15-414: Bug Catching: Automated Program Verification

Lecture Notes on
LTL Model Checking & Biichi Automata

Matt Fredrikson

Carnegie Mellon University
Lecture 19

1 Introduction

We’ve seen how to check Computation Tree Logic (CTL) formulas against computation
structures. The algorithm for doing so directly computes the semantics of formulas, and
makes use of the fixpoint properties of monotone functions to derive the set of states
in a transition structure that satisfy the formula. We saw in a previous lecture that LTL
formulas are defined over traces, of where there are infinitely many in a computation
structure, so a similar approach will not work for LTL.

In this lecture, we will see how to check LTL formulas against computation structures
by reducing the problem to checking whether the language defined by a finite automa-
ton is empty. However, because the traces of a computation structure are infinite, we
cannot use the familiar tools available for nondeterministic finite automata (NFAs), and
instead need to define a new type of automata that can recognize infinite words. These
are called Biichi automata, and we will see that they have useful properties that can be
used to construct effective model checking algorithms for LTL [?].

2 Kripke structures & LTL

In previous lectures we introduced Kripke and computation structures, which capture
the transition behavior of a computation.

Definition 1 (Kripke structure). A Kripke frame (W, ~) consists of a set W with a transi-
tion relation ~ C W x W where s ~ t indicates that there is a direct transition from s to
t in the Kripke frame (W, ~). The elements s € W are also called states. A Kripke struc-
ture K = (W, ~, v, I) is a Kripke frame (W, ~) with a mapping v : W — 2V, where 2V
is the powerset of V' assigning truth-values to all the propositional atoms in all states.
Moreover, a Kripke structure has a set of initial states / C W.


http://www.cs.cmu.edu/~15414

L19.2 LTL Model Checking & Biichi Automata

A (computation) path is an infinite sequence sy, s1, 52, s3, . . . of states s; € W such that
si ™ s;41 for all i. We will always assume that the structures used in model checking
are computation structures, unless otherwise noted. We can also refer to the traces of a
Kripke structure, by evaluating each of its paths under the labeling function.

Like CTL, the temporal modalities of LTL allow us to formalize properties that in-
volve time and sequencing. While the semantics of CTL formulas are defined over the
states of a transition structure, the truth value of LTL formulas is defined over traces.
Definition 2 gives the meaning of an LTL formula over a trace. Definition 3 extends
the semantics to transition systems, where we require that for all traces o obtained by
running a computation structure K, o = P.

Definition 2 (LTL semantics (traces)). The truth of LTL formulas in a trace o is defined
inductively as follows:

—_

o = piff og |= p for atomic propositions p provided that og # A
. 0 E~Piff o £ P,i.e. itis not the case that o = P

.o EPAQIiffc =Pando =Q

. o =0Piff o’ = Pforalli >0

2
3
4 ol oPiffol £ P
5
6. o = OPiff o' = P for somei > 0
7

. 0 = UPQ iff thereisani > O such that 0’ = Q and ¢/ = P forall0 < j <

In all cases, the truth-value of a formula is, of course, only defined if the respective
suffixes of the traces are defined.

Definition 3 (LTL semantics (computation structure)). Given an LTL formula P and
computation structure K = (W, ~,v), K = P if and only if ¢ |= P for all 0 where
o; = v(s;) for some path sg, s1, s2, ... in K.

3 LTL model checking

Let’s think about how we might go about checking an LTL formula against a transi-
tion structure, using the mutual exclusion example from the last lecture. Recall that
this models two abstract processes, and whether they are currently in the noncritical
section, trying to enter the critical setion, or are in the critical section. Those atomic
propositional letters are used with suffix 1 to indicate that they apply to process 1 and
with suffix 2 to indicate process 2. For example the notation nt indicates a state in which
n1 Aty is true (and no other propositional letters).

15-414 LECTURE NOTES MATT FREDRIKSON



LTL Model Checking & Biichi Automata L19.3

We can express some useful properties about the potential behavior of this computa-
tion using LTL formulas.

e The mutual exclusion safety property [J(—c; V —¢z) characterizes traces where it
is never the case that both processes are in the critical section at the same time.
Equivalently, traces where at all times it is true that either —c; or —cs.

* The liveness property L(t; — Oc1) AO(t2 — Oca) characterizes traces that satisfy
the requirement that whenever a process tries to enter its critical section (t; is
true), it eventually succeeds (c; becomes true).

Let’s first consider the mutual exclusion safety property. In order to check that the
transition structure satisfies it, we need to verify that all traces in the structure satisfy
—c1 V —eg. As the set of traces in this structure is infinite, approaching this directly by
exhaustive enumeration will not be productive. Indeed, we could proceed inductively
as we have for other unbounded computations in this course.

But our experience with induction has always relied heavily on providing an invari-
ant from which we can build a sufficiently strong inductive hypothesis. We want to de-
velop a completely automatic technique for verifying LTL formulas, so thinking about
this problem differently might yield something more suitable.

A formal language perspective Recalling that the semantics of LTL formulas are
defined over traces, we can define the language £(P) of an LTL formula P as the set of
traces that satisfy P.

Definition 4 (LTL Semantics (language over traces)). Let P be an LTL formula and ¥ a
set of atomic propositions. Then the language of P is defined as:

L(P)={ce€X¥ : o} P}

where ¥¥ is the set of infinite strings over 3, and the truth relation = is defined induc-
tively in Definition 2.

15-414 LECTURE NOTES MATT FREDRIKSON



L19.4 LTL Model Checking & Biichi Automata

Definition 4 equates the meaning of an LTL formula with a language that describes
every behavior that is allowed by the property. Viewing this set as a language, each
word in the language is an infinite-length string with characters that correspond to
atomic propositions. For example, the mutual exclusion property from earlier has the
following word in its language:

o= ({},{co}. {1}, {},... (repeated infinitely))

In the above, we use the convention that any atomic proposition not appearing in a
state is assumed to be false; so the appearance of {} means that no atomic proposition
is true, whereas {c; } means that c; is true but ¢y is false.

The following word is not in its language, because ¢; and c¢; are simultaneously true
in the fourth state:

o= ({},{c2},{c1},{c1,c2},... (repeated infinitely))

We can also define the set of traces £(K') of a computation structure K, as the set of
all infinite-length words over atomic propositions obtained by following transitions in
K from an initial state. £(K) corresponds to all of the possible behaviors that K might
exhibit in its execution.

Definition 5 (Language of a computation structure). Let K = (W, ~,v) be a compu-
tation structure defined over a set of atomic propositions ¥. Then the language of K,
denoted L(K),is: L(K) ={oc € ¥ : sg,51,... apathin K and 0; = v(s;)}.

In the computation structure given above, one such behavior (i.e. word in the lan-
guage) would be:

o = ({n1,n2}, {n1,t2}, {n1,c2}, ... (repeated infinitely))

Interpreting the LTL formula and computation structure as languages gives us a new
way to think about the model checking problem. Namely, we can reason that in order
for a transition structure K to satisfy formula P, it must be that every trace of K satisfies
P. The languages L£(P) gives us exactly the set of traces that satisfy P, so we have only
to check that the language £(K) is contained in L(P):

L(K) € L(P) 1)

Equation 1 equivalent to saying that all of the behaviors of K are among the set of
behaviors that are allowed by P.

Checking by complement How can we check whether Equation 1 holds for a given
K and P? Suppose for the moment that £(K) and L(P) were regular languages con-
taining only finite words. Then we could exploit the fact that regular languages are
closed under intersection and complementation, in addition to the following fact (see
[?] or for a proof):

L(K) C L£(P)ifand only if L(K)N L(P) =10 ()

15-414 LECTURE NOTES MATT FREDRIKSON



LTL Model Checking & Biichi Automata L19.5

L(P) is the complement of £(P), i.e., the set of all behaviors that are not allowed by P.
We can check that Equation 2 matches the intuition developed so far: if £(K) N L(P)
is empty, then there are no behaviors of K that are not allowed by P. Removing the
double negative, all behaviors of K are allowed by P.

Assuming we have the finite-state machine corresponding to a regular language,
checking whether that language is empty is a reachability problem [?, ?]: we simply
look for a path through the automaton from an initial state to an accepting state. This
suggests the following algorithm for checking property P against transition structure
K (assuming both are equivalent to regular languages):

1. Construct finite-state machines Ax and A corresponding to £(A) and L(P), re-
spectively. We know that A exists because regular languages are closed under
complementation.

2. Use the fact that regular languages are closed under intersection to compute A .5
from Ay and Ap.

3. Check whether £(K) N L(P) is empty by looking for a path in A, 5 from an
initial state to an accepting state.

a) If L(K) N L(P) =, then conclude that £L(K) C L(P) so K satisfies P (K |-
P).

b) If L(K) N L(P) # 0, then conclude that K [~ P. Any word in L(K) N L(P)
corresponds to a counterexample of P, i.e., a trace exhibiting a behavior in
K that is not allowed by P.

This procedure is appealing for several reasons. It is completely automatic, and reduces
model checking to a reachability problem over the graph of an automata. In cases where
the transition structure does not satisfy the property in question, there is a simple pro-
cedure for extracting counterexamples that witness this fact; such counterexamples can
be useful in practice for diagnostic reasons by highlighting behaviors that violate the
property.

Of course, we can’t actually use this procedure to check LTL formulas against compu-
tation structures because we know that £(P) and £(K) are not regular languages—their
words are infinite, and can’t be recognized by finite state machines.

4 Automata on Infinite Words

In order to recover a model checking procedure like the one described in the one de-
scribed in the previous section, we look to automata that accept languages of infinite
words. Nondeterministic Blichi automata (NBAs) are a variant of nondeterministic fi-
nite automata (NFAs) that do exactly this.

Definition 6 (Nondeterministic Biichi Automaton (NBA)). A nondeterministic Biichi
automaton A is a tuple A = (Q, %, 9, Qo, F') where:

15-414 LECTURE NOTES MATT FREDRIKSON



L19.6 LTL Model Checking & Biichi Automata

1. Q is a finite set of states.

. Y is an alphabet.

2
3. §:Q x X — p(Q) is a transition function.
4. Qo C Q is a set of initial states

5

. F C @ is a set of accepting states, which we sometimes call the acceptance set.

A run for (infinite) trace o = 0y, 01,09, ... is an infinite sequence of states qo, q1, q2, . . -
in @ such that ¢y € Qo and g;+1 € 6(g;, 0;) for all i > 0. A run qo, q1, g2, - - - is accepting
if ¢; € F for infinitely many indices i > 0. The language of A is:

L(A) ={o € ¥¥ : there exists an accepting run for ¢ in A}

In the above, X“ is the set of all infinite words over alphabet symbols in X.

Notice that in terms of syntax, there is no distinction between NBAs and NFAs: both
have a finite number of states, an alphabet, a transition function, and a subset of initial
and accepting states. The transition relation in a NBA works in exactly the same way
as in a NFA, i.e., by consulting the “row” for the current state and alphabet symbol to
determine which state (of potentially many) to visit next.

The difference is in the semantics. NBAs accept infinite words, so it is meaningless to
consider whether a run ends in an accepting state (as in the case of NFAs) because there
is no end to an infinite run. Rather, the semantics of NBAs require than an accepting
run visit the acceptance set I infinitely often. This might seem quite demanding at
first, but because the set of states () is finite, any infinite run must visit some non-empty
set of states @' C () infinitely often. The acceptance criterion simply asks whether @’
has a non-empty intersection with F'.

As a convenient shorthand, we will use Boolean combinations of atomic propositions
to label transitions. So if ¥ = @({a,b}) then a transition labeled a V b stands for three
separate transitions: one labeled by {a}, another labeled by {b}, and the third by {a, b}.

Notice that Definition 6 does not require that § give each state a direct successor, or
impose any form of totality on it. This might seem strange in light of the corresponding
requirement for computation structures, as NBAs intend to capture infinite behaviors
just like the former. However, there is no contradiction here. Consider the following
example, which accepts all infinite strings of {a, b, c} that begin with a finite number of
a’s, followed by a single b, following by an infinite number of ¢’s.

O——

15-414 LECTURE NOTES MATT FREDRIKSON



LTL Model Checking & Biichi Automata L19.7

From state ¢, there do not exist any transitions on symbol c. So is the word acbecce . . .
in the language of this NBA? Looking at the semantics given in Definition 6, we see that
it is not. In order to be in the language, there must exist an accepting run, and there is
no way to run this NBA on the word acbccee . .. because it “falls off” of the transition
relation.

Examples Going back to our original goal of checking the safety and liveness proper-
ties of the mutual exclusion example, recall the formula O(—¢; V —¢2). We can represent
this property using a NBA, by setting the alphabet X to be p(atomic propositions) =
p({cl, Cc2,M1, N9, tl, tg}).

Returning to the automaton for J(—¢; V —¢2), the single initial state gp of the automa-
ton is also the acceptance set, and there is a self-transition on this initial state labeled
—c1 V —ca. The second (and only other) state g; is not in the acceptance set, and is reach-
able from gy on ¢; A cy. Finally, there must be a self-loop on ¢; for any alphabet symbol
(i.e., true), because once the mutual exclusion invariant is violated by c; A ¢y, there is
no way to “repair” the trace so that it satisfies the property. The transition diagram is
shown below.

¢y V ey true

We can also build an automaton for the complement of this property, which corre-
sponds to the set of all “bad” behaviors that violate the mutual exclusion property. In
this case, the complement is easily obtained by swapping the states in the acceptance
set {qo} with their complement {¢;}. This is due to the fact that the automaton is ac-
tually deterministic. For general NBA, complementation is not so straightforward [?],
but we will return to this inconvenience later on.

c1 N\ ey

—cy Ve true

Looking at another example, let’s build an NBA for L(¢; — Oc1) A O(t2 — Ocz2). Be-
cause either side of the conjunction is symmetrical with the other, we will show one
automaton for CJ(¢; — O¢;) that can be instantiated twice to arrive at the full NBA.

15-414 LECTURE NOTES MATT FREDRIKSON



L19.8 LTL Model Checking & Biichi Automata

This NBA begins in its accepting state, and stays there as long as process ¢ does not
try to enter its critical section (or it tries to enter, and succeeds immediately in the same
state). If the process tries to enter its critical section and does not immediately succeed
(t; N —c;), then the NBA transitions to a non-accepting state and stays there as long as
the process doesn’t enter the critical section (—¢;). Finally, if the process enters its critical
section (c;), the automaton transitions back to its initial accepting state.

Computation structures and Biichi automata We are moving towards a language-
theoretic solution to the LTL model checking problem. Recall that the first steps in the
case of regular languages was to obtain automata that represent the languages of the
computation structure and LTL property. We’ve seen an example of how to convert an
LTL property into a NBA, and we’ll return to a more general solution for converting any
LTL formula to NBA later. For now, let’s convince ourselves that a given computation
structure K = (W, n, v) with initial states W can be represented with NBA.

Theorem 7. Let K = (W, ~,v) be a computation structure with initial states Wy over atomic
predicates AP. Then the the nondeterministic Biichi automaton A given by the following
criterion satisfies L(Ax) = L(K),

A =(Q=WU{},X=p(AP),5,Qo = {t}, F =W U{i})
where ¢’ € §(q,0) iff ¢ ~ ¢ and v(q', o), and q € §(v, o) whenever g € Qo and v(q, o).
Theorem 7 says that a computation structure K is converted to a NBA Ax with the
following steps:

1. The states of Ax are identical to those of K, except a new initial state ¢ not ap-
pearing in K is added. ¢ is the only initial state of Ag.

2. The alphabet of A is the powerset of the atomic propositions AP used to define
K.

3. The transition function ¢ of Ag includes all of the state transitions appearing in
K. The transition symbols for § correspond to the atomic propositions assigned
by v to the post state of each element of ~. Moreover, § gives transitions from ¢
to every initial state ¢ € @y, again using the transition symbols from p(AP) that
v assigns to the corresponding g € Q.

4. The acceptance set of Ax corresponds to all of the states W U {¢}. This is due to
the fact that all runs of K that obey the transition relation are in £(K), so any trace
that doesn’t “fall off” of Ay isin L(Ak).

15-414 LECTURE NOTES MATT FREDRIKSON



LTL Model Checking & Biichi Automata L19.9

As an example, below we show the NBA corresponding to our running mutual ex-
clusion computation structure. Notice that even though there is only one initial state
in the original computation structure, it has still been replaced in the NBA with the
distinguished state .. While it may not seem as though we have gained anything by
doing this, because we label transitions on the NBA with the atomic propositions of the
post state from the computation structure, there must be an incoming transition to this
state in the NBA so that the first symbol from words appearing in £(K) is processed
consistently with the rest.

Closure under intersection As it turns out, NBAs are closed under intersection just
as are their NFA counterparts over finite words. The proof of this fact is given directly
by construction of a product automaton that accepts exactly the language of the inter-
section of its components [?, ?].

While this construction is straightforward, one does need to be careful about the
acceptance set of the product NBA. In particular, when taking the product of A; =
(Q1,%1,01,QY, F1) and Ay = (Q2, X2, 62, QY, F»), we need to ensure that words accepted
by A; N A go through states corresponding to F; and F3 an infinite number of times.
To accomplish this, the product construction splits states into three distinct parts 0, 1,2
function intuitively as follows:

1. The product construction has all its initial states in part 0.
2. When entering a state corresponding to F}, the product moves to a state in part 1.
3. When entering a state corresponding to F3, the product moves to a state in part 2.

4. When the product is in a state from part 2, and enters a state not in F3, transition
back to a state in part 0.

15-414 LECTURE NOTES MATT FREDRIKSON



L19.10 LTL Model Checking & Biichi Automata

Further details of this construction are given in [?]. For the purposes of our goals, we
can use a simplified product construction that relies on the fact that the NBA obtained
from a computation structure has an acceptance set corresponding to its entire state
space.

Theorem 8. Given two nondeterministic Biichi automata A1 = (Q1, %, 01, QY, Q1) and Ay =
(Q2,%,02,Q3, F), the product Ajng = (Q1 x Q2,%,8,QY x QI,Q1 x F), where (¢}, ¢5) €
8 ((q1,92),0) iff (¢}) € 6(qi, o) for i = 1,2, satisfies L(A1n2) = L(A1) N L(As).

To see Theorem 8 in action, let’s return to the task of checking the mutual exclusion
safety property on the NBA corresponding to the mutual exclusion computation struc-
ture. We'll start be renaming the states in the NBA for the safety property, and updating
the transition labels to make them consistent with those used in the computation struc-
ture’s NBA.

—(
To 1

{nn,tn,nt,cn,nc,tt,ct,tc} true

We can now proceed with the intersection. The resulting automaton shown below con-
sists of two disconnected components, the first corresponding to states containing 7
and the second to states containing 7. They are disconnected because in the property
NBA, the only transition between ry and r is labeled cc. However, the computation
NBA has no transitions labeled cc, and the ¢’ from Theorem 8 requires corresponding
transitions in both constituent NBA.

Importantly, the initial state in the product is one containing ry, and the acceptance set
consists entirely of those containing r;. It is evident that the language of this NBA is
the empty set, which confirms our expectation that the original computation structure
satisfies the mutual exclusion safety property.

15-414 LECTURE NOTES MATT FREDRIKSON



LTL Model Checking & Biichi Automata L19.11

Checking emptiness The previous example was easy to check “visually” by inspec-
tion, because none of the accepting states were reachable from the single initial state. In
general of course this heuristic will not apply, so we need a more general algorithm for
determining whether the product NBA corresponds to the empty language.

Consider an NBA A and accepting run p = qo, ¢1, - . .. Because p is accepting, it con-
tains infinitely many accepting states from F', and moreover, because F' C @ is finite,
there is some suffix p’ of p such that every state on it appears infinitely many times. In
order for this to happen each state in p’ must be reachable from every other state in p/,
which means that these states comprise a strongly-connected component in A. From
this we can conclude that any strongly connected component in A that (1) is reach-
able from the initial state, and (2) contains at least one accepting state, will generate an
accepting run of the automaton.

Whenever such a strongly-connected component exists in the NBA, there will nec-
essarily be a cycle from some accepting state back to itself; given a strongly-connected
component with an accepting state, it is always possible to find such a cycle, and the
converse clearly holds. So given a product automaton as described in the previous
sections, we can perform model checking using any cycle detection algorithm such as
Tarjan’s depth-first search [?]. This runs in time O(|Q| + |d]), but is sometimes not as
efficient in practice as other alternatives that we will cover in the next lecture.

References

15-414 LECTURE NOTES MATT FREDRIKSON



	Introduction
	Kripke structures & LTL
	LTL model checking
	Automata on Infinite Words

