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1 Depth-first search basics

2 The Exponential Distribution

Definition 2.1. Let Ω be a sample space, a random variable is a mapping X : Ω→ R.

Definition 2.2. The probability density distribution (PDF) of an exponential random variable Xβ

is

Pr[Xβ = µ] =

{
βe−βµ, µ ≥ 0

0, otherwise

Definition 2.3. The culmulutive distribution function (CDF) of Xβ is

Fβ(y) ≡ Pr[Xβ ≤ y]

Fβ(y) =

∫ y

0
βe−βxdx = [−e−βx]y0 = 1− e−βy

Definition 2.4. The expected value of a random variable X is

Ex[X] =

∫ ∞
−∞

yPr[X = y]dy

Remark 2.5. There are two ways to calculate E[Xβ] for a exponential random variable Xβ

1. By defintion, using integration by parts,

E[Xβ] =

∫ ∞
0

yβe−βydy = 1/β

2.

E[Xβ] =

∫ ∞
0

Pr[Xβ ≥ y]dy =

∫ ∞
0

e−βy = [− 1

β
e−βy]∞0 =

1

β

Proposition 2.6 (Memoryless Property). Given exponential random variable Xβ,

Pr[Xβ > m+ n|Xβ > n] =
e−β(m+n)

e−βn
= e−βm
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3 Order Statistics

Definition 3.1. X1, X2, . . . Xn are n i.i.d random variables. The i-th order statistic is

X(i) = selectk(X1, . . . Xk)

i.e.
X(1) ≤ X(2) ≤ . . . ≤ X(n).

Theorem 3.2. Suppose X1, X2, . . . , Xn are i.i.d such that

f(u) = Pr[Xi = u]

and
Fu = Pr[0 ≤ Xi ≤ u].

Then
Pr[X(1) = u] = n(1− F (u))n−1f(u)

Corollary 3.3. If X1, X2, . . . Xn are i.i.d exponentials,

Pr[X(1) = u] = n(e−βu)n−1βe−βu = nβe−nβu

So X(1) ∼ Exp(nβ). Therefore

E(X(1)) =
1

nβ
.

Claim 3.4 (Expectation of X(n)).

X(n) ≈
log n

β

Proof. Let Si = X(i+1) −X(i), for i ≥ 0.
We will need the following sub-claim:

Claim 3.5.
Si ∼ Exp((n− i)β)

We will prove this claim using the memoryless property. We think of each Xi as a time, say,
the time that the ith light bulb burnt out. Thus at time X(i) i of the bulbs have burnt out and
n − i still lit. Assume that the burnt-out ones are X1, . . . Xi, thus Xj > X(i) for i < j ≤ n. Thus
Si ∼ X(1) but for n− i random variables.

Thus,

E(Si) =
1

(n− i)β
Therefore,

E(X(n)) =
n−1∑
i=0

E[Si] =
1

β
(1 +

1

2
+ . . .

1

n
) =

lnn

β
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Proposition 3.6 (Concentration for X(n)).

Pr[Xi ≥
c lnn

β
] = e−c lnn = n−c

By union bound we get,

Pr[Xi ≥
c lnn

β
] ≤ n · n−c =

1

nc−1

Thus,

Pr[Xi ≥
2 lnn

β
] ≤ 1

n

4 Generating Distribution of Random Variables

Problem: Given f : R→ R+, where ∫ ∞
−∞

f(x)dx = 1

Want to find random variable Xf whose PDF is f .

Remark 4.1. It is not clear that the random variable exists. But we can ask if we have one, can
we generate more.

Definition 4.2. Let f, g be PDF’s with random variable Xf , Xg, we say f ≤ g if there exists a
deterministic process D such that Xf = D(Xg).

Example 4.3. Let U be uniform random variable with PDF u, i.e.

u(x) =

{
1, if x ∈ [0, 1],

0, otherwise.

Let U2 be uniform random variable on [0, 2],with PDF u2, then

U2 = 2U =⇒ u2 ≤ u

4.1 Generating Exponential Distribution from Uniform Distribution

The PDF of an exponential random variable X is

f(X) = βe−βX for 0 < β,X ≥ 0

and

F (X) =

∫ ∞
0

f(X)dX = 1− e−βX

Thus F : [0,∞]→ [0, 1] is one-to-one and onto. We get that F (Xf ) is uniform on [0, 1].
Therefore, u ≤ f , But we want f ≤ u.
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Find F−1, i.e. solve for X in Y = F (X) = 1− e−βX

Y = 1− e−βX

⇐⇒ e−βX = 1− Y
⇐⇒ − βX = ln(1− Y )

⇐⇒ X = − 1

β
ln(1− Y )

⇐⇒ X = − 1

β
lnY since 1− Y is uniform on [0, 1]

Thus Xf = 1
β ln(Xu). Thus f ≤ u.

4.2 Generating Normal Distribution from Uniform Distribution

The PDF of a general normal random variable X is

f(X) =
1

σ
√

2π
e−

X2

2σ2

Taking σ = 1, we get Gauss’ unit normal:

f(X) =
1√
2π
e−

X2

2

But it is hard to compute the CDF of X

F (X) =

∫ X

−∞

1√
2π
e−

x2

2 dx

Theorem 4.4. F(X) is not an elementary function.

Remark 4.5. It is OK to compute if f(x) = xe−
x2

2 , as

d

dx
(−e−

x2

2 ) = xe−
x2

2

We consider 2D-normal.

Let f(x, y) =
1

2π
e−

x2

2 e−
y2

2

=
1

2π
e−

x2+y2

2

In polar,

f(r, θ) =
1

2π
e−

r2

2

Now we can find the cumulative with respect to a disk of radiu r:

D(R) =

∫ R

0

2πr

2π
e−

r2

2 dr = −e−
r2

2 ]R0 = 1− e−
R2

2
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Again we compute F−1,

Let y = 1− e−
R2

2

=⇒ e−
R2

2 = 1− y

=⇒ −R
2

2
= ln(1− y)

=⇒ R
√
−2 ln(1− y)

Therefore given two uniform random variables u, v, we can generate a unit normal random variable
using the following algorithm.

Alg: u, v uniform on [0, 1].

r =
√
−2 lnu

θ = 2πv
In polar, return (r, θ)
(or return (x = r cos θ, y = r sin θ))

4.3 The Box-Muller Algorithm

Alg BM(u, v): u, v uniform on [0, 1].
1) Set u = 2u− 1, v = 2v − 1, (uniform on [−1, 1])
2) do w = u2 + v2 until w ≤ 1

3) Set A =
√
−2 lnw
w

4) return (T1 = Au, T2 = Av)

Claim 4.6. The Box-Muller Algorithm generates 2D unit Gaussian.

Proof. After step 2), write u, v as

V1 = R cos θ

V2 = R sin θ

S = R2

After step 4), we get the coordinate (x1, x2) where

x1 =

√
−2 lnS

S
V1 =

√
−2 lnS

S
R cos θ =

√
−2 lnS cos θ

Similarly,
X2 =

√
−2 lnS sin θ

In polar form, we have (R′, θ′), where R′ =
√
−2 lnS, θ′ ∈ [0, 2π].

Compute CDF of R′,

CDF (R′) = Pr[R′ ≤ r]
= Pr[

√
−2 lnS ≤ r]

= Pr[−2 lnS ≤ r2]

= Pr[S ≥ er2/2](∗)
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Figure 1: Visualization of r ≥ t

Note suppose u, v is uniform over the unit disk, then in the figure below,

Pr[(u, v) ∈ annulus] = 1− t2

Consider random variable S = R2 = u2 + v2,

Pr[S ≥ t] = Pr[R2 ≥ t] = Pr[R ≥
√
t] = 1− t

Therefore,

Pr[S ≥ e
r2

2 ] = 1− e
r2

2

So S is Gaussian. This completes our proof.
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