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 Game Theory 
  

(and its connections to Algorithm 
Analysis and Computer Science) 

Game Theory               15-451/651            10/12/15 
 - Zero-sum games 
 - Minimax theorem 
 - Connection to maxflow-mincut 
 - General-sum games 

test ing some
P n

i = 1 f (i ) equat ion

Plan for Today 
• 2-Player Zero-Sum Games (matrix games) 

– Minimax optimal strategies 

– Connection to randomized algorithms 

– Minimax theorem 

– Connection to max-flow / min-cut 
 

• General-Sum Games (bimatrix games) 
– notion of Nash Equilibrium 
 

• Proof of existence of Nash Equilibria 
– using Brouwer’s fixed-point theorem 

Game theory 
• Field developed by economists to study social & 

economic interactions. 
– Wanted to understand why people behave the way they 

do in different economic situations.  Effects of 
incentives.  Rational explanation of behavior. 

 

• “Game” = interaction between parties with their 
own interests.  Could be called “interaction theory”. 
 

• Big in CS for understanding large systems: 
– Internet routing, social networks 
– Problems like spam etc. 
 

• And for thinking about algorithms! 

Setting 
• Have a collection of participants, or players. 

• Each has a set of choices, or strategies for 
how to play/behave. 

• Combined behavior results in payoffs 
(satisfaction level) for each player. 

 

 
All my examples will involve just 2 players (which will 

make them easier to picture, as will become clear in 
a moment…) 

2-player zero-sum 
games 

(aka matrix games) 

Consider the following scenario… 

• Shooter has a penalty shot.  Can choose to 
shoot left or shoot right. 

 

• Goalie can choose to dive left or dive right. 
 

• If goalie guesses correctly, (s)he saves the 
day.  If not, it’s a goooooaaaaall! 
 

• Vice-versa for shooter. 



2 

2-Player Zero-Sum games 
• Two players R and C.  Zero-sum means that what’s 

good for one is bad for the other. 
 

• Game defined by matrix with a row for each of R’s 
options and a column for each of C’s options.  
Matrix tells who wins how much. 

• an entry (x,y) means: x = payoff to row player, y = payoff to 
column player.  “Zero sum” means that y = -x. 

• E.g., penalty shot: 

(0,0)  (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

shooter 

goalie 

No goal 

Goooaaaal! 

Game Theory terminolgy 
• Rows and columns are called pure strategies. 

 

• Randomized algs called mixed strategies. 
 

• “Zero sum” means that game is purely 
competitive. (x,y) satisfies x+y=0. (Game 
doesn’t have to be fair). 

(0,0)  (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

shooter 

goalie 

No goal 

Goooaaaal! 

Game Theory terminolgy 
• Usually describe in terms of 2 matrices R and C, 

where for zero-sum games we have C = -R. 
(I am putting them into a single matrix where each entry is 
a pair, because it is easier visually). 

(0,0)  (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

shooter 

goalie 

No goal 

GOAALLL!!! 

Minimax-optimal strategies 
• Minimax optimal strategy is a (randomized) 

strategy that has the best guarantee on its 
expected gain, over choices of the opponent. 
[maximizes the minimum] 

• I.e., the thing to play if your opponent knows 
you well. 

(0,0)  (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

shooter 

goalie 

No goal 

GOAALLL!!! 

Minimax-optimal strategies 
• What are the minimax optimal strategies for 

this game? 

(0,0)  (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

shooter 

goalie 

No goal 

GOAALLL!!! 

Minimax optimal strategy for both players is 
50/50.  Gives expected gain of ½ for shooter 
(-½ for goalie).  Any other is worse. 

(½,-½) (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

Minimax-optimal strategies 
• How about penalty shot with goalie who’s 

weaker on the left? 

shooter 

goalie 

50/50 

GOAALLL!!! 

Minimax optimal for shooter is (2/3,1/3). 
Guarantees expected gain at least 2/3.  
Minimax optimal for goalie is also (2/3,1/3). 
Guarantees expected loss at most 2/3. 
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(½,-½)  (¾,-¾) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

Minimax-optimal strategies 
• How about if shooter is less accurate on the 

left too? 

shooter 

goalie 

Minimax optimal for shooter is (4/5,1/5). 
Guarantees expected gain at least 3/5.  
Minimax optimal for goalie is (3/5,2/5). 
Guarantees expected loss at most 3/5. 

Minimax-optimal strategies 
• In small games we can solve by considering a few 

cases. 

• Later, we will see how to solve for minimax optimal 
in NxN games using Linear Programming. 

– poly time in size of matrix if use poly-time LP alg. 

Minimax Theorem (von Neumann 1928) 

• Every 2-player zero-sum game has a unique 
value V. 

• Minimax optimal strategy for R guarantees 
R’s expected gain at least V. 

• Minimax optimal strategy for C guarantees 
C’s expected loss at most V. 

Counterintuitive: Means it doesn’t hurt to publish 
your strategy if both players are optimal.  (Borel had 
proved for symmetric 5x5 but thought was false for larger 
games) 

We will see one proof in a bit… 

Matrix games and Algorithms 

• Gives a useful way of thinking                       
about randomized algorithms. 
 

• Think of rows as different algorithms,  columns 
as different possible inputs. 
 

• M(i,j) = cost of algorithm i on input j. 
 

• Algorithm designer goal: good strategy for row 
player.  Lower bound: good strategy for adversary. 

One way to think of upper-bounds/lower-bounds: on 
value of this game 

(matrix may be HUGE, but useful conceptually) 

Alg player 

Adversary 

E.g., hashing 
•Rows are different hash functions. 
•Cols are different sets of n items to hash. 
•M(i,j) = #collisions incurred by alg i on set j.   
 

We saw: 
•For any row, can reverse-engineer a bad column 
(if universe of keys is large enough). 
 

•Universal hashing: a randomized strategy for row 
player that has good behavior for every column. 
– For any sequence of operations, if you randomly 

construct hash function in this way, you won’t get many 
collisions in expectation. 

Alg player 

Adversary Matrix games and Algs 

•What is a deterministic alg with a                     
 good worst-case guarantee? 

• A row that does well against all columns. 

•What is a lower bound for deterministic 
algorithms? 

• Showing that for each row i there exists a column j 
such that the cost M(i,j) is high. 

•How to give lower bound for randomized 
algs? 

• Give randomized strategy (ideally minimax optimal) for 
adversary that is bad for all i. Must also be bad for all 
distributions over i.  Sometimes called Yao’s principle. 

Alg player 

Adversary 
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Lower bounds for      
randomized sorting 

•Adversary strategy: uniform random 
permutation of {1,2,…,n} 
•Any deterministic algorithm can be viewed 
as a decision tree with n! leaves.  No two 
input orderings can go to same leaf. 

Alg player 

Adversary 

x2 > x4? 

x2 > x5? x4 > x5? 

x3 > x6? x2 > x6? x3 > x6? x2 > x5? 

How deep is random leaf in tree with n! leaves? 

Lower bounds for      
randomized sorting 

•Q: How many leaves at depth ≤ lg(n!)-10? 
•A: At most 1+2+4+…+n!/1024 < n!/512. 
•So, over 99% of leaves at depth ¸ lg(n!)-10, so 
average depth is (lg(n!)) = (n log n). 

Alg player 

Adversary 

x2 > x4? 

x2 > x5? x4 > x5? 

x3 > x6? x2 > x6? x3 > x6? x2 > x5? 

How deep is random leaf in tree with n! leaves? 

Interesting game 
“Smuggler vs border guard” 
• Graph G, source s, sink t.  Smuggler chooses path.  

Border guard chooses edge to watch.  

• If edge is in path, guard wins, else smuggler wins. 

s t 

• What are the minimax optimal strategies? 

Interesting game 
“Smuggler vs border guard” 
• Border guard: find min cut, pick random edge in it. 

• Smuggler: find max flow, scale to unit flow, induces 
prob dist on paths. 

 

s t 

• Minimax theorem ⇔ Maxflow-mincut theorem 

General-Sum Games 

• Zero-sum games are good formalism for 
design/analysis of algorithms. 

• General-sum games are good models for 
systems with many participants whose 
behavior affects each other’s interests 
– E.g., routing on the internet 

– E.g., online auctions 

General-sum games 

• In general-sum games, can get win-win 
and lose-lose situations. 

• E.g., “what side of sidewalk to walk on?”: 

  (1,1)   (-1,-1) 
 

(-1,-1)  (1,1) 

 Left 
 

Right 

 Left   Right person 
walking 

towards you 

you 

street to drive on 
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General-sum games 

• In general-sum games, can get win-win 
and lose-lose situations. 

• E.g., “which movie should we go to?”: 

 (8,2)  (0,0) 
 

 (0,0)  (2,8) 

The Martian 
 

Hotel Transl 

Martian  Hotel Tr   

No longer a unique “value” to the game. 

Nash Equilibrium 
• A Nash Equilibrium is a stable pair of 

strategies  (could be randomized). 
• Stable means that neither player has 

incentive to deviate on their own. 
• E.g., “what side of sidewalk to walk on”: 

  (1,1)   (-1,-1) 
 

(-1,-1)  (1,1) 

 Left 
 

Right 

 Left   Right 

NE are: both left, both right, or both 50/50. 

Uses 
• Economists use games and equilibria as 

models of interaction. 
• E.g., pollution / prisoner’s dilemma: 

–  (imagine pollution controls cost $4 but improve 
everyone’s environment by $3) 

  (2,2)  (-1,3) 
 

(3,-1)  (0,0) 

 don’t pollute 
 

pollute 

don’t pollute   pollute 

Need to add extra incentives to get good overall behavior. 

Existence of NE 
• Nash (1950) proved: any general-sum game 

must have at least one such equilibrium. 
– Might require using randomization as in minmax. 

• This also yields minimax thm as a corollary. 
– Pick some NE and let V = value to row player in 

that equilibrium.  
– Since it’s a NE, neither player can do better 

even knowing the (randomized)  strategy their 
opponent is playing. 

– So, they’re each playing minimax optimal! 

Existence of NE 
• Proof will be non-constructive. 
• Unlike case of zero-sum games, we do not 
know any polynomial-time algorithm for 
finding Nash Equilibria in n £ n general-sum 
games. [known to be “PPAD-hard”] 

• Notation: 
– Assume an nxn matrix. 
– Use (p1,...,pn) to denote mixed strategy for row 

player, and (q1,...,qn) to denote mixed strategy 
for column player. 

Proof 

• We’ll start with Brouwer’s fixed point 
theorem. 
– Let S be a compact convex region in Rn and let 

f:S → S be a continuous function. 

– Then there must exist x  S such that f(x)=x. 

– x is called a “fixed point” of f. 

• Simple case: S is the interval [0,1]. 

• We will care about: 
– S = {(p,q): p,q are legal probability distributions 

on 1,...,n}.   I.e.,  S =  simplexn x simplexn 
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Proof (cont) 

• S = {(p,q): p,q are mixed strategies}. 

• Want to define f(p,q) = (p’,q’) such that: 
– f is continuous.  This means that changing p 

or q a little bit shouldn’t cause p’ or q’ to 
change a lot. 

– Any fixed point of f is a Nash Equilibrium. 

• Then Brouwer will imply existence of NE. 

Try #1 

• What about f(p,q) = (p’,q’) where p’ is best 
response to q, and q’ is best response to p? 

• Problem: not necessarily well-defined: 
– E.g., penalty shot: if p = (0.5,0.5) then q’ could 

be anything. 

(0,0)  (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

Try #1 

• What about f(p,q) = (p’,q’) where p’ is best 
response to q, and q’ is best response to p? 

• Problem: also not continuous: 
– E.g., if p = (0.51, 0.49) then q’ = (1,0).  If p = 

(0.49,0.51) then q’ = (0,1). 

(0,0)  (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

Instead we will use... 

• f(p,q) = (p’,q’) such that: 
– q’ maximizes [(expected gain wrt p) - ||q-q’||2] 

– p’ maximizes [(expected gain wrt q) - ||p-p’||2] 

Fixing q, any given row i has some expected gain ai. 

So, payoff for some p’ is a1p’1 + a2p’2 + … + anp’n. 

Key point: this is a linear function of p’, to which we 
then add a quadratic penalty. 

Instead we will use... 

• f(p,q) = (p’,q’) such that: 
– q’ maximizes [(expected gain wrt p) - ||q-q’||2] 

– p’ maximizes [(expected gain wrt q) - ||p-p’||2] 

p  p’ 

Note: quadratic + linear = quadratic. 

Instead we will use... 

• f(p,q) = (p’,q’) such that: 
– q’ maximizes [(expected gain wrt p) - ||q-q’||2] 

– p’ maximizes [(expected gain wrt q) - ||p-p’||2] 

p 

Note: quadratic + linear = quadratic. 

p’ 



7 

Instead we will use... 

• f(p,q) = (p’,q’) such that: 
– q’ maximizes [(expected gain wrt p) - ||q-q’||2] 

– p’ maximizes [(expected gain wrt q) - ||p-p’||2] 
 

• f is well-defined and continuous since 
quadratic has unique maximum and small 
change to p,q only moves this a little. 

• Also fixed point = NE.  (even if tiny 
incentive to move, will move little bit) 

• So, apply Brower and that’s it! 


