
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Dynamic Logic

Frank Pfenning

Carnegie Mellon University
Lecture 6

February 3, 2022

1 Introduction

We start the lecture by writing the regular expression matcher we specified in the last
lecture using Brzozowski derivatives [Brz64]. It is an verification exercise for relatively
complex program, and we will also practice testing our axioms. Just like testing code,
this is generally good practice because incorrect specifications may render verification
meaningless. There is another purpose to practice regular expressions: they form a
structure called a Kleene algebra [Kle56], a structure that is echoed in our language of
programs. We will make that connection more precise in a future lecture.

Then we continue on our path towards formalization of various necessary compo-
nents for program reasoning: a language of arithmetic expressions e, a language of
formulas P , and a language is simple while programs α. We gave a mathematical se-
mantics of each relative to an assignment ω of integers to variables. The meaning of an
expression ωJeK ∈ Z is an integer, a formula can be true ω |= P (or false ω 6|= P), and the
meaning of a program is a relation ωJαKν between prestates ω and poststates ν. At this
point we can reason about programs semantically, that is, mathematically reason about
the meaning of programs.

None of this gives us a logic for reasoning about programs: all reasoning is reduced
back to general mathematics. It is therefore difficult to mechanize and automate since
general mathematics is difficult to mechanize and automate.

The goal of today’s lecture is to develop a logic for reasoning about programs called
dynamic logic. In this lecture we take yet again a semantic approach, that is, we specify
when a formula that expresses properties of programs is true. But we also write axioms
to capture in syntax how we can reason in dynamic logic.

http://www.cs.cmu.edu/~15414/s22

L6.2 Dynamic Logic

Learning goals. After this lecture, you should be able to:

• Test axioms that are intended as specifications

• Implement and verify an algorithm for matching regular expressions

• Interpret the meaning of formulas in dynamic logic (DL)

• Determine if simple formulas are true in a given state

• Determine if simple formulas are valid

• Validate DL axioms against the semantics of DL programs

• Design semantics and axioms for simple language extensions

2 Regular Expression Matching

The goal of this section will be to implement a verified matcher for regular expres-
sions. We use the very elegant algorithm using Brzozowski derivatives [Brz64] which
has more recently been reexamined from the practical perspective by Owens, Reppy,
and Turon [ORT09]. We do not consider the translation to finite-state automata or the
efficiency improvements by Owens et al., just the basic algorithm.

Besides the intrinsic elegance of the algorithm, the main purpose of this exercise is
to exemplify effective logical specification for relatively complex types such as regular
expressions.

2.1 Testing the Specification

Before we get into the algorithm, let’s test the specification of the meaning of regular
expressions as sets of words over a given alphabet. For simplicity, we represented the
alphabet as just integers, and words as list of integers. We only give two sample axioms
here (see regexp.mlw for the complete list.

1 type char = int

2 type word = list int

3

4 type regexp = Char char

5 | One

6 | Times regexp regexp

7 | Zero

8 | Plus regexp regexp

9 | Star regexp

10

11 predicate mem (w:word) (r:regexp)

12

13 axiom mem_char : forall w a.

14 mem w (Char a) <-> w = Cons a Nil

15

15-414 LECTURE NOTES FRANK PFENNING

http://www.cs.cmu.edu/~15414/s22/lectures/06-dynamiclogic/regexp.mlw

Dynamic Logic L6.3

16 axiom mem_plus : forall w r1 r2.

17 mem w (Plus r1 r2) <-> mem w r1 \/ mem w r2

18

19 axiom mem_star1 : forall w r.

20 mem w (Star r) <-> w = Nil \/ exists a w1 w2. w = Cons a w1 ++ w2

21 /\ mem (Cons a w1) r /\ mem w2 (Star r

)

22

23 (* ... more axioms .. *)

A first way to test is if Why3 can prove that w ∈ L(r) for some specific w and r. Such
proofs are generally difficult, since the logical specification doesn’t imply an particular
algorithm for regular expression matching, so we want to pick small examples. Here is
one that the system can prove:

1 goal test1 : mem (Cons 0 (Cons 1 Nil)) (Star (Plus (Char 0) (Char 1)))

It was reassuring that when we made an error and forget the Star, the proof attempt
failed as it should.

The keyword goal explicitly introduces a formula that Why3 has to prove. The fact
that it has been proved is not exploited subsequently. That may be important because
too many random facts about mem may pollute the search space in the verification of
the functions we care about. When we need to introduce explicit lemmas because the
provers cannot verify something directly, we use instead lemmaname : P which proves
P and then assumes it for the remainder of the verification.

As mentioned in the introduction, regular expressions form a Kleene algebra that sat-
isfies a number of laws. Here are three simple examples:

0 + r = r 0 is the unit of +
r1 · (r2 · r3) = (r1 · r2) · r3 concatenation is associative
(r∗)∗ = r∗ iteration is idempotent

These are justified by equations between the sets denoted by the regular expressions on
both sides. We can ask Why3 to prove them as a way of testing the axioms.

1 goal plus_zero : forall w r.

2 mem w (Plus Zero r) <-> mem w r

3

4 goal times_assoc : forall w r1 r2 r3.

5 mem w (Times r1 (Times r2 r3)) <-> mem w (Times (Times r1 r2) r3)

6

7 (* fails to prove, even though true *)

8 (*

9 goal star_star : forall w r.

10 mem w (Star (Star r)) <-> mem w (Star r)

11 *)

It turns out that Why3 can prove the first two, but not the last. That’s not necessarily
a black mark: we would need to investigate further what the proof actually looks like,
and whether we can guide Why3 to find it with appropriate lemmas.

15-414 LECTURE NOTES FRANK PFENNING

L6.4 Dynamic Logic

2.2 Matching Regular Expressionsx with Derivatives

One basic problem for designing regular expression matcher is the definition of con-
catenation:

w ∈ L(r1 · r2) iff w = w1w2 with w1 ∈ L(r1) and w2 ∈ L(r2)

The question here is how to find the split of w into two subwords. In order to avoid this
kind of guess we want to go through the word letter by letter from left to right. The
main function matching a word against a regular expression would be based on two
auxiliary functions nullable r and ∂ar and the following definitions:

ε ∈ L(r) iff nullable r
aw ∈ L(r) iff w ∈ L(∂ar)

If we can devise function nullable r and ∂ar then top-level matching function is easy to
define since we terminate in the clause for the empty word ε and the word becomes
smaller reading the second clause from left to right.

2.3 Writing the Matcher

Let’s recall the key definitions and for now just specify the matcher and the auxiliary
functions it uses.

1 let rec nullable (r:regexp) : bool =

2 ensures { result <-> mem Nil r }

3 ...

4

5 let rec deriv (a:char) (r:regexp) : regexp =

6 ensures { forall w. mem (Cons a w) r <-> mem w result }

7 ...

8

9 let rec re_match (w:word) (r:regexp) : bool =

10 ensures { mem w r <-> result }

11 ...

Before writing deriv and nullable we can actually write an verify re match, which
should reassure us our general approach will eventually succeed.

1 let rec re_match (w:word) (r:regexp) : bool =

2 variant { w }

3 ensures { mem w r <-> result }

4 match w with

5 | Nil -> nullable r

6 | Cons a w’ -> re_match w’ (deriv a r)

7 end

For this verification we need a new form of the variant contract. It takes here not an
integer quantity but a value of recursive type, namely w : word where word = list int.
Such a variant declaration for a function has to verify that all recursive calls will be on
structurally smaller expressions of the given type. In the case of lists, it could be the
tail, the tail of the tail, etc. This function can be verified since w′ is the tail of w.

15-414 LECTURE NOTES FRANK PFENNING

Dynamic Logic L6.5

2.4 Deciding Nullability

We specified nullable with
ε ∈ L(r) iff nullable r

From this, its relatively straightforward to synthesize the defining equations for nullable r,
depending on the regular expression r. A single character a or the empty set 0 obviously
do not generate the empty word. On the other hand, 1 and r∗ do, by their definition. A
concatenation r1 · r2 generates the empty word if both r1 and r2 do, and a union r1 + r2
if either r1 or r2 do. This gives us the following definition, which clearly terminates
because r decreases in each recursive call.

1 let rec nullable (r:regexp) : bool =

2 variant { r }

3 ensures { result <-> mem Nil r }

4 match r with

5 | Char _a -> false

6 | One -> true

7 | Times r1 r2 -> nullable r1 && nullable r2

8 | Zero -> false

9 | Plus r1 r2 -> nullable r1 || nullable r2

10 | Star _r -> true

11 end

And, indeed, this function is easily verified against the axioms for mem. We use an
underscore ‘_’ at the beginning of a variable that does not occur in its scope in order to
prevent a spurious warning from the compiler.

2.5 Computing the Brzozowski Derivative

We specified the Brzozowski derivate of a regular expression r with respect to a char-
acter a, written as ∂ar, with

aw ∈ L(r) iff w ∈ L(∂ar)

Remarkably, such a derivative exists: if a language is regular (that is, is generated by a
regular expression), then the language of postfixes of any character a is again regular.
Moreover, we can effectively compute ∂ar.

As for nullable, we want to analyze the structure of the regular expression and see
if we can find a way to compute the derivative. We start by defining the derivative in
mathematical notation.

∂aa = 1
∂ab = 0 for a 6= b
∂a1 = 0
∂a(r1 · r2) = (∂ar1) · r2 if not nullable(r1)

The last line is the most interesting. If r1 does not generate the empty string, then
the character a must be matched by r1. The rest of the word is then matched by ∂ar1

15-414 LECTURE NOTES FRANK PFENNING

L6.6 Dynamic Logic

followed by r2. But what if r1 is nullable? Then it is also possible that a is at the
beginning of the word generated by r2. So we continue:

∂a(r1 · r2) = (∂ar1) · r2 + ∂ar2 if nullable(r1)
∂a0 = 0
∂a(r1 + r2) = (∂ar1) + (∂ar2)
∂a(r

∗) = (∂ar) · r∗

The last line just says that for aw ∈ L(r∗) the first a has to be matched by a copy of r.
We now observe that in each case any appeal to ∂a on the right-hand side is on a

smaller regular expression. Translating this into WhyML is routine.

1 let rec deriv (a:char) (r:regexp) : regexp =

2 ensures { forall w. mem (Cons a w) r <-> mem w result }

3 variant { r }

4 match r with

5 | Char b -> if a = b then One else Zero

6 | One -> Zero

7 | Times r1 r2 -> if nullable r1

8 then Plus (Times (deriv a r1) r2) (deriv a r2)

9 else Times (deriv a r1) r2

10 | Zero -> Zero

11 | Plus r1 r2 -> Plus (deriv a r1) (deriv a r2)

12 | Star r -> Times (deriv a r) (Star r)

13 end

The complete live-code file with the verified regular expression matcher can be found
in regexp.mlw.

3 The Key Idea: Boxes and Diamonds

Now we proceed to developing dynamic logic (DL), a logic to reason about programs in
our little while-loop language. The key idea of dynamic logic is to add two new kinds
of formulas.

Formulas P,Q ::= . . . | [α]P | 〈α〉P

It is surprisingly easy to define the meaning of these new formulas. [α]P means that
in every poststate reachable by α, the formula P is true. And 〈α〉P means that in some
poststate reachable by α, the formula P is true.

For those familiar with modal logic: this harkens back to the meaning of �P (P is true
in every reachable world) and ♦P (P is true in some reachable world). The difference
here is that the reachable worlds are concretely determined by programs α and not just
by a fixed reachability relation. Because of this strong analogy, we may pronounce [α]P
as “box α P” and 〈α〉P as “diamond α P”.

We define the meaning of the new constructs rigorously as a relation:

ω |= [α]P iff for every ν, ωJαKν implies ν |= P

ω |= 〈α〉P iff there exists a ν such that ωJαKν and ν |= P

15-414 LECTURE NOTES FRANK PFENNING

http://www.cs.cmu.edu/~15414/s22/lectures/06-dynamiclogic/regexp.mlw

Dynamic Logic L6.7

Let’s discover whether certain simple formulas are true or not. We may want to recall
the definition of the meaning of programs JαK in order to apply it to the following
questions.

ω |= [while trueα]P
ω |= 〈while trueα〉P
ω |= [?true]P
ω |= 〈?true〉P
ω |= [α]false
ω |= 〈α〉false

We suggest you try before moving on to the next page.

15-414 LECTURE NOTES FRANK PFENNING

L6.8 Dynamic Logic

ω |= [while trueα]P always
ω |= 〈while trueα〉P never
ω |= [?true]P iff ω |= P
ω |= 〈?true〉P iff ω |= P
ω |= [α]false iff α does not terminate (has no poststate)
ω |= 〈α〉false never

Even though truth depends on a state ω, there are many formulas whose truth does not
depend on ω at all. In the example, the truth of the first, second, and last are indepen-
dent of the ω. Formulas that are true in any state are called valid. In the examples above,
only the first one is valid. We write

|= P

to express that P is valid. Here are some other examples:

ω[x 7→ 3] |= [x← x+ 1](x = 4) true
|= [x← 4](x = 4) valid
|= x = 3→ [x← x+ 1](x = 4) valid

4 Determinism

We call a program deterministic if in any prestate it has at most one poststate. We call
a language deterministic if every program in it is deterministic. The DL programming
language we have shown so far is deterministic in this sense. One could prove this
rigorously by induction over the structure of the program.

Expressed more mathematically, we say α is deterministic if for every ω, ωJαKν and
ωJαKν ′ imply ν = ν ′. A language is deterministic if every program in the language is
deterministic.

Deterministic languages satisfy certain properties that are not true for languages in
general. Here is one:

For a deterministic language, |= 〈α〉P → [α]P for any program α and formula P .

We have used here the notation |= Q (omitting the state ω) to express that Q is valid.
This property can easily be proved by appeal to the meaning of formulas and the defi-
nition of determinism.

In a deterministic language we say that 〈α〉P establishes total correctness (the program
α has to satisfy terminate and satisfy the postcondition P), while [α]P establishes partial
correctness (if α has to satisfy P , but only if it terminates).

In Why3, we can establish total correctness by specifying variant contracts that ensure
termination and partial correctness by using the diverges contracts to allow nontermina-
tion.

In a deterministic language, to establish total correctness 〈α〉P we can first prove
partial correctness [α]P and then separately prove termination.

In the remainder of today’s lecture we focus on partial correctness and therefore the
[α]P modality.

15-414 LECTURE NOTES FRANK PFENNING

Dynamic Logic L6.9

5 Axioms

Now that we have a logic with a suitable semantics our next task is to develop some
tools for reasoning within the logic. Let’s think back to how we reasoned about regular
expressions in Lecture 5. For each form of regular expression we wrote down an axiom
specifying its meaning in a way the theorem provers could use. A critical idea in that
case study was to make sure we break down the question if w ∈ L(r) to some w′ ∈
L(r′) where r′ is a subexpression of r. This allows the theorem prover to break down
questions about complicated regular expressions into simpler ones.

We’ll follow the same strategy here: write down axioms for [α]P that help us break
down the structure of the program α by logical reasoning without explicitly appealing
to the semantics any more. Of course, the axioms themselves must be justified in terms
of the underlying semantics: we don’t want to conclude something that is not true!

Because they are axioms we need them to be valid, not just true in some particular
state or even classes of states. We now go through the language constructs one by one,
devising axioms.

5.1 Sequential Composition

Which axiom might describe [α ; β]P in terms of [α] and [β] ? Recall the meaning:

ωJα ; βKν iff there exists µ such that ωJαKµ and µJαKν

Intuitively, P is true after α and β if [β]P is true after α. So we propose the axiom

[α ; β]P ↔ [α]([β]P)

In order to prove that this axiom is valid we can decompose it into two implications.
We prove the first one of these.

We want to show that ω |= [α ; β]P → [α]([β]P)
Assume ω |= [α ; β]P (1)
and show ω |= [α]([β]P)
By definition, this holds if for every µ, ωJαKµ implies µ |= [β]P
So assume ωJαKµ for an arbitrary µ (2)
It remains to show that µ |= [β]P
By definition, this holds if for every ν, µJβKν implies ν |= P .
So assume µJβKν for an arbitrary ν (3)
It remains to show that ν |= P (*)
From (2) and (3) we conclude ωJα ; βKν by definition of Jα ; βK (4)
From (1) and (4) we conclude ν |= P by definition of ω |= [α ; β]P
This conclusion is exactly what we needed to show (*)

The other direction works similarly, essentially just unfolding definitions and some
shallow logical reasoning.

15-414 LECTURE NOTES FRANK PFENNING

http://www.cs.cmu.edu/~15414/s22/lectures/05-semantics.pdf

L6.10 Dynamic Logic

5.2 Tests

Recall that ωJ?P Kν iff ω = ν if ω |= P .
By definition, then, ω |= [?P]Q iff for all ν with ωJ?P Kν we have ν |= Q. This requires

that Q is true in ω if P is, and imposes no requirement if P is false. Therefore, the right
axiom is

[?P]Q↔ (P → Q)

In the case of tests, let’s also consider 〈?P 〉Q. Recall that ω |= 〈?P 〉Q iff there is exists a
ν with ωJ?P Kν such that ν |= Q. But that can only be the case if both P and Q are true
in ω. So:

〈?P 〉Q↔ (P ∧Q)

5.3 Conditionals

Conditionals are straightforward given the intuition we have built up so far. [if P αβ]Q
should be true if P is true and [α]Q, or P is false and [β]Q.

[if P αβ]Q↔ (P → [α]Q) ∧ (¬P → [β]Q)

Assignments and while loops are trickier, so we postpone introducing axioms for
them to the next lecture.

References

[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481–494, 1964.

[Kle56] Stephen C. Kleene. Representation of events in nerve nets and finite automata.
In Automata Studies, volume 34 of Annals of Mathematical Studies, pages 3–42.
De Gruyter, 1956.

[ORT09] Scott Owens, John H. Reppy, and Aaron Turon. Regular-expression deriva-
tives reexamined. Journal of Functional Programming, 19(2):173–190, 2009.

15-414 LECTURE NOTES FRANK PFENNING

	Introduction
	Regular Expression Matching
	Testing the Specification
	Matching Regular Expressionsx with Derivatives
	Writing the Matcher
	Deciding Nullability
	Computing the Brzozowski Derivative

	The Key Idea: Boxes and Diamonds
	Determinism
	Axioms
	Sequential Composition
	Tests
	Conditionals

