
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Model Checking Abstractions

Matt Fredrikson

Carnegie Mellon University
Lecture 23

1 Introduction

So far we’ve focused on model checking algorithms that assume a computation struc-
ture is given. It should come as no surprise that our goal is to perform model check-
ing of programs given as code, so today we’ll describe techniques that allow us to ap-
ply model checking in this setting. There are several challenges to doing so, foremost
among them the fact that the statespace of programs may be infinite. We’ll describe an
approach for dealing with this called predicate abstraction.

Predicate abstraction computes an overapproximation of reachable states by con-
structing a transition structure that treats distinct program states identically, in a way
that makes it possible to reason over a finite number of states. The good news is that
it is always feasible to do so, as there are a finite number of states and the transitions
can be computed using familiar techniques. The bad news is that often it is the case
that crucial information gets lost in the approximation, leaving us unable to find real
bugs or verify their absence. We’ll eventually see how to incrementally fix this using a
technique called abstraction refinement, which leads to interesting new questions about
automated software verification.

2 Review: trace semantics

Definition 1 (Trace semantics of programs). The trace semantics, τ(α), of a program α, is
the set of all its possible traces and is defined inductively as follows:

1. τ(x := e) = {(ω, ν) : ν = ω except that ν(x) = ω[[e]] for ω ∈ S}

2. τ(?Q) = {(ω) : ω |= Q} ∪ {(ω,Λ) : ω 6|= Q}

http://www.cs.cmu.edu/~15414/index.html

L23.2 Model Checking Abstractions

3. τ(if(Q)α elseβ) = {σ ∈ τ(α) : σ0 |= Q} ∪ {σ ∈ τ(β) : σ0 6|= Q}

4. τ(α;β) = {σ ◦ ς : σ ∈ τ(α) , ς ∈ τ(β)};
the composition of σ = (σ0, σ1, σ2, . . .) and ς = (ς0, ς1, ς2, . . .) is

σ ◦ ς :=


(σ0, . . . , σn, ς1, ς2, . . .) if σ terminates in σn and σn = ς0

σ if σ does not terminate
not defined otherwise

5. τ(while(Q)α) ={σ(0) ◦σ(1) ◦ · · · ◦σ(n) : for some n ≥ 0 such that for all 0 ≤ i < n:
1© the loop condition is true σ(i)

0 |= Q and 2© σ(i) ∈ [[α]] and 3© σ(n) either does not
terminate or it terminates in σ(n)

m and σ(n)
m 6|= Q in the end

}
∪ {σ(0) ◦ σ(1) ◦ σ(2) ◦ . . . : for all i ∈ N: 1© σ

(i)
0 |= Q and 2© σ(i) ∈ [[α]]}

∪ {(ω) : ω 6|= Q}
That is, the loop either runs a nonzero finite number of times with the last iteration
either terminating or running forever, or the loop itself repeats infinitely often and
never stops, or the loop does not even run a single time.

6. τ(α∗) =
⋃
n∈N τ(α

n) whereαn+1 def≡ (αn;α) for n ≥ 1, andα1 def≡ α andα0 def≡ (?true).

3 Computation structures of programs

Until now, we’ve been rather informal about the fact that the programs we’ve discussed
all semester can be modeled as transition structures. Now let’s get serious about it and
write the definition.

Definition 2 (Transition Structure of a Program). Given a program α over program
states S, let L be a set of locations given by the inductively-defined function locs(α),
ι(α) be the initial locations of α, and κ(α) be the final locations of α:

• locs(x := e) = {`i, `f}, ι(x := e) = {`i}, κ(x := e) = {`f}

• locs(?Q) = {`i, `f}, ι(?Q) = {`i}, κ(?Q) = {`f}

• locs(if(Q)α elseβ) = {`i} ∪ {`t : ∀` ∈ locs(α)} ∪ {`f : ∀` ∈ locs(β)},
ι(if(Q)α elseβ) = {`i},
κ(if(Q)α elseβ) = κ(α) ∪ κ(β)

• locs(α;β) = {`0 : ∀` ∈ locs(α)} ∪ {`1 : ∀` ∈ locs(β)},
ι(α;β) = ι(α),
κ(α;β) = κ(β)

• locs(while(Q)α) = {`i, `f} ∪ {`t : ∀` ∈ locs(α)},
ι(while(Q)α) = {`i},
κ(while(Q)α) = {`f}

15-414 LECTURE NOTES MATT FREDRIKSON

Model Checking Abstractions L23.3

As a convenient shorthand, given a location ` we will write α` to denote the statement
associated with that location. The control flow transition relation ε(α) ⊆ locs(α) ×
progs × locs(α) is given by:

• ε(x := e) = {(`i, x := e, `f) : `i ∈ ι(x := e), `f ∈ κ(x := e)}

• ε(?Q) = {(`i, ?Q, `f) : `i ∈ ι(?Q), `f ∈ κ(?Q)}

• ε(if(Q)α elseβ) = {(`i, ?Q, `ti) : `i ∈ ι(·), `ti ∈ ι(α)} ∪ {(`i, ?¬Q, `fi) : `i ∈
ι(·), `fi ∈ ι(β)} ∪ ε(α) ∪ ε(β), where ι(·) = ι(if(Q)α elseβ).
In other words, transitions go from the initial location `i to the initial locations of
α and β.

• ε(while(Q)α) = {(`i, ?¬Q, `f) : `i ∈ ι(·), `f ∈ κ(·)} ∪ {(`i, ?Q, `ti) : `i ∈ ι(·), `ti ∈
ι(α)} ∪ {(`f , ?>, `i) : `i ∈ ι(·), `f ∈ κ(α)} ∪ ε(α).
In other words, transitions go from the initial location `i to the initial location of α,
as well as from the initial location `i to the final location `f and the final location
of the loop body to the initial location of the loop.

• ε(α;β) = ε(α) ∪ ε(β) ∪ {(`f , ?>, `i) : `i ∈ ι(β), `f ∈ κ(α)}

Notice that control flow transitions are associated with statements. Intuitively, the loca-
tions at the source of a transition correspond to the state immeidately prior to exeucting
a statement, and those at the destination the state immediately after. Then the transition
structure Kα = (W, I,y, v) itself is given by:

• W = locs(α)× {S}, I = {〈`i, σ〉 : `i ∈ ι(α)}.

• y= {(〈`, σ〉, 〈`′, σ′〉) : for (`, β, `′) ∈ ε(α) where (σ, σ′) ∈ JβK}.
In other words, a transition in Kα is possible whenever there is a corresponding
edge in (`, β, `′) ∈ ε(α), and the program state components σ, σ′ in the pre- and
post-states of the transition are in the semantics of β.

• v(〈`, σ〉) = ` ∧
∧
v∈vars v = σ(v). In other words, states are labeled with formulas

that describe their location and valuation. We assume that program locations
correspond to literals in such formulas.

Definition 2 is consistent with Def. 1, in that if we start at an initial state and transcribe
the program state component in the label of each state entered moving along a possible
transition, then we will generate exactly the trace semantics of Kα. However, note
that we will never obtain a computation structure using Def. 2 because the state space
is infinite: there is at least one state in Kα for each possible valuation of variables as
integers. The model checking techniques that we have discussed all assume that the
computation we work with is described by a computation structure, which seems to
pose problems for us now.

15-414 LECTURE NOTES MATT FREDRIKSON

L23.4 Model Checking Abstractions

Example 1. Consider the following simple program, annotated with location labels.

`0: i := N;

`1: while(0 ≤ x < N) {

`2: i := i - 1;

`3: x := x + 1;

`4: }

We obtain the ε transition relation according to Definition 2 below. Notice that the
construction technically calls for another state after `2, which transitions to `3 on ?>.
This is not necessary, and is only specified in Definition 2 to make the formalisation
easier to understand. We omit it in the diagram below to keep the relation concise.

Example 2 Consider the following example, which uses a variable L in an attempt at
a simple mutual exclusion protocol.

L := 0;

C := 0;

while(t > 0) {

b := *;

if(b >= 0) {

L := 1;

C := C + 1;

// critical section

}

if(C > 0)

L := 0;

t := t - 1;

}

15-414 LECTURE NOTES MATT FREDRIKSON

Model Checking Abstractions L23.5

This program uses nondeterminism to simulate the fact that a process may not be
granted a lock when requested, in the event that another process already holds it. We
begin by annotating the program with locations.

`0: L := 0;

`1: C := 0;

`2: while(t > 0) {

`3: b := *;

`4: if(b >= 0) {

`5: L := 1;

`6: C := C + 1;

// critical section

`7: }

`8: if(C > 0)

`9: L := 0;

`10: t := t - 1;

`11: }

`13:

The control flow transitions, with guards, are shown below. We omit the assignment
statements on edges to avoid clutter in the diagram, but it is easy to find the appropriate
statement for a transition if we need to. Note that we can add a self-loop to the final
location `13 to ensure that all states in this structure have a post-state.

15-414 LECTURE NOTES MATT FREDRIKSON

L23.6 Model Checking Abstractions

The transitions we’ve constructed so far correspond to ε(α). Now to constructKα, we
need one state for each location paired with each possible program valuation. However,
we cannot hope to compute such a structure in its entirety, or write it down because of
its infinite size. To address this, we will need to approximate the infinite statespace of
Kα with a finite one using a technique called predicate abstraction.

4 Predicate Abstraction

Predicate abstraction gives an overapproximation to the program’s computation struc-
ture Kα in the sense that for any path in Kα, there exists a corresponding path in its
abstraction. However, the abstraction may contain some paths for which there is no
correspondent in Kα, as it is an approximation.

Thinking about what this means, model checking such an abstraction may result in
finding bugs that do not correspond to real ones, but doing so will never miss an error
that actually exists in the program. The main idea used in predicate abstraction is to
merge states in Kα that have the same labeling of atomic propositions. This may not
seem to get us very far at first, as the labels used in Definition 2 were the the origi-
nal source of the infinite statespace problem. However, by selecting the set of atomic

15-414 LECTURE NOTES MATT FREDRIKSON

Model Checking Abstractions L23.7

propositions wisely, we can sidestep this problem while at the same time, in many
cases, significantly reducing the overall number of states that need to be explored.

By example. Consider the mutual exclusion program from before. Crucial to this
sort of protocol is that the lock be taken (`2) and released (`3) in proper order: a process
that does not own a lock should not release it, as this could lead to violation of mutual
exclusion safety.

To check this, we want to ensure what whenever the lock is taken by assigning L := 1
on `2, it is currently the case that L = 0. Likewise, whenever the lock is released on `3,
then it must be that L = 1. This gives us two LTL safety properties.

�`2 → L = 0 (1)
�`4 → L = 1 (2)

In the above, we use the shorthand `i to denote any state 〈`i, σ〉, for any σ. Likewise,
L = x denotes any state 〈`, L = x〉, for any `.

Let’s consider these formulas one at a time. In order to check (1), what states of
Kα could we possibly need to explore? Before the first sequence of assignments are
executed, L and C could take any values. It stands to reason that we must consider
any initial state s where v(s) |= `0. But after executing these assignments, we know
that both variables will take value 0, so we must only consider in addition at this stage
states s where v(s) |= `1 ∧ L = 0 ∧ C = 0. Similarly, the only states that matter at `2 are
those where v(s) |= `2 ∧ b > 0.

4.1 Computing abstractions

Following on the observations from this example, we come to the central idea of pred-
icate abstraction: find a set of atomic predicates and corresponding abstract labeling
function that is concise but sufficient to capture all of the relevant traces in the program.
We then merge all of the states in the “concrete” transition structure Kα that share the
same abstract labeling into one, and allow transitions liberally. In particular, if ŝ and ŝ′

are abstract states and v̂ an abstract labeling, then we draw a transition from ŝŷŝ′ iff
there are concrete states s and s′ where sy s′, and additionally v̂(s) = ŝ, v̂(s′) = ŝ′.

Consider the first example from earlier, and suppose that we select Σ̂ = {0 ≤ i}.
Then the states in the abstraction will correspond to:

{`0, `1, `2, `3, `4} × {∅, 0 ≤ i}

Intuitively, the state 〈`0, 0 ≤ i〉 corresponds to any state in Kα at `0 where 0 ≤ i. Gen-
erally, an abstract state that does not contain a predicate P ∈ Σ̂ is interpreted as corre-
sponding to concrete states in Kα that satisfy the negation of P . So for example, 〈`0, ∅〉
corresponds to any state at `0 where 0 > i. If an abstract state corresponds to more than
one predicate, then we interpret it as corresponding to concrete states that satisfy the
conjunction of those predicates.

15-414 LECTURE NOTES MATT FREDRIKSON

L23.8 Model Checking Abstractions

Definition 3. Given a set of predicates A ∈ Σ̂, let γ(A) be the set of program states
σ ∈ S that satisfy the conjunction of predicates in A:

γ(A) = {σ ∈ S : σ |=
∧
a∈A a}

Definition 4 (Abstract Transition Structure). Given a program α, a set of abstract atomic
predicates Σ̂, and control flow transition relation ε(α) (Def. 2), let L be a set of locations
given by the inductively-defined function locs(α), ι(α) be the initial locations of α, and
κ(α) be the final locations of α as given in Definition 2. The abstract transition structure
K̂α = (Ŵ , Î, ŷ, v̂) is a tuple containing:

• Ŵ = locs(α) × ℘(Σ̂) are the states defined as pairs of program locations and sets
of abstraction predicates.

• Î = {〈`, A〉 ∈ Ŵ : ` ∈ ι(α)} are the initial states corresponding to initial program
locations.

• ŷ = {(〈`, A〉, 〈`′, A′〉 : for (`, β, `′) ∈ ε(α) where there exist σ, σ′ such that σ ∈
γ(A), σ′ ∈ γ(A′) and (σ, σ′) ∈ JβK} is the transition relation.

• v̂(〈`, A〉) = 〈`, A〉 is the labeling function, which is in direct correspondence with
states.

Theorem 5. For any trace 〈`0, σ0〉, 〈`1, σ1〉, . . . of Kα, there exists a corresponding trace of K̂α

〈ˆ̀0, A0〉, 〈ˆ̀1, A1〉, . . . such that for all i ≥ 0, `i = ˆ̀
i and σi ∈ γ(Ai).

Proof. We proceed by induction on the length of the trace 〈`0, σ0〉, 〈`1, σ1〉, . . . of Kα.

Length=1: By Definition 2, the trace is 〈`0, σ0〉 where `0 ∈ ι(α). Then let A be such
that σ0 ∈ γ(A); we know that such an A exists, because ℘(Σ̂) covers the entire
statespace S. Then 〈`0, A〉 is an initial state of K̂α as well, so it is a trace of length
1 in K̂α.

Length=n+1: We have that 〈`0, σ0〉, . . . , 〈`n+1, σn+1〉 is a trace of Kα. By the inductive
hypothesis, there must exist a trace 〈ˆ̀0, A0〉, . . . , 〈ˆ̀n, An〉 of K̂α such that for all
0 ≤ i ≤ n, `i = ˆ̀

i and σi ∈ γ(Ai). Then let An+1 be such that σn+1 ∈ γ(An+1). Be-
cause 〈`n, σn〉y 〈`n+1, σn+1〉, we know that there exists (`n, β, `n+1 ∈ ε(α) where
(σn, σn+1) ∈ JβK. Then by Definition 4, it must be that 〈ˆ̀n, An〉ŷ〈ˆ̀n+1, An+1〉. So
〈ˆ̀0, A0〉, . . . , 〈ˆ̀n+1, An+1〉 is a trace in K̂α where for 0 ≤ i ≤ n + 1 we have that
σi ∈ γ(Ai).

This completes the proof.

Theorem 5 tells us that K̂α can be used to deduce properties about Kα: any trace in
Kα is also in K̂α, so any property of Kα is also one of K̂α. However, Theorem 5 also
tells us that K̂α overapproximates Kα, so some properties of K̂α may not be properties
of Kα.

15-414 LECTURE NOTES MATT FREDRIKSON

Model Checking Abstractions L23.9

Definition 4 tells us what an abstract transition structure for a program is, given a
set Σ̂ of predicates. We are ultimately interested in computing the structure, for use in
model checking. On initial inspection, this seems quite feasible as there are |locs(α)| ×
2|Σ̂| states in K̂α, so enumerating them is not an issue as long as we keep Σ̂ small.
But what about the transitions? There are still an infinite number of program states to
contend with, so naive searching of σ, σ′ to satisfy the condition on ŷ is not feasible.

When deciding whether to add a transition to K̂α, we only care about the existence of
σ, σ′ that satisfy the requirements of Definition 4. It is thus sufficient for our purposes to
determine whether there are any σ′ ∈ γ(A′) that are reachable from executing β starting
in σ ∈ γ(A). Equivalently, we can determine whether it is always the case that when
starting in σ ∈ γ(A), we end up in σ′ ∈ γ(A′) after executing β. Note that this is exactly
the same as determining the validity of

∧
a∈A a→ [β]

∨
a′∈A′ ¬a′.

Theorem 6. Let A,B ⊆ Σ̂ be sets of predicates over program states, and β be a program.
Then for σ ∈ γ(A), there exists a state σ′ ∈ γ(B) such that (σ, σ′) ∈ JβK if and only if∧
a∈A a→ [β]

∨
b∈B ¬b is not valid.

Proof. First we prove that
∧
a∈A a→ [β]

∨
b∈B ¬b not valid implies that ∃σ, σ′.σ ∈ γ(A)∧

σ′ ∈ γ(B) ∧ (σ, σ′) ∈ JβK. First we know that there is some σ ∈ γ(A) because the
formula is not valid, so

∧
a∈A a is not equivalent to false. Then by the semantics of [·],

we know that there exists some σ′ |=
∧
b∈B b reachable by running β starting in a state

σ |=
∧
a∈A a, i.e., (σ, σ′) ∈ JβK. So then σ ∈ γ(A), and σ′ ∈ γ(B), finishing the proof in

this direction.
Now in the other direction, we show that if there exists σ, σ′ where σ ∈ γ(A) ∧ σ′ ∈

γ(B) ∧ (σ, σ′) ∈ JβK, then
∧
a∈A a → [β]

∨
b∈B ¬b is not valid. Because σ′ ∈ γ(B), we

know that σ′ |=
∧
b∈B b and like wise because σ ∈ γ(A) that σ |=

∧
a∈A a. So not all

states σ |=
∧
a∈A reach a final state in

∨
b∈B ¬b after running β, which finishes the proof

in this direction.

Theorem 6 tells us that we can reason about transitions in K̂α by determining the
validity of first order dynamic logic formulas. Moreover, looking at the construction
of ε(α) given in Definition 2, we see that the only programs forms that can appear
on transitions in ε(α) are assignments and tests; there are no loops, conditionals, or
even composition operators. This means that by a single application if [:=] or [?], the
DL formula stipulated in Theorem 6 is reducible to an arithmetic formula that can be
solved with a decision procedure.

Example Let us go back to the program from before, and again use Σ̂ = {0 ≤ i}. For
clarity, we will be explicit about the abstract conjunctions in each state, and consider
the state space of our abstraction K̂α to be {`0, `1, `2, `3, `4} × {0 > i, 0 ≤ i}. Now
we must decide the transitions. We will work out several of them in some detail to
demonstrate the reasoning, but leave the rest as an exercise due to the large number of
possible transitions.

15-414 LECTURE NOTES MATT FREDRIKSON

L23.10 Model Checking Abstractions

• 〈`0, 0 > i〉ŷ〈`1, 0 > i〉: The program between `0 and `1 is i := N . By Theorem 6,
we must decide the validity of 0 > i → [i :=N]0 ≤ i. By [:=], we can reduce this
to 0 > i → 0 ≤ N , which is not valid: it is falsified by setting i = −1, N = 0. So
this edge is added to ŷ.

• 〈`2, 0 > i〉ŷ〈`3, 0 ≤ i〉: The program between `2 and `3 is i := i− 1. By Theorem 6,
we must decide the validity of 0 > i → [i := i − 1]0 > i. By [:=], we can reduce
this to 0 > i→ 0 > i− 1, which is valid. So this edge is not added to ŷ.

• 〈`1, 0 > i〉ŷ〈`4, 0 > i〉: The program between `1 and `4 is ?¬(0 ≤ x < N). By
Theorem 6, we must decide the validity of 0 > i → [?¬(0 ≤ x < N)]0 ≤ i. By [?],
we can reduce this to 0 > i ∧ ¬(0 ≤ x < N) → 0 ≤ i, which is not valid: it is
falsified by i = −1, x = 0. So this edge is added to ŷ.

• 〈`0, 0 > i〉ŷ〈`1, 0 ≤ i〉: The program between `0 and `1 is i := N . By Theorem 6,
we must decide the validity of 0 > i → [i :=N]0 > i. By [:=], we can reduce this
to 0 > i→ 0 > N , which is not valid: it is falsified by setting i = −1, N = −1. So
this edge is added to ŷ.

• 〈`1, 0 ≤ i〉ŷ〈`2, 0 > i〉: The program between `1 and `2 is ?0 ≤ x < N . By
Theorem 6, we must decide the validity of 0 ≤ i → [?0 ≤ x < N]0 ≤ i. By [?], we
can reduce this to 0 ≤ i ∧ 0 ≤ x < N → 0 ≤ i, which is not valid: it is falsified by
setting x = 0, i = −1. So this edge is added to ŷ.

Now suppose that we want to verify the property: �`4 → 0 ≤ i. Notice from what we
just worked out above that there is a counterexample path in K̂α:

〈`0, 0 > i〉ŷ〈`1, 0 > i〉ŷ〈`4, 0 > i〉

Because K̂α overapproximates the true transition structure Kα, we need to determine
whether this does in fact correspond to a path in Kα, or whether it is merely an artifact
of the overapproximation. If it is a spurious artifact, then we can reason that the corre-
sponding path in Kα does not violate the safety property. Equivalently, it would mean
the the following formula must be valid:

0 > i→ [i :=N ; ?¬(0 ≤ x < N)]0 ≤ i

Applying [;],[?],[:=], the formula above reduces to 0 ≥ i → ¬(0 ≤ x < N) → 0 ≤ N .
This is not valid, which we see from the assignment i = 0, x = 0, N = −1. So in fact the
counterexample is correct, and we conclude that the property does not hold.

Spurious counterexamples Now let’s consider modifying the example a bit, by chang-
ing the first assignment such that i always takes a positive value at first.

`0: i := abs(N)+1;

`1: while(0 ≤ x < N) {

`2: i := i - 1;

`3: x := x + 1;

`4: }

15-414 LECTURE NOTES MATT FREDRIKSON

Model Checking Abstractions L23.11

Now the counterexample from before no longer works, because there is no edge from
〈`0, 0 > i〉ŷ〈`1, 0 > i〉. To see why, observe that from Theorem 6 we reason:

(0 > i→ [i := abs(N) + 1]0 ≤ i)↔ (0 > i→ 0 ≤ abs(N) + 1) is valid

But there is another counterexample, which we see taking the following steps.

1. 〈`0, 0 ≤ i〉ŷ〈`1, 0 ≤ i〉. This edge is in K̂α because 0 ≤ i → [i := abs(N) + 1]0 > i
is equivalent to 0 ≤ i→ 0 > abs(N) + 1, which is not valid.

2. 〈`1, 0 ≤ i〉ŷ〈`2, 0 ≤ i〉. This edge exists because 0 ≤ i → [?0 ≤ x < N]0 > i is
equivalent to 0 ≤ i→ 0 ≤ x < N → 0 > i, which is not valid.

3. 〈`2, 0 ≤ i〉ŷ〈`3, 0 > i〉. This edge exists because 0 ≤ i → [i := i − 1]0 ≤ i is
equivalent to 0 ≤ i→ 0 ≤ i− 1 and is not valid, seen from the assignment i = 0.

4. 〈`3, 0 > i〉ŷ〈`1, 0 > i〉. This edge exists because 0 > i → [x := x + 1]0 ≤ i is
equivalent to 0 > i→ 0 ≤ i, which is not valid.

5. 〈`1, 0 > i〉ŷ〈`4, 0 > i〉. This edge exists because 0 > i → [?¬(0 ≤ x < N)]0 ≤ i is
equivalent to 0 > i→ ¬(0 ≤ x < N)→ 0 ≤ i is not valid.

At this point, K̂α is in a state satisfying `4 ∧ ¬(0 ≤ i). As before, we need to determine
whether this counterexample is spurious. We consider a path which starts in a state
where 0 ≤ i, and transitions through `0, `1, `2, `3, `1, `4, ending in a state where 0 > i.
This leads us to ask whether the following DL formula is valid:

0 ≤ i→ [i := abs(N) + 1; ?0 ≤ x < N ; i := i− 1;x := x+ 1; ?¬(0 ≤ x < N)]0 ≤ i

Multiple applications of [;],[?],[:=] leave us with the valid formula:

0 ≤ i→ 0 ≤ x < N → ¬(0 ≤ x+ 1 < N)→ 0 ≤ abs(N)

The validity of this formula tells us that executing the statements in this counterexam-
ple will necessarily lead to a program state where 0 ≤ i, which does not violate the
property �`4 → 0 ≤ i. So this counterexample is spurious: it exists in the abstraction
K̂α, but not in the true transition system Kα corresponding to the program.

5 Abstraction Refinement

What do we do when we encounter a spurious counterexample? In practical terms,
these pose a real problem. We can’t verify the absence of bugs in the system using
K̂α because we know that there are traces in the abstraction that violate the property.
We could simply ignore the spurious counterexample, and continue searching for valid
counterexamples in the abstraction. If we ever come across one, then we stop know-
ing that the program has at least one trace that actually violates the property. If we

15-414 LECTURE NOTES MATT FREDRIKSON

L23.12 Model Checking Abstractions

exhaust all of the counterexamples in K̂α without finding a valid counterexample, then
we conclude that Kα satisfies the property.

The problem with this approach is that there may be an infinite number of spurious
counterexamples in K̂α. Consider the most recent example from the previous section.
There are an infinite number of counterexample traces in the abstraction because of the
cycle introduced by the loop. None of them is a valid counterexample, which we know
because the program satisfies the property.

Instead, we can attempt to make the abstraction a better approximation of Kα. At
the moment, K̂α only keeps track of one fact about the program’s state: whether or not
0 ≤ i. This fact alone is not strong enough to conclue that after executing i := i − 1
possibly multiple times within the loop, 0 ≤ i will continue to hold when the loop
terminates. Concretely, if all that we know before executing i := i− 1 is that 0 ≤ i, then
we have to allow for the possibility that i = 0 and so 0 > i holds after the assignment.
This is what gives rise to the spurious counterexamples in our abstraction.

We refine the abstraction by considering additional predicates to keep track of facts
about the program state that are necessary to remove the counterexample. In the most
recent counterexample trace, we know that after executing i := i − 1 it still holds that
0 ≤ i, because when the assignment occurs i = abs(N) + 1. Suppose that we add this
predicate to our abstraction set in addition to 0 ≤ i. Then going back to what would
occur on our counterexample trace, we have the following.

1. 〈`0, 0 ≤ i〉ŷ〈`1, 0 ≤ i ∧ i = abs(N) + 1〉. This edge is in K̂α because 0 ≤ i→ [i :=
abs(N) + 1]¬(0 ≤ i ∧ i = abs(N) + 1〉) is equivalent to 0 ≤ i → ¬(0 ≤ abs(N) +
1) ∧ abs(N) + 1 = abs(N) + 1)〉, which is not valid.

2. 〈`1, 0 ≤ i∧ i = abs(N) + 1〉ŷ〈`2, 0 ≤ i∧ i = abs(N) + 1〉. This edge exists because
0 ≤ i ∧ i = abs(N) + 1 → [?0 ≤ x < N]¬(0 ≤ i ∧ i = abs(N) + 1), which is not
valid.

3. 〈`2, 0 ≤ i ∧ i = abs(N) + 1〉ŷ〈`3, 0 ≤ i〉. This edge exists because 0 ≤ i ∧ i =
abs(N) + 1→ [i := i− 1]0 > i is equivalent to 0 ≤ i ∧ i = abs(N) + 1→ 0 > i− 1
and is not valid.

4. 〈`3, 0 ≤ i〉ŷ〈`1, 0 ≤ i〉. This edge exists because 0 ≤ i → [x := x + 1]0 > i is
equivalent to 0 ≤ i→ 0 > i, which is not valid.

However, at this point K̂α is back in states where it is only true that 0 ≤ i. Another
iteration of the loop will lead to entry of states there 0 > i after the assignment to i, and
we will find another spurious counterexample.

In order to derive an abstraction that is useful in proving the correctness of this pro-
gram with respect to the property �`4 → 0 ≤ i, we need to find a set of predicates that
characterizes the relationship between i, x, and N . Consider the following:

a0 ≡ i ≥ |N | − |x|
a1 ≡ i > |N | − |x|
a2 ≡ 0 ≤ x ≤ N
a3 ≡ 0 ≤ x < N

15-414 LECTURE NOTES MATT FREDRIKSON

Model Checking Abstractions L23.13

Using these predicates, we can reason as follows.

• The only transition from an `0 state to an `1 state also contains predicate a1 in the
`1 state. We see that true → [i := abs(N)+1]¬a1 is equivalent to |N |+1 ≤ |N |−|x|,
which is not valid. Any state not containing a1 will result in a validity test of the
form [i := abs(N) + 1]¬(¬a1 ∧A′)↔ [i := abs(N) + 1]a1 ∨ ¬A′, which is valid.

• The only transition from an `1 state to an `2 state is one in which a3 holds, and
if a0 or a1 held previously in the `1 state, then they will also hold in the `2 state.
This is obvious because the test ?0 ≤ x < N does not change the value of i or N .

• Any transition from an `2 state where a1 holds will land in an `3 state where a0

holds. We see that a1 → [i := i − 1]¬a0 is equivalent to i > |N | − |x| → i − 1 <
|N | − |x|, which is not valid. Furthermore, a0 must hold in the post-state, because
a1 → [i := i− 1]a0 is equivalent to i > |N |− |x| → i− 1 ≥ |N |− |x|, which is valid.

• Any transition from `3 to `1 where a0 holds in `3 will result in a1 holding in `1. We
have a0 → [x := x+ 1]¬a1 is equivalent to i ≥ |N | − |x| → i ≤ |N | − |x+ 1|which
is not valid.

• Any transition from `3 to `1 where a3 holds in `3 will result in either a2 or a3

holding in `1.

• Any transition from `1 to `4 where a1 and a2 hold in `1 will result in a0 and a2 at `4.
We see that a1∧a2 → [?¬(0 ≤ x < N)]¬a0 ∨ ¬a2 is equivalent to i > |N |−|x|∧0 ≤
x ≤ N → ¬(0 ≤ x < N)→ i < |N | − |x| ∨ ¬(0 ≤ x ≤ N) is not valid.

• Any state where a0 and a2 hold must also be one where 0 ≤ i holds, because
i ≥ |N | − |x| ∧ 0 ≤ x ≤ N → 0 ≤ i is valid.

From this reasoning, we see that all reachable `1 states have a1 ≡ i > |N | − |x| and
either a2 or a3. The only reachable `4 states must go through `1 ∧ a1 ∧ a2, and so must
have a0 ∧ a2, which combined imply 0 ≤ i. Thus, there are no counterexample traces
in the abstraction. Because K̂α overapproximates Kα, we know that any trace of Kα is
also one of K̂α. We can then conclude that there are no counterexamples in Kα, and the
program satisfies the property.

Automatic Refinement We’ve now shown that it’s possible, at least in principle, to
construct a predicate abstraction that is a close enough approximation to the true transi-
tion structure to conclude that there are no bugs in a system. But in the example we just
saw, we needed to refine the set of predicates with those containing enough informa-
tion about the inductive properties of the loop to rule out spurious counterexamples.
It is not a coincidence that identifying those predicates felt a bit like coming up with a
loop invariant for deductive verification, because that is essentially what we did.

When doing deductive verification, we did not expect to derive a procedure for au-
tomatically finding loop invariants. So how is abstraction refinement useful for model

15-414 LECTURE NOTES MATT FREDRIKSON

L23.14 Model Checking Abstractions

checking, where the primary goal is to verify programs (or find bugs) automatically?
First of all, model checking is not a magic bullet: there is no guarantee that it will be
able to prove the absence of bugs. And for good reason, because that problem is unde-
cidable.

But in the next lecture we will look at techniques for automatic abstraction refinement
that work well on many interesting programs and properties. The general approach is
called Counterexample-Guided Abstraction Refinement (CEGAR), and uses the information
contained in spurious counterexamples to derive useful predicates for refinement.

15-414 LECTURE NOTES MATT FREDRIKSON

	Introduction
	Review: trace semantics
	Computation structures of programs
	Predicate Abstraction
	Computing abstractions

	Abstraction Refinement

