
15-451: Algorithms October 24, 2019

Lecture Notes: Quicksort and Random Incremental Convex Hull

Lecturer: Gary Miller Scribe:

1

1 Backwards analysis

In this section, we present the method of backwards analysis and show how it can simply the
running time analyses of randomized algorithms.

1.1 Randomized quicksort

Recall the classic randomized algorithm for quicksort to sort an array M of numbers. (For simplicity,
assume that all numbers are distinct.)

Algorithm RandomizedQuicksort

1. Pick a uniformly random element of the array a, called the pivot.

2. Let L and R be the elements in the array that are smaller and larger than a, respectively.
Note that L and R can be constructed using |M | − 1 comparisons by comparing every
other element to a.

3. Recursively apply quicksort to L and R.

4. Concatenate L + a + R in that order, and output the result. Again, this can be done in
linear time.

To analyze the running time of RandomizedQuicksort, we can focus on the expected number
of comparisons:

Question 1.1. What is the expected number of comparisons of RandomizedQuicksort?

To answer this question, we can attempt a probabilistic argument as follows. Let T (n) be the
expected number of comparisons on an array of length n. (Make sure you understand why only the
length of the array matters when determining the expected number of comparisons—at least, when
all numbers are distinct.) With probability 1/n, quicksort chooses the i’th smallest element of the
list, resulting in L and R of sizes i− 1 and n− i. Therefore, we have the following recurrence:

T (0) = 0,

T (n) =

n∑
i=1

Pr[i’th smallest element chosen]·(n−1+T (i−1)+T (n−i)) =
n∑

i=1

1

n
(n−1+T (i−1)+T (n−i)).

There are multiple ways to solve this recurrence. In our case, we consider a different procedure
with the exact same recurrence relation and which is easier to analyze.

1Originally 15-750 notes by Jason Li

1

Figure 1: A partially completed dart game with n = 8.

1.2 A dart game: the same as quicksort?

Consider the following randomized dart game and its associated cost function:

Procedure DartGame

1. Initially. there is a dart board of n consecutive, empty squares, arranged in a row.

2. For n iterations, throw a dart at a uniformly random empty square, and pay cost equal
to the number of consecutive empty squares to the left and right of the dart (see figure
1).

Observe that, once we throw our first dart, the empty segment to the left of the dart and the
empty segment to the right can be treated as two separate, independent dart games: there may
no longer be a dart hitting the left segment every round (since the dart can still hit the right
segment), but conditioned on a dart hitting the left segment, the square it hits is still uniformly
random. Therefore, if C(n) be the expected cost of DartGame with n initial squares, then:

C(0) = 0,

C(n) =
n∑

i=1

Pr[dart hits i’th square]·(n−1+C(i−1)+C(n−i)) =
n∑

i=1

1

n
(n−1+C(i−1)+C(n−i)).

Since this recurrence is identical to that of RandomizedQuicksort, we conclude the following:

Claim 1.2. The expected number of comparisons of RandomizedQuicksort on n elements is the
same as the expected cost of DartGame on n initial squares.

1.3 Dart game using backwards analysis

Consider reversing the dart game as follows: start with a full board of marked squares, and unmark
a random square each iteration, again paying cost equal to the number of consecutive empty squares
to the left and right of the unmarked square.

2

Figure 2: A reversed dart game with 5 darts remaining.

Claim 1.3. The expected cost is the same for the original dart game and the reversed dart game.

To see this, note that this procedure exactly captures the dart game backwards: for any specific
sequence of chosen squares in the original game, reversing that sequence in the reversed dart game
arrives at the same cost per round (and therefore, total cost). Both sequences (or, more precisely,
permutations) occur with probability 1/n! in their respective games, so they contribute the same
amount to the expected costs of each game.

Lastly, we analyze the expected running time of the reversed game. Consider an iteration when
there are i darts left on the board. For each empty square, the probability that it contributes to
the cost on this round is at most 2/i (see figure 2), so by linearity of expectation, the expected cost
of this iteration is at most (n− i) · 2/i. Summing over all i gives an expected running time of

n∑
i=1

(n− i)
2

i
≤ 2n

n∑
i=1

1

i
= 2nHn = O(n log n),

where Hn ≈ lnn is the n’th harmonic number. Moving back to our original quicksort problem, we
conclude that:

Claim 1.4. The expected number of comparisons of RandomizedQuicksort is at most 2nHn =
O(n log n).

2 Convex hull

In this section, we provide an expected O(n log n) time randomized algorithm to compute the
convex hull of n points in 2D, and then show a lower bound of Ω(n log n) by reducing sorting to
convex hull.

2.1 Definitions

Here, we review definitions related to the following discussions.

Definition 2.1. A set A ⊆ Rd is convex if x, y ∈ A→ segment between x, y is completely contained
by A. Alternatively, A is convex if A is closed under convex combination.

Definition 2.2. Convex closure of A, denoted as CC(A), is the smallest convex set containing A.

Definition 2.3. Convex hull of A, denoted as CH(A), is the boundary of CC(A).

For A ∈ R2, CH(A) is bounded by a simple closed path counterclockwise enclosing all elements
in A. Segment [a, b] is a side of CH(A) if and only if two conditions are satisfied: (1) a 6= b ∈ A;
(2) for all a′ ∈ A, either a′ is left of [a, b] or a′ ∈ [a, b].

3

Figure 3: Subroutine BuildTent (CH,P, e), with e as the edge intersected by ray CP .

2.2 Random incremental convex hull

Here, we give a randomized convex hull algorithm and analyze its running time using backwards
analysis. (For simplicity, assume that no three points in the input are collinear.)

The algorithm is incremental: start with the convex hull of points P1, P2, P3, and iteratively
insert the remaining points P4, P5, . . . , Pn in some order. For each iteration i, maintain the convex
hull of the first i inserted points in, say, clockwise order in a doubly-linked list. So, on iteration
i, we have the convex hull of the first i − 1 points and need to figure out how to modify this hull
to include the i’th point. If the new point is inside the current convex hull, then clearly, nothing
needs to be done. For the case when the new point is outside, we need the notion of “visibility”: if
we view the convex hull CH as an (opaque) building, the visible region from a point P outside the
building is what you can see if you stand at point P (see figure 3, light gray). Formally, it is the
set of points Q in the plane such that the segment PQ does not intersect the hull. The following
claim, while nontrivial to prove, is geometrically intuitive:

Claim 2.4 (Proof omitted). Suppose P is outside of CH, and that the edges of CH visible from
P are e1, . . . , ek in clockwise order. Let L be the left endpoint of e1 and R be the right endpoint of
ek (see figure 3). Then, removing edges e1, . . . , ek and inserting the segments LP and PR in their
place produces the convex hull with point P included.

Note that at most 2 edges are inserted per iteration, and every edge is deleted at most once, So,
by amortized analysis, the number of added or removed edges, and thus the number of doubly-linked
list operations, is O(1) per iteration.

It remains to find, for each new point, whether it lies within the current convex hull, and if not,
the set of visible edges. First, note that, in the latter case, it suffices to find one visible edge: once
such an edge e is known for a new point P , we can search the doubly-linked list both clockwise and
counterclockwise starting from e to determine the complete set of visible edges; this searching cost
is also amortized to O(1). We can thus declare a subroutine BuildTent(CH,P, e) that takes in a
point P outside of CH and an edge e of CH visible from P , and outputs the new convex hull with
P included. Note that the total running time of all calls to BuildTent(CH,P, e) is linear.

4

Subroutine BuildTent(CH,P, e)

1. Starting from e, go counterclockwise along CH until the next edge to be visited is no
longer visible from P . Let L be the left endpoint of the last visible edge.

2. Do the same in the clockwise direction starting from e. Let R be the right endpoint of
the last visible edge.

3. Remove all visited edges in both directions, and add the edges LP and PR in their place
in the doubly-linked list.

The key idea in computing visible edges efficiently is to precompute them: for each point P not
yet inserted, keep track of one edge of the current CH that is visible from P . One method is to
fix a point C inside CH, and associate a future point P with the edge e of CH intersected by ray−−→
CP (see figure 3); e is necessarily visible from P . Note that a point C inside the initial convex hull
of P1, P2, P3 will work and never needs to be changed. Also, we can test whether or not P already

lies in CH for free: simply compute the intersection point of
−−→
CP and e and see if it lies beyond P

in ray
−−→
CP .

The only trouble with this approach is that, on each iteration, an edge e with an associated
future point P might be deleted, in which case we need to re-associate P with one of the two newly
inserted edges. It turns out that, if we randomly permute the points P4, P5, . . . , Pn before inserting
them, the additional cost in maintaining visible edges is small in expectation.

Thus, the complete algorithm is as follows:

Algorithm RandomIncrementalCH

1. Construct the convex hull CH of P1, P2, P3 in clockwise order, stored in a doubly-linked
list.

2. Compute a point C inside the convex hull (e.g., the centroid (P1 + P2 + P3)/3).

3. Randomly permute the remaining points, and call the new order P4, P5, . . . , Pn.

4. For each P4, . . . , Pn, compute the edge of CH intersected by ray
−−→
CPi, and associate this

edge with Pi.

5. For i = 4, . . . , n:

(a) Retrieve the associated edge e of Pi, which is visible from Pi.

(b) Compute the intersection of
−−→
CP and e; call this point Q. If length CQ is greater

than length CP , then P is inside CH, so do nothing and continue onto the next
iteration.

(c) Run BuildTent(CH,P, e).

(d) For each deleted edge, reassign the future points associated with that edge to

whichever of LP and PR that intersects ray
−−→
CPi.

Finally, we analyze the expected running time of assigning and reassigning future points to
edges. Whenever we add a new edge, we pay a cost equal to the number of future points assigned
to that edge. To apply backwards analysis, we consider the incremental algorithm backwards: on

5

Figure 4: In the backwards analysis: cases when “future” point P is charged.

each iteration, remove a random point P /∈ {P1, P2, P3}, until only P1, P2, P3 remain. If P is inside
the current convex hull CH, pay nothing. Otherwise, remove the two edges of CH that contain P ,
and pay cost equal to the number of “future” points whose rays intersect these two edges (where
“future” is technically the past now). If there are i points remaining besides P1, P2, P3, then each
“future” point has probability at most 2/i of contributing to the cost of this iteration (see figure
4). By linearity of expectation, the expected cost of this iteration is (n− 3− i) · 2/i. Summing over
all i gives an expected total cost of

n−3∑
i=1

(n− 3− i)
2

i
≤ (n− 3)

n−3∑
i=1

2

i
= 2(n− 3)Hn−3 = O(n log n).

Thus, the expected total running time of assigning and re-assigning future points is O(n log n).
Since everything else is linear time, the entire RandomIncrementalCH also has expected running
time O(n log n).

2.3 Lower bound for convex hull

Consider the following reduction from sorting to convex hull: given an array x1, . . . , xn of distinct
numbers, perform the following:

Reduction SortViaConvexHull

1. Run a ConvexHull algorithm on the 2D points (x1, x
2
1), . . . , (xn, x

2
n).

2. Find the smallest element in the array; call it xmin.

3. Starting from xmin, output the elements of the convex hull in counterclockwise order.

Aside from algorithm ConvexHull, the reduction takes linear time. One can show that
SortViaConvexHull correctly outputs the numbers in sorted order (see figure 5 for intuition).
Thus, if Tsort(n) and TCH(n) are the minimum times required for sorting and convex hull (pos-
sibly allowing randomized algorithms), then Tsort(n) ≤ TCH(n) + O(n). Since it is known that
Tsort(n) = Ω(n log n), we get TCH ≥ Ω(n log n)−O(n) = Ω(n log n).

Next, we present how to convert MergeSort and QuickSort into a convex hull algorithm. Input
A is a set of points in R2, A = {P1, · · · , Pn} with Pi = (xi, yi).

6

Figure 5: The convex hull of the points (xi, x
2
i) must contain the numbers xi in sorted order.

Preprocess PrepAforSorting

1. Sort A by x-coordinate.

Algorithm MergeHull(A)

1. If |A| = 1, return P1;

2. Else, CHL = MergeHull(P1, . . . , Pn
2
), CHR = MergeHull(Pn

2
, . . . , Pn).

3. Stitch(L,R).

For convex hull CHL, CHR, define LowerBridge(L,R) as the lowest segment joining (u, v) ∈ CHL×
CHR and upperbridge as the highest segment joining CHL, CHR. The subroutine Stitch(L,R) finds
UpperBridge(L,R) Bu and LowerBridge(L,R) Bl, then find a convex hull containing both L,R
with Bu, Bl as two sides.

Subroutine Stitch(L,R)

1. Let a denote the rightmost vertex in CHL, b denote the leftmost vertex in CHR.

2. Repeat (a), (b) until no more updates can be made:

(a) If a is at the right side of segment [a, b], set a← a.

(b) If b is at the right side of segment [a, b], set b← b.

3. Return [a, b] as LowerBridge(L,R) Bl .

4. UpperBridge(L,R) Bu can be found in similar way, the only changes needed is to find a
and b at the left side of [a, b] in repeating updates.

5. Join CHL and CHR with Bl and Bu, the generated convex set contains CHL and CHR.

Stitch has time complexity O(n) because we are only traversing through the points and the repeated
updates will run at most 2n times. MergeHull has time complexity O(n log n), which can be
computed from solving recursion T (n) = 2T (n2) + cn.

7

