
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Satisfiability Modulo Theories

Matt Fredrikson

Carnegie Mellon University
Lecture 18

Thursday, March 28, 2023

1 Introduction

In the previous lecture we studied decision procedures for two first-order theories: ar-
rays and equality with uninterpreted functions (EUF). Both procedures assumed that
the formula to be decided was in the conjunctive, quantifier-free fragment of either the-
ory, which means that the procedures are unable to handle a formula with a disjunction,
or a negation over other logical connectives. Additionally, the theory for arrays relied
on case analysis to account for the ways in which the indices of read terms might relate
to previously-written indices, and there was no obvious way to avoid the worst-case
exponential cost of this analysis.

Today we will see how to decide formulas with arbitrary logical structure (i.e., they
need not be in a conjunctive fragment), in any first-order theory for which we have a
decision procedure capable of handling conjunctive, quantifier-free formulas. In par-
ticular, we will go back to DPLL, and see how to combine it with a theory solver, thus
inheriting DPLL’s heuristic optimizations that are often helpful in avoiding the worst-
case cost of case-splitting. This approach is called DPLL(T), where T refers to the first-
order theory that we wish to solve.

Learning Goals

1. DPLL(T) combines a conjunctive theory solver and DPLL to decide formulas in a
given first-order theory.

2. Just as conflict clauses were important for DPLL, learning theory lemmas can dra-
matically improve the performance of DPLL(T).

3. The Nelson-Oppen procedure extends the approach to combinations of theories,
but they must be stably infinite, and in some cases convex.

http://www.cs.cmu.edu/~15414

L18.2 Satisfiability Modulo Theories

2 Review: First-Order Theories

A first-order theory T is defined by the following components.

• It’s signature Σ is a set of constant, function, and predicate symbols.

• It’s set of axioms A is a set of closed first-order logic formulae in which only
constant, function, and predicate symbols of Σ appear.

Having defined a theory’s signature and axioms, we can reason about the same type
of properties related to the semantics of a formula as we have been so far, namely va-
lidity and satisfiability.

Definition 1 (T -valid). A Σ-formula P is valid in the theory T (T -valid), if every model
M that satisfies the axioms of T (i.e., M |= A for every A ∈ A) also satisfies P (i.e.,
M |= P).

Definition 2 (T -satisfiable). Let T be a Σ-theory. A Σ-formula P is T -satisfiable if there
exists a model M such that M |= A and M |= P .

Definition 3 (T -decidable). A theory T is decidable if T |= P is decidable for every
Σ-formula. That is, there exists an algorithm that always terminate with “yes” if P is
T -valid or with “no” if P is T -invalid.

For example, the theory of equality with uninterpreted functions TE has a signature
that consists of a single binary predicate =, and all possible constant (a, b, c, x, y, z, . . .)
and function (f, g, h, . . .) symbols:

ΣE : {=, a, b, c, . . . , f, g, h, . . .}

The axioms of TE define the usual meaning of equality (reflexivity, symmetry, and tran-
sitivity), as well as functional congruence.

1. ∀x.x = x (reflexivity)

2. ∀x, y.x = y → y = x (symmetry)

3. ∀x, y, z.x = y ∧ y = z → x = z (transitivity)

4. ∀x, y.x = y → f(x̄) = f(ȳ) (congruence)

3 DPLL(T) framework

To handle formulas with disjunction, one could always convert to Disjunctive Normal
Form (DNF). However, this conversion is usually too expensive and is not the most ef-
ficient way of solving disjunctive first-order theories. One of the strengths of the DPLL
algorithm is its ability to handle disjunctions efficiently via Boolean Constraint Prop-
agation and clause-learning. We will now see how DPLL can be extended to account

15-414 LECTURE NOTES MATT FREDRIKSON

Satisfiability Modulo Theories L18.3

for first-order theories via the DPLL(T) framework. This approach is used in nearly all
modern SMT solvers.

The key idea behind this framework is to decompose the SMT problem into parts we
can deal with efficiently:

• Use SAT solver to cope with the Boolean structure of the formula;

• Use dedicate conjunctive theory solver to decide satisfiability in the background
theory.

3.1 Propositional abstractions

The first insight needed to understand how DPLL(T) works is that it is possible to
“abstract” a first-order theory formula P as a propositional formula B(P). The way
that we go about accomplishing this is motivated by the way that we ultimately want
to make use of DPLL, which only understands propositional formulas. We aim for two
key properties.

• If P is satisfiable, then B(P) should be satisfiable also.

• If B(P) is unsatisfiable, then P should be as well.

Why is B(P) an abstraction? Note that if P is not satisfiable, then B(P) could be either
satisfiable or unsatisfiable. In this sense, B(P) has lost information that was present in
P , so it is an abstraction. However, these properties do allow us to determine unsatisfi-
ability in some cases by applying DPLL to B(P) (i.e., B(P) is unsat). In the case where
B(P) is satisfiable, we will see that the abstraction, plus DPLL’s sat decision, provides
enough information to continue making progress on deciding P .

The propositional abstraction of a Σ-formula P recursively. Note that below, l refers
to a literal in the first-order theory.

B(l) = pi (a fresh propositional variable)
B(¬P) = ¬B(P)
B(P ∧Q) = B(P) ∧B(Q)
B(P ∨Q) = B(P) ∨B(Q)
B(P → Q) = B(P) → B(Q)

For example, given the formula:

P : g(a) = c ∧ (f(g(a)) ̸= f(c) ∨ g(a) = d) ∧ c ̸= d

The propositional abstraction of P is the following:

B(P) = B(g(a) = c) ∧B(f(g(a)) ̸= f(c) ∨ g(a) = d) ∧ c ̸= d)

= B(g(a) = c) ∧B(f(g(a)) ̸= f(c) ∨ g(a) = d)) ∧B(c ̸= d)

= B(g(a) = c) ∧B(f(g(a)) ̸= f(c)) ∨B(g(a) = d) ∧B(c ̸= d)

= P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

15-414 LECTURE NOTES MATT FREDRIKSON

L18.4 Satisfiability Modulo Theories

Note that we can also define B−1 which maps from the Boolean variables back to the
atoms in the original formula. For example, B−1(P1 ∧ P3 ∧ P4) corresponds to the
formula g(a) = c ∧ g(a) = d ∧ c = d.

3.2 Combining theory solvers with DPLL

The propositional abstraction provides us with a “lazy” way to solve SMT. Given a Σ-
formula P , we can determine its satisfiability by performing the following procedure:

1. Construct the propositional abstraction B(P);

2. If B(P) is unsatisfiable then P is unsatisfiable;

3. Otherwise, get a satisfying assignment M for B(P);

4. Construct R =
∧n

i=1 Pi ↔M(Pi);

5. Send B−1(R) to the T -solver;

6. If T -solver reports that P ∪B−1(R) is satisfiable then P is satisfiable;

7. Otherwise, update B(P) := B(P) ∧ ¬R and return to step 2.

This procedure terminates when: (i) B(P) becomes unsatisfiable which implies that P
is also unsatisfiable or (ii) T -solver reports that P ∪B−1(R) is satisfiable which implies
that B(P) is satisfiable and that there exists an assignment M that satisfies all axioms
in the theory T .

Note that if P ∪ B−1(R) is unsatisfiable we cannot terminate since there may be an-
other assignment to B(P) that would make P ∪B−1(R) satisfiable. Therefore, we need
to exhaust all assignments for B(P) before deciding that P is unsatisfiable.

On step 7 we add ¬R to B(P) since if we did not, we would get the same assignment
M for B(P). We denote ¬R as a theory conflict clause that prevents the SAT solver
from going down the same path in future iterations.

Example 4. Suppose we want to find if the Σ-formula P is satisfiable:

P : g(a) = c ∧ (f(g(a)) ̸= f(c) ∨ g(a) = d) ∧ c ̸= d

We start by building its propositional abstraction B(P):

B(P) : P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

Table 1 shows the step 1 of the procedure with P and the corresponding proposi-
tional abstraction B(P). Next, we query the SAT solver for an assignment to B(P).
Assume that the SAT solver returns the following assignment M = {P1,¬P2, P3,¬P4}.
We constructR = (P1∧¬P2∧P3∧¬P4) and sendB−1(R) to T -solver. Note thatB−1(R)
corresponds to:

B−1(R) : g(a) = c ∧ f(g(a)) ̸= f(c) ∧ g(a) = d ∧ c ̸= d

15-414 LECTURE NOTES MATT FREDRIKSON

Satisfiability Modulo Theories L18.5

Theory solver SAT solver
g(a) = c∧ P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

(f(g(a)) ̸= f(c) ∨ g(a) = d)∧
c ̸= d

Table 1: P and B(P).

Theory solver SAT solver
g(a) = c∧ P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

(f(g(a)) ̸= f(c) ∨ g(a) = d)∧ (¬P1 ∨ P2 ∨ ¬P3 ∨ P4)
c ̸= d

Table 2: UpdatedB(P) after checking that the assignmentM = {P1,¬P2, P3,¬P4} does
not satisfy P

B−1(R)∪ P is unsatisfiable since if g(a) = d and g(a) = c then c = d but P states that
c ̸= d. Therefore, we know that this assignment is not satisfiable but there may exist
another assignment M that satisfies P . We update B(P) with ¬R as shown in Table 2
and query the SAT solver for another assignment.

Assume that the SAT solver returns a new assignment M = {P1, P2, P3,¬P4}. We
construct R = (P1 ∧ P2 ∧ P3 ∧ ¬P4) and send B−1(R) to T -solver. Note that in this case
B−1 corresponds to:

B−1(R) : g(a) = c ∧ f(g(a)) = f(c) ∧ g(a) = d ∧ c ̸= d

We can see that B−1(R)∪P is unsatisfiable for the same reason as before. We update
B(P) with ¬R as shown in Table 3 and perform another query to the SAT solver.

Assume that the SAT solver returns a new assignment M = {P1,¬P2,¬P3,¬P4}. We
construct R = (P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4) and send B−1(R) to T -solver. Note that in this
case B−1 corresponds to:

B−1(R) : g(a) = c ∧ f(g(a)) ̸= f(c) ∧ g(a) ̸= d ∧ c ̸= d

We can see that B−1(R) ∪ P is unsatisfiable since g(a) = c but f(g(a)) ̸= f(c). We
updateB(P) with ¬R as shown in Table 4 and observe thatB(P) becomes unsatisfiable
after adding ¬R. Since B(P) is unsatisfiable, we can conclude that P is also unsatisfi-
able.

Theory solver SAT solver
g(a) = c∧ P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

(f(g(a)) ̸= f(c) ∨ g(a) = d)∧ (¬P1 ∨ P2 ∨ ¬P3 ∨ P4)
c ̸= d (¬P1 ∨ ¬P2 ∨ ¬P3 ∨ P4)

Table 3: Updated B(P) after checking that the assignment M = {P1, P2, P3,¬P4} does
not satisfy P .

15-414 LECTURE NOTES MATT FREDRIKSON

L18.6 Satisfiability Modulo Theories

Theory solver SAT solver
g(a) = c∧ P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

(f(g(a)) ̸= f(c) ∨ g(a) = d)∧ (¬P1 ∨ P2 ∨ ¬P3 ∨ P4)
c ̸= d (¬P1 ∨ ¬P2 ∨ ¬P3 ∨ P4)

(¬P1 ∨ P2 ∨ P3 ∨ P4)
unsat

Table 4: Updated B(P) after checking that the assignment M = {P1,¬P2,¬P3,¬P4}
does not satisfy P . B(P) becomes unsatisfiable after adding the negation of M .

3.3 Improving DPLL(T) framework

Consider the Σ-formula P defined over TZ:

P : 0 < x ∧ x < 1 ∧ x < 2 ∧ . . . x < 99

The propositional abstraction B(P) is the following:

B(P) : P0 ∧ P1 ∧ . . . ∧ P99

Note that B(P) has 298 assignments containing P0 ∧ P1 and none of them satisfies
P . The procedure described in the previous section will enumerate all of them one by
one and add a blocking conflict clause that only covers a single assignment! A potential
solution to this issue is to not treat the SAT solver as a black box but instead incremen-
tally query the theory solver as assignments are made in the SAT solver. If we would
perform this integration then we would be able to stop after adding {0 < x, x < 1} and
would not need to explore the 298 infeasible assignments. This can be done by pushing
the T -solver into the DPLL algorithm as follows:

1. After Boolean Constraint Propagation (BCP), invoke the T -solver on the partial
assignment;

2. If the T -solver returns unsatisfiable then we can stop the search of the SAT solver
and immediately add ¬R to BP ;

3. Otherwise, continue as usual until we have a new partial assignment.

Recall the example:

P : g(a) = c ∧ (f(g(a)) ̸= f(c) ∨ g(a) = d) ∧ c ̸= d

And its propositional abstraction B(P):

B(P) : P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

15-414 LECTURE NOTES MATT FREDRIKSON

Satisfiability Modulo Theories L18.7

DPLL with being by propagating P1 and ¬P4 since they are unit clauses. At this point
the theory axioms imply more propagations:

g(a) = c→ f(g(a)) = f(c)

g(a) = c ∧ c ̸= d→ g(a) ̸= d

Deciding ¬P2 or P3 would be wasteful, so we can add the theory lemmas:

(P1 → P2)

(P1 ∧ ¬P3) → ¬P3

This procedure is called theory propagation and can guarantee that every Boolean
assignment is T -satisfiable. However, in practice doing this at every step can be ex-
pensive and theory propagation is only applied when it is “likely” (using heuristics) to
derive useful implications.

4 Theory Combination

Now we turn towards generalizing the DPLL(T) approach to handle formulas that have
symbols from more than one theory.

Definition 5 (Theory combination). Given two theories T1 and T2 with signatures Σ1

and Σ2, respectively, the theory combination T1 ⊕ T2 is a (Σ1 ∪ Σ2)-theory defined by
the axiom set T1 ∪ T2.

Definition 6 (The theory combination problem). Let P be a Σ1∪Σ2 formula. The theory
combination problem is to decide whether P is T1⊕T2-valid. Equivalently, the problem
is to decide whether the following holds: T1 ⊕ T2 |= P .

Given a Σ-formula P in TE and a Σ-formula ψ in TR can we check the satisfiability of
P∪ψ by checking the satisfiability of P andψ independently and combining the results?
No! This is not a sound procedure for the theory combination problem. Consider the
following counterexample:

P = f(x) ̸= f(y)

ψ = x+ y = 0 ∧ x = 0

Both P and ψ are satisfiable but P implies that x ̸= y and ψ implies that x = y,
therefore their combination is not satisfiable!

5 The Nelson-Oppen Combination Procedure

The Nelson-Oppen combination procedure solves the theory combination problem for
theories T1 and T2, as long as those theories satisfy a few properties.

15-414 LECTURE NOTES MATT FREDRIKSON

L18.8 Satisfiability Modulo Theories

• Both theories T1 and T2 are quantifier-free (conjunctive) fragments.

• Equality (=) is the only symbol in the intersection of their signatures.

• Both theories have constants that are interpreted over an infinite domain.

The motivation for the first two properties should be clear by intuition. As we saw
in the previous lecture, working with conjunctive quantifier-free formulas removes the
possibility of having to do case analysis. The fact that = is the only symbol shared
between T1 and T2 avoids “overloading” of symbols that might introduce spurious
relationships between terms, and as we will see, both theories must have equality in
order for the approach to work.

The third property might not be as obvious. To make sure that we understand what
this restriction means, consider the theory Ta,b with signature ΣT : {a, b,=} where both
a and b are constants. Suppose it has a single axiom:

∀x.x = a ∨ x = b

This axiom says that every model of the theory must map variables to either a or b.
Thus, there is no way to interpret the theory over an infinite domain without violating
this axiom. On the other hand, most of the other theories that we have studied, with
the exception of bit vector arithmetic, are interpreted over an infinite domain.

But why would this matter for a decision procedure? This has to do with the way
that the Nelson-Oppen procedure first isolates theories, and then coordinates between
them by introducing new equalities. The technique follows the steps below, for a given
formula P over theories T1, . . . , Tn.

1. Purification: Partition the literals of P into new conjunctive formulas P1, . . . , Pn,
where Pi contains only symbols from Ti.

2. Theory solving: Apply the decision procedure for Ti to Pi. If one of the formulas
is unsatisfiable, then so is P .

3. Equality propagation: As illustrated in the example earlier, the fact that each Pi

is independently satisfiable does not mean that their combination in P is. This
step gradually adds more information to each Pi by searching for equalities that
are implied by the other Pj formulas.

a) If there exists i, j such that Pi implies an equality between variables of P that
is not implied by Pj , add the equality to Pj and return to step 2.

b) Otherwise, if there are no such equalities to add, then P is satisfiable.

Returning to the question of why the theories must be interpreted over an infinite
domain, suppose that we have a formula over Ta,b ∪ TE, where Ta,b is the toy theory
with two constants and equality from earlier:

w = x ∧ f(x) ̸= f(y) ∧ f(y) ̸= f(z) ∧ f(x) ̸= f(z)

15-414 LECTURE NOTES MATT FREDRIKSON

Satisfiability Modulo Theories L18.9

Then after purification, the Ta,b formula will just be w = x, and the TE formula will
have the rest of the (negative) literals. Equality propogation will not add anything to
either formula, because the only things that could be implied are negated equalities, i.e.,
congruence from EUF implies that x ̸= y, y ̸= z, and x ̸= z. Nelson-Oppen does not
propagate negated equalities, so step 3b will apply, and return sat. This is incorrect,
because the axiom from Ta,b requires w, x, y, and z to be assigned to either the constant
a or b, which is not consistent with the above formula.

This example should illustrate the need for the third requirement given above. Note
that researchers have explored ways of combining finite-domain theories, and it is often
possible to do so in practice. Tinelli and Zarba [?] proposed an approach that attempts
to compute a lower bound on the size of the domain that a formula must be satisfied
in. This bound can be shared between theories during equality propagation, and if the
bound ever contradicts the axioms of a given theory, then the corresponding solver can
return unsat. However, it is not always possible to compute this bound, and if it is not
sufficiently tight, then the result might still be incorrect.

Example 7. Now we’ll see how the technique works on an example from the theory of
real arithmetic combined with EUF.

ϕ = f(f(x)− f(y)) ̸= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

For the purification step, we look at any term containing symbols from more than one
theory. For example, f(x) − f(y) contains subtraction from real arithmetic, and func-
tion application from EUF. To separate this term into pure components, we equate the
“alien” subexpressions f(x) and f(y) with fresh variables, and replace their occurence
in the subtraction term with the new variables:

v1 = f(x) ∧ v2 = f(y) ∧ f(v1 − v2) ̸= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

There is still one impure term, f(v1 − v2), so we equate v1 − v2 with the fresh variable
v3, and subustitute:

v1 = f(x) ∧ v2 = f(y) ∧ v3 = v1 − v2 ∧ f(v3) ̸= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

Now the formula is pure, and can be easily separated into a formula PR containing only
real arithmetic, and a formula PE containing only equality and uninterpreted functions.

PR ≡ v3 = v1 − v2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z
PE ≡ v1 = f(x) ∧ v2 = f(y) ∧ f(v3) ̸= f(z)

Moving on, the next step is to look for implied equalities that are not already present in
either formula. There are several opportunities.

• Together, x ≤ y, y + z ≤ x, and 0 ≤ z imply that both x = y and z = 0.

• On the EUF side, once x = y has been added, then f(x) = f(y) by congruence, so
v1 = v2.

15-414 LECTURE NOTES MATT FREDRIKSON

L18.10 Satisfiability Modulo Theories

• Once v1 = v2 is added to PR, it implies that v3 = z.

After adding these implied equalities, we have left with the following formulas.

PR ≡ v3 = v1 − v2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ x = y ∧ z = 0 ∧ v1 = v2 ∧ v3 = z
PE ≡ v1 = f(x) ∧ v2 = f(y) ∧ f(v3) ̸= f(z) ∧ x = y ∧ v1 = v2 ∧ v3 = z

Now we see that PE is not satisfiable, because v3 = z and f(v3) ̸= f(z) is not consistent
with the congruence axiom.

5.1 Convexity

Before concluding, we point out that the procedure described in this lecture is only
valid for convex theories.

Definition 8 (Convex theory). A Σ-theory T is convex if for every conjunctive Σ-formula
P if and only if whenever P implies a finite disjunction of equalities:

P →
n∨

i=1

xi = yi

Then it must also imply at least one of those equalities on its own:

P → xi = yi for some i ∈ {1, · · · , n}

An example of a nonconvex theory is the theory of integers (TZ). For instance, while
the following is valid:

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 → (x3 = x1 ∨ x3 = x2)

Neither of the isolated cases are:

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 → x3 = x1
x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 → x3 = x2

Consider the following formula defined over TZ and and TE:

P = 1 ≤ x ∧ x ≤ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

This formula is clearly unsatisfiable, but Nelson-Oppen will return sat, for reasons very
similar to the example discussed earlier with Ta,b.

In practice, SMT solvers use an extended version of Nelson-Oppen that propagates
implied disjunctions of equalities [?, Chapter 10]. The details of this extension are be-
yond the scope of the lecture, but note that adding additional disjunctions to a formula
will force DPLL(T) to solve them by case-splitting, which can quickly become expen-
sive. So, while it is possible to combine non-convex theories with others, one should be
aware that doing so may make the solver’s job intractible, and explore other options.

References

15-414 LECTURE NOTES MATT FREDRIKSON

	Introduction
	Review: First-Order Theories
	DPLL(T) framework
	Propositional abstractions
	Combining theory solvers with DPLL
	Improving DPLL(T) framework

	Theory Combination
	The Nelson-Oppen Combination Procedure
	Convexity

