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1 Introduction

Our study of logical contracts so far has focused on control structures: How do functions,
assignments, and loops give rise to verification conditions that entail the correctness of
the code? In the next example we will introduce two elementary data structures (lists
and queues) and verify an implementation of queues using two lists. We then deepen
our investigation into how to reason about data structures. A key concept that we need
to capture is that of a data structure invariant. With executable contracts, such invariants
are checked by functions. With logical contracts, they are expressed as logical prop-
erties of the data structures. We can classify data structures as persistent (also called
immutable) and ephemeral (also called mutable). Persistent data structures are prevalent
in functional programming, while ephemeral data structure are more common in im-
perative programming. Since WhyML covers a spectrum of functional and imperative
programming, we will consider both and identify some commonalities and differences.

We will also take a look at testing, why it is still important, and briefly consider how
to use the Why3 IDE during code development.

Learning goals. After this lecture, you should be able to:

• Use non-executable specifications

• Write logical contracts for small functional programs over simple immutable data
types such as lists

• Browse the Why3 Standard Library

http://www.cs.cmu.edu/~15414/s22
http://why3.lri.fr/stdlib/
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• Verify simple code over (inductive) data structure

• Exploit representation invariants in verification

• Combine verification with testing

2 Nonexecutable Specifications

The specification we used in our verification of the mystery function was executable:

1 let rec function fib (n:int) : int =

2 requires { n >= 0 }

3 variant { n }

4 if n = 0 then 0

5 else if n = 1 then 1

6 else fib (n-2) + fib (n-1)

We draw your attention here to three keywords: let rec means that we are defining
and executable, recursive function fib. The additional keyword function means that
we can use fib in contracts to reason about code. This requires the fib function to be pure
(have no effects, just return a value) and terminating. Purity is established simply by
traversing the code, while termination comes from proving the verification condition
for variant { n }.

In practice it is mostly the case that our specifications are not executable but purely
logical formulas. That’s because they are intended to express what the function accom-
plishes, but abstract away from how. We will see a number of ways to express these
logical specifications. As a first example, we can express the defining property of the
function fib rather than giving its explicit definition.

We start with declaring fib to be a function from integers to integers and then describe
three properties as axioms.

1 function fib (n:int) : int

2 axiom fib0 : fib 0 = 0

3 axiom fib1 : fib 1 = 1

4 axiom fib2 : forall n:int. fib (n+2) = fib (n+1) + fib n

Describing the desired properties by axioms is very elegant, and can be used directly for
logical reasoning about the code. For example, if we swap out the recursive definition
of fib with the above, our mystery function f will still be verified just as easily (and
possibly more easily). You can experiment yourself with the file mystery.mlw.

On the other hand, it also has a very serious danger: if we aren’t careful, our ax-
ioms could be inconsistent by which we mean they derive a contradiction. If we have a
contradiction we can conclude anything from that (because we are in an impossible sit-
uation), including any verification condition. As an example, let’s say we made a typo
and wrote fib 0 = 1 in the second line, which would imply the contradictory 0 = 1.
We also change the postcondition to wrongly claim result = fib (n-1).

1 function fib (n:int) : int

2 axiom fib0 : fib 0 = 0
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3 axiom fib1 : fib 0 = 1 (* bug here!! *)

4 axiom fib2 : forall n:int. fib (n+2) = fib (n+1) + fib n

5

6 let f (n:int) : int =

7 requires { n >= 0 }

8 ensures { result = fib (n-1) } (* bug here!! *)

9 let ref i = 0 in

10 let ref a = 0 in

11 let ref b = 1 in

12 while (i < n) do

13 invariant { 0 <= i <= n }

14 invariant { a = fib i /\ b = fib (i+1) }

15 variant { n-i }

16 b <- a + b ;

17 a <- b - a ;

18 i <- i + 1

19 done ;

20 assert { i = n /\ a = fib i } ;

21 a

Because the axioms are inconsistent, the verification still succeeds!

% why3 prove -P alt-ergo mystery.mlw

File mystery.mlw:

Verification condition f’vc.

Prover result is: Valid (0.00s, 2 steps).

We can also prove it through the IDE and then replay the session:

% why3 ide mystery.mlw

# (prove and save session)

% why3 replay mystery

1/1 (replay OK)

%

As a reminder, our contracts are blatantly incorrect! Because this is a serious problem,
Why3 offers the possibility to search for inconsistencies among the axioms using the
--smoke-detector option to the replay command.

% why3 replay --smoke-detector mystery

1/1 (replay failed)

goal ’f’vc.0’, prover ’CVC4 1.7’: result is: Valid

(0.02s, 1949 steps) -> Smoke detected!

Replay failed.

In the autograder we routinely run the smoke detector, and you should do the same on
your session files before you hand in homework assignments. While in this particular
example the error was obvious, when specifications become more complex it is quite
easy to introduce subtle errors into the specification. You also need to keep in mind that
the smoke detector may not always work (the inconsistency is too hard to prove), and
that errors in your axioms may render them incorrect without being inconsistent.
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3 Verifying Properties of Data Structures

For the moment, we’ll stay in the functional world, although in WhyML we use data
structures similarly also in imperative programs. There is a clever implementation of
queues in a functional language using two stacks (usually directly represented by lists),
sometimes called functional queues. If the queue is used in a single-threaded way (that
is, we don’t dequeue from a queue in the same state more than once) then amortized
analysis shows that both enqueue and dequeue operations have constant amortized
cost.

The basic algorithmic idea is as follows. The queue is represented by two lists, the
front and the back. Initially both are empty. When we enqueue, we add elements to the
back, and when we dequeue, we take them from the front. If the front happens to be
empty when a dequeue request comes in we reverse the back to become the new front.
For example, after enqueuing 1, 2, 3 in that order, the front is still empty and the back
will be the list [3, 2, 1]. If we now dequeue, the front will become [1, 2, 3] (the reverse of
the back) and we remove 1 from the front, leaving it [2, 3] with the back empty.

To represent the queue, we see a couple of new constructs. One of them is polymor-
phism because we would like queues to be generic in the types of the elements. In
particular, the type queue ’a will be a queue with elements of type ’a (usually pro-
nounced alpha). We also need lists, which we can find in the Why3 Standard Library.
Among many other things, we find:

1 type list ’a = Nil | Cons ’a (list ’a)

2

3 let rec function (++) (l1 l2: list ’a) : list ’a =

4 match l1 with

5 | Nil -> l2

6 | Cons x1 r1 -> Cons x1 (r1 ++ l2)

7

8 let rec function reverse (l: list ’a) : list ’a =

9 match l with

10 | Nil -> Nil

11 | Cons x r -> reverse r ++ Cons x Nil

12 end

These functions are declared with let rec function which means they can be used in
contracts as well as computationally. We do note that, computationally, we may want
to use a different function that this particular reverse because its complexity is O(n2)
for a list of length n. We’ll note that, but we won’t worry about it in today’s lecture.

We see that lists have constructors Nil and Cons and that we discriminate between
lists using the expression match ... with ... end. We use a record of two elements,
the front and the back, as our representation of queues.

1 type queue ’a = { front : list ’a ; back : list ’a }

We would like to define the following functions

1 empty () : queue ’a

2 enq (x : ’a) (q : queue ’a) : queue ’a

3 deq (q : queue a) : option (’a , queue ’a)
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A queue might be empty, so deq returns and optional pair consisting of the first ele-
ment and the remainder of the queue. For this we need the option library:

1 type option ’a = None | Some ’a

Before we write code, we should decide on the specifications. The key idea is that we
use a single list to represent the queue, with the first element in the queue at the front of
the list. In other words, we use another data structure (a list) in the specification of the
behavior of the queue. Of course, we do not want to use such a list as an implementation
because the cost of an enqueue operation would be linear in the size of the queue (rather
than have amortized constant cost). Therefore we define the function sequence that
represents the state of a queue in the proper sequence. Recall that because we add the
elements to the back, to represent the proper state of the queue we have to reverse the
back.

1 function sequence (q : queue ’a) : list ’a = q.front ++ reverse q.back

Now let’s write the postconditions for all of the functions. They have no precondition
since any state of the queue is valid. The ones for empty and enq are fairly straightfor-
ward. For the enqueue operation we add the new element to the end of the sequence.

1 let empty () : queue ’a =

2 ensures { sequence result = Nil }

3 ...

4

5 let enq (x : ’a) (q : queue ’a) : queue ’a =

6 ensures { sequence result = sequence q ++ Cons x Nil }

7 ...

8

9 let deq (q : queue ’a) : option (’a , queue ’a) =

For the dequeue operation, we have to return Nil if the queue is empty and Some (x, r)
if x is at the front of the queue and r is the remainder. Writing this out logically, we use
an existential quantifier.

1 let deq (q : queue ’a) : option (’a , queue ’a) =

2 ensures { (result = None /\ sequence q = Nil)

3 \/ ( exists x:’a. exists r:queue ’a. result = Some(x,r)

4 /\ sequence q = Cons x (sequence r)) }
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At this point the code itself is not too difficult, just for the case of enqueue we nest
two matches because if the front is empty the queue is empty only if the back is also
empty. We show the code here; the live-coded version which may be different in minor
details can be found in queue.mlw.

1 module Queue

2

3 use int.Int

4 use list.List

5 use list.Append

6 use list.Reverse

7 use option.Option

8

9 (* type list ’a = Nil | Cons ’a (list ’a) *)

10 (* type option ’a = None | Some ’a *)

11

12 type queue ’a = { front : list ’a ; back : list ’a }

13

14 function sequence (q : queue ’a) : list ’a = q.front ++ reverse q.

back

15

16 let empty () : queue ’a =

17 ensures { sequence result = Nil }

18 { front = Nil ; back = Nil }

19

20 let enq (x : ’a) (q : queue ’a) : queue ’a =

21 ensures { sequence result = sequence q ++ (Cons x Nil) }

22 { front = q.front ; back = Cons x q.back }

23

24 let deq (q : queue ’a) : option (’a , queue ’a) =

25 ensures { (sequence q = Nil /\ result = None)

26 \/ (exists x:’a, q’:queue ’a. sequence q = Cons x (

sequence q’) /\ result = Some (x,q’)) }

27 match q.front with

28 | Nil -> match reverse q.back with

29 | Nil -> None

30 | Cons y ys -> Some (y, { front = ys ; back = Nil })

31 end

32 | Cons x xs -> Some (x, { front = xs; back = q.back })

33 end

34

35 end

While the code and specifications seem correct, we cannot be 100% confident that the
prover will be able to verify it. In particular, the reasoning depends on the lemmas in
the libraries pertaining to the properties of append (‘++’) and reverse. Fortunately, in
this case it succeeds. Just for variety, we tried it with the CVC4 prover.

% why3 prove -P cvc4 queue.mlw

queue.mlw Queue empty’vc: Valid (0.04s, 6867 steps)

queue.mlw Queue enq’vc: Valid (0.05s, 7687 steps)

queue.mlw Queue deq’vc: Valid (0.08s, 13374 steps)

%
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4 Data Structure Invariants

As a simple example of data structure invariants we reconsider our implementation of
queues. We would like to extend the interface with a function qsize that returns the
number of elements in a queue. The obvious way to compute this would be to compute
the lengths of the front and back and add them, but the complexity would be linear
in the size of the queue. To answer this query in constant time we add a size field
to the queue and maintain it as we enqueue or dequeue elements. The data structure
invariant here is that the size field always contains the sum of the lengths of the front
and back.

1 type queue ’a = { front : list ’a ;

2 back : list ’a ;

3 size : int }

4 invariant { size = length front + length back }

In the logic, the verifier assumes the invariant when reasoning about queues. This
could create a logical inconsistency (everything is provable!) if the invariant is unsatis-
fiable. For example, the trivial invariant false means any program in the scope of this
declaration could now be verified. To avoid this, Why3 will try to prove that there ex-
ists an instance of the data structure for which the invariant is satisfied. For complex
invariants this can be difficult, so WhyML gives you a way to specify an instance of the
data structure satisfying the invariant with a ‘by’ clause. In this particular case it would
be unnecessary, but it is good practice to always supply it.

1 type queue ’a = { front : list ’a ;

2 back : list ’a ;

3 size : int }

4 invariant { size = length front + length back }

5 by { front = Nil ; back = Nil ; size = 0 }

In this example it is relatively easy to update the code to maintain the size field and
Why3 will prove that it is always correct. In constructing the verification condition we
may think of the invariant as being assumed at the beginning of a function (like a pre-
condition) and proved at the end of a function (like a postcondition). In between, the
invariant may be violated, although this possibility does not come into play here. It is
necessary because you may build or modify an element of the data structure incremen-
tally and only at the end does the invariant hold.

The qsize function just returns the size field. In addition, the postcondition certifies
that it is indeed the length of the queue (when viewed as a single sequence of element,
which represents the client’s perspective.

1 let qsize (q : queue ’a) : int =

2 ensures { result = length (sequence q) }

3 q.size

You can find the other functions in the file queue.mlw.
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5 Testing and Implicit Preconditions

In 1977 Donald Knuth famously wrote “Beware of bugs in the above code; I have only proved
it correct, not tried it.” in a 5-page memo Notes on the van Emde Boas construction of priority
deques: An instructive use of recursion. You might think that if he had proved it using
Why3 then he wouldn’t have to be worried. I think he still would have been, and he
should have been! Here are some of the things that can still go wrong even if Why3
says “Verified!”.

• Your preconditions could be prohibitively strict, even to the point where no client
could possibly call your functions.

• Your postconditions could be prohibitively lax, to the point where the client obtains
no information at all about the computation of your function.

• Your definitions and axioms could be incorrect in the sense that they do not cap-
ture the property you were trying to prove. In the extreme case they could be vac-
uous (equivalent to true and therefore not saying anything) or inconsistent (equiv-
alent to false and therefore implying everything whatsoever).

• There could be a bug in Why3 or one or more of the back-end provers, extracting
an incorrect verification condition or proving one that isn’t valid. In fact, it is
almost certain that Why3 and all the back-end provers have bugs, so it is just a
matter of probabilities whether you trip any of them.

You may think these are unlikely, but you should be prepared that almost certainly at
least some of these things will happen to you.

When grading your homework, we combat these issues by combining manual in-
spection with replaying the Why3 sessions.

When you develop your code, you most likely will be in the opposite situation for a
while: your code can not be verified. Then you have to look for the exact opposite of
the points raised above, plus a very real first possibility:

• Your code is incorrect!

• Your preconditions could be prohibitively lax, to the point where they are too
weak to imply loop invariants or preconditions for operations or function calls,
or the postcondition at the end of the function. Of course, this may be the case
even if your code is correct!

• Your postconditions could be prohibitively strict, to the point where they simply
do not follow from what you know at the end of the function. Again, this may be
the case even with correct code.

• Your definitions and axioms do not properly capture the property you wish to
prove (and are convinced is true).
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• The back-end provers in Why3 are not strong enough to prove the verification
condition even though it is true and, on top of it, your code is correct.

To mitigate all these issues, it is sensible to combine testing with verification even
during the development process. Among other things:

• It may help you to determine whether your code is correct and, if not, have some
counterexamples. Unfortunately, today’s technology is such that it is difficult to
obtain counterexamples from failing provers. A reasonable set of successful test
cases may point you towards other kinds of issues you might have.

• If you run Why3 on your program including the testing code it may help you un-
cover situations where the preconditions are too strict. That could mean your test
function will fail to verify, even if Why3 assumes all the pre- and post-conditions
in the rest of your program.

• It may help you to think about the code by writing out explicitly how it should
behave on specific examples.

Even though our code has been verified, let’s write a little test function. By con-
vention, a test function should take unit as an argument, because the why3 execute

command will pass the unit element to the specified function.

1 let test () : (int, int) =

2 let q0 = empty () in

3 let q1 = enq 1 q0 in

4 let q2 = enq 2 q1 in

5 match deq q2 with

6 | Some (x, q3) -> match deq q3 with

7 | Some (y, q4) -> match deq q4 with

8 | None -> (x,y)

9 end end end

We should be able to execute this with the command

% why3 execute queue.mlw --use=Queue ’test ()’

but unfortunately due to limitation (or bug) in the implementation of the WhyML in-
terpreter related to polymorphism this fails. It is nevertheless interesting because in the
first two match expressions above we only supply the branch for Some. When we de-
queue from q2 it is impossible for the queue to be empty, so the value returned cannot
be None. When Why3 encounters a match expression that does not cover all the possible
cases based only on the type information, it generates a verification condition to prove
that the omitted cases are impossible. In this example, by tracking the postconditions,
the verifier should know precisely that the sequence at the point where deq q2 is called
is 1, 2 and therefore the queue nonempty.

We can actually test this: let’s add the postcondition that the answer must be (1,2)
and run the alt-ergo theorem prover and the file with the additional, strict function
test.
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% why3 prove -P alt-ergo queue.mlw

queue.mlw Queue queue’vc: Valid (0.00s, 0 steps)

queue.mlw Queue empty’vc: Valid (0.01s, 26 steps)

queue.mlw Queue enq’vc: Valid (0.02s, 123 steps)

queue.mlw Queue deq’vc: Valid (0.28s, 908 steps)

queue.mlw Queue qsize’vc: Valid (0.00s, 10 steps)

queue.mlw Queue test’vc: Timeout (5.00s)

%

Hmmm, it doesn’t seem to be able to prove our test function. Suspecting that the code
and contracts are correct and the theorem prover is too weak, let’s try CVC4.

% why3 prove -P cvc4 queue.mlw

queue.mlw Queue queue’vc: Valid (0.02s, 4244 steps)

queue.mlw Queue empty’vc: Valid (0.04s, 6706 steps)

queue.mlw Queue enq’vc: Valid (0.06s, 9124 steps)

queue.mlw Queue deq’vc: Valid (0.19s, 25682 steps)

queue.mlw Queue qsize’vc: Timeout (5.00s, 2064194 steps)

queue.mlw Queue test’vc: Valid (0.43s, 57994 steps)

%

Although it is somewhat slow and take a lot of steps, CVC4 manages to verify that
test () must return (1,2)! However, for some strange reason it fails to verify the very
simple qsize function which was no problem at all for alt-ergo.

At this point we can invoke

% why3 ide queue.mlw

and launch strategy Auto level 2 (or keyboard shortcut 2) which tries different provers
on different subgoals and quickly verifies the code. If we save the session under the file
menu (or keyboard shortcut Control-S) we can examine the session statistics.

% why3 session info --stats queue

== Number of root goals ==

total: 6 proved: 6

== Number of sub goals ==

total: 0 proved: 0

== Goals not proved ==

== Goals proved by only one prover ==

+-- file [../queue.mlw]

+-- theory Queue

+-- goal queue’vc: CVC4 1.7

+-- goal empty’vc: CVC4 1.7

+-- goal enq’vc: CVC4 1.7

+-- goal deq’vc: CVC4 1.7

+-- goal qsize’vc: Alt-Ergo 2.3.1
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+-- goal test’vc: CVC4 1.7

== Statistics per prover: number of proofs, time (minimum/maximum/average) in seconds ==

Alt-Ergo 2.3.1 : 1 0.00 0.00 0.00

CVC4 1.7 : 5 0.02 0.46 0.16

%

One lesson from this example is that certain constructs have implicit preconditions.
This includes pattern matches against data types (they should exhaustive), calls to func-
tions such as div or mod (the second argument should not be zero), array accesses (the
index should be in bounds; not yet discussed), and functions passing data structures
endowed with invariants (they should hold).

One rather surprising use of this is to use a function call in order to enforce a data
structure invariant in a contract somewhere in the middle of a function. Here, we could
have something like

1 function is_valid_queue (q : queue ’a) : bool = true

It is the implicit precondition which requires Why3 to verify that the queue is indeed
valid where this function is called.
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