2

Matt Fredrikson Bug Catching 9 / 31

How do we fix it?

The culprit: mid = (low + high) / 2

Solution: mid = low + (high - low)/2

Matt Fredrikson Bug Catching 9 / 31

The fix

1 int binarySearch(int key , int[] a, int n) {

2 int low = 0;

3 int high = n;

4

5 while (low < high) {

6 int mid = low + (high - low) / 2;

7

8 if(a[mid] == key) return mid; // key found

9 else if(a[mid] < key) {

10 low = mid + 1;

11 } else {

12 high = mid;

13 }

14 }

15 return -1; // key not found.

16 }

Matt Fredrikson Bug Catching 10 / 31

The fix

1 int binarySearch(int key , int[] a, int n)

2 // @requires 0 <= n && n <= \length(A);

3 {

4 int low = 0;

5 int high = n;

6

7 while (low < high) {

8 int mid = low + (high - low) / 2;

9

10 if(a[mid] == key) return mid; // key found

11 else if(a[mid] < key) {

12 low = mid + 1;

13 } else {

14 high = mid;

15 }

16 }

17 return -1; // key not found.

18 }

Matt Fredrikson Bug Catching 10 / 31

The fix

1 int binarySearch(int key , int[] a, int n)

2 // @requires 0 <= n && n <= \length(a);

3 /* @ensures (\ result == -1 && !is_in(key , A, 0, n))

4 @ || (0 <= \result && \result < n

5 @ && A[\ result] == key); @*/

6 {

7 int low = 0;

8 int high = n;

9

10 while (low < high) {

11 int mid = low + (high - low) / 2;

12

13 if(a[mid] == key) return mid; // key found

14 else if(a[mid] < key) {

15 low = mid + 1;

16 } else {

17 high = mid;

18 }

19 }

20 return -1; // key not found.

21 }

Matt Fredrikson Bug Catching 10 / 31

The fix

1 int binarySearch(int key , int[] a, int n)

2 // @requires 0 <= n && n <= \length(a);

3 // @requires is_sorted(a, 0, n);

4 /* @ensures (\ result == -1 && !is_in(key , A, 0, n))

5 @ || (0 <= \result && \result < n

6 @ && A[\ result] == key); @*/

7 {

8 int low = 0;

9 int high = n;

10

11 while (low < high) {

12 int mid = low + (high - low) / 2;

13

14 if(a[mid] == key) return mid; // key found

15 else if(a[mid] < key) {

16 low = mid + 1;

17 } else {

18 high = mid;

19 }

20 }

21 return -1; // key not found.

22 }

Matt Fredrikson Bug Catching 10 / 31

How do we know if it’s correct?

One solution: testing

▶ Probably incomplete

▶ Never really sure what’s left...

Another: code review

▶ Correctness definitely important, but not the only thing

▶ Humans are fallible, bugs are subtle

▶ What’s the specification?

Another: proof

Specification ⇐⇒ Implementation

▶ Specification must be precise

▶ Meaning of code must be comprehensive

▶ Reasoning must be sound

Matt Fredrikson Bug Catching 11 / 31

How do we know if it’s correct?

One solution: testing

▶ Probably incomplete

▶ Never really sure what’s left...

Another: code review

▶ Correctness definitely important, but not the only thing

▶ Humans are fallible, bugs are subtle

▶ What’s the specification?

Another: proof

Specification ⇐⇒ Implementation

▶ Specification must be precise

▶ Meaning of code must be comprehensive

▶ Reasoning must be sound

Matt Fredrikson Bug Catching 11 / 31

How do we know if it’s correct?

One solution: testing

▶ Probably incomplete

▶ Never really sure what’s left...

Another: code review

▶ Correctness definitely important, but not the only thing

▶ Humans are fallible, bugs are subtle

▶ What’s the specification?

Another: proof

Specification ⇐⇒ Implementation

▶ Specification must be precise

▶ Meaning of code must be comprehensive

▶ Reasoning must be sound

Matt Fredrikson Bug Catching 11 / 31

How do we know if it’s correct?

One solution: testing

▶ Probably incomplete

▶ Never really sure what’s left...

Another: code review

▶ Correctness definitely important, but not the only thing

▶ Humans are fallible, bugs are subtle

▶ What’s the specification?

Another: proof

Specification ⇐⇒ Implementation

▶ Specification must be precise

▶ Meaning of code must be comprehensive

▶ Reasoning must be sound

Matt Fredrikson Bug Catching 11 / 31

How do we know if it’s correct?

One solution: testing

▶ Probably incomplete

▶ Never really sure what’s left...

Another: code review

▶ Correctness definitely important, but not the only thing

▶ Humans are fallible, bugs are subtle

▶ What’s the specification?

Another: proof

Specification ⇐⇒ Implementation

▶ Specification must be precise

▶ Meaning of code must be comprehensive

▶ Reasoning must be sound

Matt Fredrikson Bug Catching 11 / 31

How do we know if it’s correct?

One solution: testing

▶ Probably incomplete

▶ Never really sure what’s left...

Another: code review

▶ Correctness definitely important, but not the only thing

▶ Humans are fallible, bugs are subtle

▶ What’s the specification?

Another: proof

Specification ⇐⇒ Implementation

▶ Specification must be precise

▶ Meaning of code must be comprehensive

▶ Reasoning must be sound

Matt Fredrikson Bug Catching 11 / 31

How do we know if it’s correct?

One solution: testing

▶ Probably incomplete

▶ Never really sure what’s left...

Another: code review

▶ Correctness definitely important, but not the only thing

▶ Humans are fallible, bugs are subtle

▶ What’s the specification?

Another: proof

Specification ⇐⇒ Implementation

▶ Specification must be precise

▶ Meaning of code must be comprehensive

▶ Reasoning must be sound

Matt Fredrikson Bug Catching 11 / 31

Course objectives

▶ Identify and formalize program correctness

▶ Understand language semantics

▶ Apply mathematical reasoning to program correctness

▶ Learn how to write correct software, from beginning to end

▶ Use automated tools that assist verifying your code

▶ Understand how verification tools work

▶ Make you better programmers

Matt Fredrikson Bug Catching 12 / 31

Course objectives

▶ Identify and formalize program correctness

▶ Understand language semantics

▶ Apply mathematical reasoning to program correctness

▶ Learn how to write correct software, from beginning to end

▶ Use automated tools that assist verifying your code

▶ Understand how verification tools work

▶ Make you better programmers

Matt Fredrikson Bug Catching 12 / 31

Course objectives

▶ Identify and formalize program correctness

▶ Understand language semantics

▶ Apply mathematical reasoning to program correctness

▶ Learn how to write correct software, from beginning to end

▶ Use automated tools that assist verifying your code

▶ Understand how verification tools work

▶ Make you better programmers

Matt Fredrikson Bug Catching 12 / 31

Course outline

Part I: Reasoning about programs: from 122 and 150 to 414

▶ Gain intuitive understanding of language and methodology

Part II: From inform to formal reasoning

▶ Specifying meaning of programs

▶ Specifying meaning of propositions

▶ Formal reasoning and its justification

Part III: Mechanized reasoning

▶ Techniques for automated proving

Matt Fredrikson Bug Catching 13 / 31

Course outline

Part I: Reasoning about programs: from 122 and 150 to 414

▶ Gain intuitive understanding of language and methodology

Part II: From inform to formal reasoning

▶ Specifying meaning of programs

▶ Specifying meaning of propositions

▶ Formal reasoning and its justification

Part III: Mechanized reasoning

▶ Techniques for automated proving

Matt Fredrikson Bug Catching 13 / 31

Course outline

Part I: Reasoning about programs: from 122 and 150 to 414

▶ Gain intuitive understanding of language and methodology

Part II: From inform to formal reasoning

▶ Specifying meaning of programs

▶ Specifying meaning of propositions

▶ Formal reasoning and its justification

Part III: Mechanized reasoning

▶ Techniques for automated proving

Matt Fredrikson Bug Catching 13 / 31

Course outline

Part I: Reasoning about programs: from 122 and 150 to 414

▶ Gain intuitive understanding of language and methodology

Part II: From inform to formal reasoning

▶ Specifying meaning of programs

▶ Specifying meaning of propositions

▶ Formal reasoning and its justification

Part III: Mechanized reasoning

▶ Techniques for automated proving

Matt Fredrikson Bug Catching 13 / 31

Algorithmic approaches

Formal proofs are tedious

Automatic methods can:

▶ Check our work

▶ Fill in low-level details

▶ Give diagnostic info

They usually cannot:

▶ Verify “everything” for us

▶ Generate specification, invariants

▶ Tell us how to fix bugs

This is what you will learn!

▶ Make use of these methods

▶ How (and when) they work

Image source: Daniel Kroening & Ofer

Strichman, Decision Procedures

Matt Fredrikson Bug Catching 14 / 31

Algorithmic approaches

Formal proofs are tedious

Automatic methods can:

▶ Check our work

▶ Fill in low-level details

▶ Give diagnostic info

They usually cannot:

▶ Verify “everything” for us

▶ Generate specification, invariants

▶ Tell us how to fix bugs

This is what you will learn!

▶ Make use of these methods

▶ How (and when) they work

Image source: Daniel Kroening & Ofer

Strichman, Decision Procedures

Matt Fredrikson Bug Catching 14 / 31

Algorithmic approaches

Formal proofs are tedious

Automatic methods can:

▶ Check our work

▶ Fill in low-level details

▶ Give diagnostic info

They usually cannot:

▶ Verify “everything” for us

▶ Generate specification, invariants

▶ Tell us how to fix bugs

This is what you will learn!

▶ Make use of these methods

▶ How (and when) they work

Image source: Daniel Kroening & Ofer

Strichman, Decision Procedures

Matt Fredrikson Bug Catching 14 / 31

Algorithmic approaches

Formal proofs are tedious

Automatic methods can:

▶ Check our work

▶ Fill in low-level details

▶ Give diagnostic info

They usually cannot:

▶ Verify “everything” for us

▶ Generate specification, invariants

▶ Tell us how to fix bugs

This is what you will learn!

▶ Make use of these methods

▶ How (and when) they work

Image source: Daniel Kroening & Ofer

Strichman, Decision Procedures

Matt Fredrikson Bug Catching 14 / 31

Algorithmic approaches

Formal proofs are tedious

Automatic methods can:

▶ Check our work

▶ Fill in low-level details

▶ Give diagnostic info

They usually cannot:

▶ Verify “everything” for us

▶ Generate specification, invariants

▶ Tell us how to fix bugs

This is what you will learn!

▶ Make use of these methods

▶ How (and when) they work

Image source: Daniel Kroening & Ofer

Strichman, Decision Procedures

Matt Fredrikson Bug Catching 14 / 31

Different traditions and techniques

Functional programming: dependent types

▶ Proofs are expressed in programs (Agda)

▶ Proof tactics are expressed as programs (Coq)

Imperative programming: logical contracts

▶ Properties are expressed in contracts

▶ Reduce correctness to logical propositions (verification condition)

▶ Use automated theorem provers to prove VC

Why3 (this course) supports both!

▶ Functional and imperative code in WhyML

▶ Automated provers for VC (Z3, CVC, alt-ergo, . . .)

▶ Interactive provers for VC (Coq)

We focus on automated proving

Matt Fredrikson Bug Catching 15 / 31

Different traditions and techniques

Functional programming: dependent types

▶ Proofs are expressed in programs (Agda)

▶ Proof tactics are expressed as programs (Coq)

Imperative programming: logical contracts

▶ Properties are expressed in contracts

▶ Reduce correctness to logical propositions (verification condition)

▶ Use automated theorem provers to prove VC

Why3 (this course) supports both!

▶ Functional and imperative code in WhyML

▶ Automated provers for VC (Z3, CVC, alt-ergo, . . .)

▶ Interactive provers for VC (Coq)

We focus on automated proving

Matt Fredrikson Bug Catching 15 / 31

Different traditions and techniques

Functional programming: dependent types

▶ Proofs are expressed in programs (Agda)

▶ Proof tactics are expressed as programs (Coq)

Imperative programming: logical contracts

▶ Properties are expressed in contracts

▶ Reduce correctness to logical propositions (verification condition)

▶ Use automated theorem provers to prove VC

Why3 (this course) supports both!

▶ Functional and imperative code in WhyML

▶ Automated provers for VC (Z3, CVC, alt-ergo, . . .)

▶ Interactive provers for VC (Coq)

We focus on automated proving

Matt Fredrikson Bug Catching 15 / 31

Different traditions and techniques

Functional programming: dependent types

▶ Proofs are expressed in programs (Agda)

▶ Proof tactics are expressed as programs (Coq)

Imperative programming: logical contracts

▶ Properties are expressed in contracts

▶ Reduce correctness to logical propositions (verification condition)

▶ Use automated theorem provers to prove VC

Why3 (this course) supports both!

▶ Functional and imperative code in WhyML

▶ Automated provers for VC (Z3, CVC, alt-ergo, . . .)

▶ Interactive provers for VC (Coq)

We focus on automated proving

Matt Fredrikson Bug Catching 15 / 31

Different traditions and techniques

Functional programming: dependent types

▶ Proofs are expressed in programs (Agda)

▶ Proof tactics are expressed as programs (Coq)

Imperative programming: logical contracts

▶ Properties are expressed in contracts

▶ Reduce correctness to logical propositions (verification condition)

▶ Use automated theorem provers to prove VC

Why3 (this course) supports both!

▶ Functional and imperative code in WhyML

▶ Automated provers for VC (Z3, CVC, alt-ergo, . . .)

▶ Interactive provers for VC (Coq)

We focus on automated proving

Matt Fredrikson Bug Catching 15 / 31

Different traditions and techniques

Functional programming: dependent types

▶ Proofs are expressed in programs (Agda)

▶ Proof tactics are expressed as programs (Coq)

Imperative programming: logical contracts

▶ Properties are expressed in contracts

▶ Reduce correctness to logical propositions (verification condition)

▶ Use automated theorem provers to prove VC

Why3 (this course) supports both!

▶ Functional and imperative code in WhyML

▶ Automated provers for VC (Z3, CVC, alt-ergo, . . .)

▶ Interactive provers for VC (Coq)

We focus on automated proving

Matt Fredrikson Bug Catching 15 / 31

Different traditions and techniques

Functional programming: dependent types

▶ Proofs are expressed in programs (Agda)

▶ Proof tactics are expressed as programs (Coq)

Imperative programming: logical contracts

▶ Properties are expressed in contracts

▶ Reduce correctness to logical propositions (verification condition)

▶ Use automated theorem provers to prove VC

Why3 (this course) supports both!

▶ Functional and imperative code in WhyML

▶ Automated provers for VC (Z3, CVC, alt-ergo, . . .)

▶ Interactive provers for VC (Coq)

We focus on automated proving

Matt Fredrikson Bug Catching 15 / 31

Different traditions and techniques

Functional programming: dependent types

▶ Proofs are expressed in programs (Agda)

▶ Proof tactics are expressed as programs (Coq)

Imperative programming: logical contracts

▶ Properties are expressed in contracts

▶ Reduce correctness to logical propositions (verification condition)

▶ Use automated theorem provers to prove VC

Why3 (this course) supports both!

▶ Functional and imperative code in WhyML

▶ Automated provers for VC (Z3, CVC, alt-ergo, . . .)

▶ Interactive provers for VC (Coq)

We focus on automated proving

Matt Fredrikson Bug Catching 15 / 31

Different traditions and techniques

Functional programming: dependent types

▶ Proofs are expressed in programs (Agda)

▶ Proof tactics are expressed as programs (Coq)

Imperative programming: logical contracts

▶ Properties are expressed in contracts

▶ Reduce correctness to logical propositions (verification condition)

▶ Use automated theorem provers to prove VC

Why3 (this course) supports both!

▶ Functional and imperative code in WhyML

▶ Automated provers for VC (Z3, CVC, alt-ergo, . . .)

▶ Interactive provers for VC (Coq)

We focus on automated proving

Matt Fredrikson Bug Catching 15 / 31

Different traditions and techniques

Functional programming: dependent types

▶ Proofs are expressed in programs (Agda)

▶ Proof tactics are expressed as programs (Coq)

Imperative programming: logical contracts

▶ Properties are expressed in contracts

▶ Reduce correctness to logical propositions (verification condition)

▶ Use automated theorem provers to prove VC

Why3 (this course) supports both!

▶ Functional and imperative code in WhyML

▶ Automated provers for VC (Z3, CVC, alt-ergo, . . .)

▶ Interactive provers for VC (Coq)

We focus on automated proving

Matt Fredrikson Bug Catching 15 / 31

Different traditions and techniques

Functional programming: dependent types

▶ Proofs are expressed in programs (Agda)

▶ Proof tactics are expressed as programs (Coq)

Imperative programming: logical contracts

▶ Properties are expressed in contracts

▶ Reduce correctness to logical propositions (verification condition)

▶ Use automated theorem provers to prove VC

Why3 (this course) supports both!

▶ Functional and imperative code in WhyML

▶ Automated provers for VC (Z3, CVC, alt-ergo, . . .)

▶ Interactive provers for VC (Coq)

We focus on automated proving

Matt Fredrikson Bug Catching 15 / 31

Reasoning about correctness

Functional Correctness

▶ Specification

▶ Proof

Specify behavior with logic

▶ Declarative

▶ Precise

Systematic proof techniques

▶ Derived from semantics

▶ Exhaustive proof rules

▶ Automatable∗ But . . .

Matt Fredrikson Bug Catching 16 / 31

Reasoning about correctness

Functional Correctness

▶ Specification

▶ Proof

Specify behavior with logic

▶ Declarative

▶ Precise

Systematic proof techniques

▶ Derived from semantics

▶ Exhaustive proof rules

▶ Automatable∗ But . . .

Matt Fredrikson Bug Catching 16 / 31

Reasoning about correctness

Functional Correctness

▶ Specification

▶ Proof

Specify behavior with logic

▶ Declarative

▶ Precise

Systematic proof techniques

▶ Derived from semantics

▶ Exhaustive proof rules

▶ Automatable∗

But . . .

Matt Fredrikson Bug Catching 16 / 31

Reasoning about correctness

Functional Correctness

▶ Specification

▶ Proof

Specify behavior with logic

▶ Declarative

▶ Precise

Systematic proof techniques

▶ Derived from semantics

▶ Exhaustive proof rules

▶ Automatable∗

But . . .

Matt Fredrikson Bug Catching 16 / 31

Reasoning about correctness

Functional Correctness

▶ Specification

▶ Proof

Specify behavior with logic

▶ Declarative

▶ Precise

Systematic proof techniques

▶ Derived from semantics

▶ Exhaustive proof rules

▶ Automatable∗ But . . .

Matt Fredrikson Bug Catching 16 / 31

Why3

Deductive verification platform

▶ Programming language (WhyML, derived from OCaml)

▶ Verification toolchain

Rich specification language

▶ Pre- and post-conditions, loop invariants, assertions

▶ Pure mathematical functions

▶ Termination metrics

Programmer writes specification, partial annotations

Compiler proves correctness

When it works! (It’s not quite like a type-checker . . .)

Matt Fredrikson Bug Catching 17 / 31

Why3

Deductive verification platform

▶ Programming language (WhyML, derived from OCaml)

▶ Verification toolchain

Rich specification language

▶ Pre- and post-conditions, loop invariants, assertions

▶ Pure mathematical functions

▶ Termination metrics

Programmer writes specification, partial annotations

Compiler proves correctness

When it works! (It’s not quite like a type-checker . . .)

Matt Fredrikson Bug Catching 17 / 31

Why3

Deductive verification platform

▶ Programming language (WhyML, derived from OCaml)

▶ Verification toolchain

Rich specification language

▶ Pre- and post-conditions, loop invariants, assertions

▶ Pure mathematical functions

▶ Termination metrics

Programmer writes specification, partial annotations

Compiler proves correctness

When it works! (It’s not quite like a type-checker . . .)

Matt Fredrikson Bug Catching 17 / 31

Why3

Deductive verification platform

▶ Programming language (WhyML, derived from OCaml)

▶ Verification toolchain

Rich specification language

▶ Pre- and post-conditions, loop invariants, assertions

▶ Pure mathematical functions

▶ Termination metrics

Programmer writes specification, partial annotations

Compiler proves correctness

When it works! (It’s not quite like a type-checker . . .)

Matt Fredrikson Bug Catching 17 / 31

Why3

Deductive verification platform

▶ Programming language (WhyML, derived from OCaml)

▶ Verification toolchain

Rich specification language

▶ Pre- and post-conditions, loop invariants, assertions

▶ Pure mathematical functions

▶ Termination metrics

Programmer writes specification, partial annotations

Compiler proves correctness

When it works! (It’s not quite like a type-checker . . .)

Matt Fredrikson Bug Catching 17 / 31

Automated verifiers

Systems that prove that programs match their specifications

Problem is undecidable!

1. Prover needs “hints” from
programmer

2. Finding the right set of hints
can be challenging

Verifiers are complex systems

▶ We’ll deep-dive into selected
components

▶ Understand “big picture” for
the rest

Basic idea:

1. Translate programs into proof
obligations

2. Encode proof obligations as
satisfiability

3. Solve using a decision procedure

Matt Fredrikson Bug Catching 18 / 31

Automated verifiers

Systems that prove that programs match their specifications

Problem is undecidable!

1. Prover needs “hints” from
programmer

2. Finding the right set of hints
can be challenging

Verifiers are complex systems

▶ We’ll deep-dive into selected
components

▶ Understand “big picture” for
the rest

Basic idea:

1. Translate programs into proof
obligations

2. Encode proof obligations as
satisfiability

3. Solve using a decision procedure

Matt Fredrikson Bug Catching 18 / 31

Automated verifiers

Systems that prove that programs match their specifications

Problem is undecidable!

1. Prover needs “hints” from
programmer

2. Finding the right set of hints
can be challenging

Verifiers are complex systems

▶ We’ll deep-dive into selected
components

▶ Understand “big picture” for
the rest

Basic idea:

1. Translate programs into proof
obligations

2. Encode proof obligations as
satisfiability

3. Solve using a decision procedure

Matt Fredrikson Bug Catching 18 / 31

Recent developments

Implement a ‘sat ‘ function in Why3 that matches this signature:

sat (cnf : cnf) : option valuation

If ‘cnf ‘ is satisfiable , then ‘sat ‘ should return ‘Some rho ‘,
where ‘rho ‘ is a satisfying assignment for ‘cnf ‘.
Otherwise , it should return ‘None ‘.

Matt Fredrikson Bug Catching 19 / 31

Recent developments

Implement a ‘sat ‘ function in Why3 that matches this signature:

sat (cnf : cnf) : option valuation

If ‘cnf ‘ is satisfiable , then ‘sat ‘ should return ‘Some rho ‘,
where ‘rho ‘ is a satisfying assignment for ‘cnf ‘.
Otherwise , it should return ‘None ‘.

Matt Fredrikson Bug Catching 19 / 31

Recent developments

Matt Fredrikson Bug Catching 20 / 31

Recent developments

Matt Fredrikson Bug Catching 21 / 31

Recent developments

Matt Fredrikson Bug Catching 21 / 31

Recent developments

Matt Fredrikson Bug Catching 22 / 31

Recent developments

Matt Fredrikson Bug Catching 22 / 31

(Limitations of) recent developments

Eventually, ChatGPT produced a verified implementation

Convincing it to do so was not trivial!

If you use a code model/assistant in this course:

▶ Document your approach thoroughly

▶ Describe the relevant parts in your solution

▶ Come talk to me about it

If you are interested in research related to this, let me know!

Matt Fredrikson Bug Catching 23 / 31

(Limitations of) recent developments

Eventually, ChatGPT produced a verified implementation

Convincing it to do so was not trivial!

If you use a code model/assistant in this course:

▶ Document your approach thoroughly

▶ Describe the relevant parts in your solution

▶ Come talk to me about it

If you are interested in research related to this, let me know!

Matt Fredrikson Bug Catching 23 / 31

(Limitations of) recent developments

Eventually, ChatGPT produced a verified implementation

Convincing it to do so was not trivial!

If you use a code model/assistant in this course:

▶ Document your approach thoroughly

▶ Describe the relevant parts in your solution

▶ Come talk to me about it

If you are interested in research related to this, let me know!

Matt Fredrikson Bug Catching 23 / 31

(Limitations of) recent developments

Eventually, ChatGPT produced a verified implementation

Convincing it to do so was not trivial!

If you use a code model/assistant in this course:

▶ Document your approach thoroughly

▶ Describe the relevant parts in your solution

▶ Come talk to me about it

If you are interested in research related to this, let me know!

Matt Fredrikson Bug Catching 23 / 31

(Limitations of) recent developments

Eventually, ChatGPT produced a verified implementation

Convincing it to do so was not trivial!

If you use a code model/assistant in this course:

▶ Document your approach thoroughly

▶ Describe the relevant parts in your solution

▶ Come talk to me about it

If you are interested in research related to this, let me know!

Matt Fredrikson Bug Catching 23 / 31

(Limitations of) recent developments

Eventually, ChatGPT produced a verified implementation

Convincing it to do so was not trivial!

If you use a code model/assistant in this course:

▶ Document your approach thoroughly

▶ Describe the relevant parts in your solution

▶ Come talk to me about it

If you are interested in research related to this, let me know!

Matt Fredrikson Bug Catching 23 / 31

(Limitations of) recent developments

Eventually, ChatGPT produced a verified implementation

Convincing it to do so was not trivial!

If you use a code model/assistant in this course:

▶ Document your approach thoroughly

▶ Describe the relevant parts in your solution

▶ Come talk to me about it

If you are interested in research related to this, let me know!

Matt Fredrikson Bug Catching 23 / 31

Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

▶ Specifications written in propositional
temporal logic

▶ Verification by exhaustive state space
search

▶ Diagnostic counterexamples

▶ No proofs!

▶ Downside: “State explosion”

1070 atoms 10500000 states

code spec

model
checker

✓
counter-
example

Matt Fredrikson Bug Catching 24 / 31

Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

▶ Specifications written in propositional
temporal logic

▶ Verification by exhaustive state space
search

▶ Diagnostic counterexamples

▶ No proofs!

▶ Downside: “State explosion”

1070 atoms 10500000 states

code spec

model
checker

✓
counter-
example

Matt Fredrikson Bug Catching 24 / 31

Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

▶ Specifications written in propositional
temporal logic

▶ Verification by exhaustive state space
search

▶ Diagnostic counterexamples

▶ No proofs!

▶ Downside: “State explosion”

1070 atoms 10500000 states

code spec

model
checker

✓
counter-
example

Matt Fredrikson Bug Catching 24 / 31

Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

▶ Specifications written in propositional
temporal logic

▶ Verification by exhaustive state space
search

▶ Diagnostic counterexamples

▶ No proofs!

▶ Downside: “State explosion”

1070 atoms 10500000 states

code spec

model
checker

✓
counter-
example

Matt Fredrikson Bug Catching 24 / 31

Model Checking

Clever ways of dealing with state explosion:

▶ Partial order reduction

▶ Bounded model checking

▶ Symbolic representations

▶ Abstraction & refinement

Now widely used for bug-finding:

▶ Hardware, software, protocols, . . .

▶ Microsoft, Intel, Amazon, Google, NASA,
. . .

Ed Clarke, 1945–2020
Turing Award, 2007

First developed this
course!

Matt Fredrikson Bug Catching 25 / 31

Model Checking

Clever ways of dealing with state explosion:

▶ Partial order reduction

▶ Bounded model checking

▶ Symbolic representations

▶ Abstraction & refinement

Now widely used for bug-finding:

▶ Hardware, software, protocols, . . .

▶ Microsoft, Intel, Amazon, Google, NASA,
. . .

Ed Clarke, 1945–2020
Turing Award, 2007

First developed this
course!

Matt Fredrikson Bug Catching 25 / 31

Model Checking

Clever ways of dealing with state explosion:

▶ Partial order reduction

▶ Bounded model checking

▶ Symbolic representations

▶ Abstraction & refinement

Now widely used for bug-finding:

▶ Hardware, software, protocols, . . .

▶ Microsoft, Intel, Amazon, Google, NASA,
. . .

Ed Clarke, 1945–2020
Turing Award, 2007

First developed this
course!

Matt Fredrikson Bug Catching 25 / 31

Model Checking

Clever ways of dealing with state explosion:

▶ Partial order reduction

▶ Bounded model checking

▶ Symbolic representations

▶ Abstraction & refinement

Now widely used for bug-finding:

▶ Hardware, software, protocols, . . .

▶ Microsoft, Intel, Amazon, Google, NASA,
. . .

Ed Clarke, 1945–2020
Turing Award, 2007

First developed this
course!

Matt Fredrikson Bug Catching 25 / 31

Model Checking

Clever ways of dealing with state explosion:

▶ Partial order reduction

▶ Bounded model checking

▶ Symbolic representations

▶ Abstraction & refinement

Now widely used for bug-finding:

▶ Hardware, software, protocols, . . .

▶ Microsoft, Intel, Amazon, Google, NASA,
. . .

Ed Clarke, 1945–2020
Turing Award, 2007
First developed this

course!

Matt Fredrikson Bug Catching 25 / 31

Grading

Breakdown:

▶ 50% assignments
(written + programming)

▶ 15% mini-project 1

▶ 15% mini-project 2

▶ 20% final exam

6 assignments
done individually

2 mini-projects
pick from small menu
can work with a partner

Participation:

▶ Come to lecture

▶ Answer questions
(in class and on Piazza!)

▶ Contribute to discussion

Matt Fredrikson Bug Catching 26 / 31

Written parts of assignments

Written homeworks focus on theory and fundamental skills

Grades are based on:

▶ Correctness of your answer

▶ How you present your reasoning

Strive for clarity & conciseness

▶ Show each step of your reasoning

▶ State your assumptions

▶ Answers without these −→ no points

Matt Fredrikson Bug Catching 27 / 31

Written parts of assignments

Written homeworks focus on theory and fundamental skills

Grades are based on:

▶ Correctness of your answer

▶ How you present your reasoning

Strive for clarity & conciseness

▶ Show each step of your reasoning

▶ State your assumptions

▶ Answers without these −→ no points

Matt Fredrikson Bug Catching 27 / 31

Written parts of assignments

Written homeworks focus on theory and fundamental skills

Grades are based on:

▶ Correctness of your answer

▶ How you present your reasoning

Strive for clarity & conciseness

▶ Show each step of your reasoning

▶ State your assumptions

▶ Answers without these −→ no points

Matt Fredrikson Bug Catching 27 / 31

Programming parts of assignments

For the programming, you will:

▶ Implement some functionality (data structure or algorithm)

▶ Specify correctness for that functionality

▶ Use Why3 to prove it correct

Most important criterion is correctness.

Full points when you provide the following

▶ Correct implementation

▶ Correct specification

▶ Correct contracts

▶ Sufficient contracts for verification

Partial credit depending on how many of these you achieve

Clarity & conciseness is necessary for partial credit!

Matt Fredrikson Bug Catching 28 / 31

Programming parts of assignments

For the programming, you will:

▶ Implement some functionality (data structure or algorithm)

▶ Specify correctness for that functionality

▶ Use Why3 to prove it correct

Most important criterion is correctness.

Full points when you provide the following

▶ Correct implementation

▶ Correct specification

▶ Correct contracts

▶ Sufficient contracts for verification

Partial credit depending on how many of these you achieve

Clarity & conciseness is necessary for partial credit!

Matt Fredrikson Bug Catching 28 / 31

Programming parts of assignments

For the programming, you will:

▶ Implement some functionality (data structure or algorithm)

▶ Specify correctness for that functionality

▶ Use Why3 to prove it correct

Most important criterion is correctness.

Full points when you provide the following

▶ Correct implementation

▶ Correct specification

▶ Correct contracts

▶ Sufficient contracts for verification

Partial credit depending on how many of these you achieve

Clarity & conciseness is necessary for partial credit!

Matt Fredrikson Bug Catching 28 / 31

Programming parts of assignments

For the programming, you will:

▶ Implement some functionality (data structure or algorithm)

▶ Specify correctness for that functionality

▶ Use Why3 to prove it correct

Most important criterion is correctness.

Full points when you provide the following

▶ Correct implementation

▶ Correct specification

▶ Correct contracts

▶ Sufficient contracts for verification

Partial credit depending on how many of these you achieve

Clarity & conciseness is necessary for partial credit!

Matt Fredrikson Bug Catching 28 / 31

Mini-Projects

Mini-projects are intended to build proficiency in:

▶ Writing good specifications

▶ Applying course principles to practice

▶ Making effective use of automated tools

▶ Writing useful & correct code

Gradual progression to sophistication:

1. Familiarize yourself with Why3

2. Implement and prove something

3. Work with more complex data structures

4. Implement and prove something really interesting

5. Optimize your implementation, still verified

Matt Fredrikson Bug Catching 29 / 31

Mini-Projects

Mini-projects are intended to build proficiency in:

▶ Writing good specifications

▶ Applying course principles to practice

▶ Making effective use of automated tools

▶ Writing useful & correct code

Gradual progression to sophistication:

1. Familiarize yourself with Why3

2. Implement and prove something

3. Work with more complex data structures

4. Implement and prove something really interesting

5. Optimize your implementation, still verified

Matt Fredrikson Bug Catching 29 / 31

Late Policy

Late days

▶ 5 late days to use throughout the semester

▶ No more than 2 late days on any assignment

▶ Late days do not apply to mini-projects!

Matt Fredrikson Bug Catching 30 / 31

Logistics

Website: http://www.cs.cmu.edu/~15414

Course staff contact: Piazza

Lecture: Tuesdays & Thursdays, 12:20-1:40pm

Office Hours: TBD, schedule on website and course calendar soon

Assignments: Gradescope

Matt Fredrikson Bug Catching 31 / 31

http://www.cs.cmu.edu/~15414

