15-451: Algorithms

Sept 26, 2019

Lecture Notes:Low Diameter Decomposition using Exponential Delay

Lecturer: Gary Miller

Scribe:

1

1 Introduction

1.1 Exploring a Graph Using BFS

There are at least three methods to explore a graph:

- 1. DFS (earlier lectures)
- 2. BFS (today)
- 3. Random Walks

1.2 Applications of Low Diameter Decomposition

- 1. Spanners: Distance preserving sparse graphs.
- 2. Hop Set: Added set of extra edges to a graph to decrease number of edges used in shortest paths.
- 3. Low Stretch Spanning Tree (LSST): Preserve distances on average. Applications of LSSTs include fast algorithms for:
 - (a) Linear solvers
 - (b) Max flow
 - (c) Image processing

2 Definitions

- 1. Undirected and unweighted graph G = (V, E).
- 2. $n \equiv |V|$
- 3. $m \equiv |E|$
- 4. $d(v) \equiv \text{degree of } v \in V$

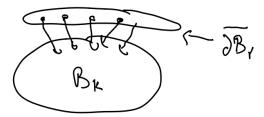
Definition 2.1. $Vol(W) = \sum_{v \in W} d(v)$, where $W \subseteq V$

Note: Vol(V) = 2m, since each edge in the graph is counted twice.

Definition 2.2. Boundary(W) $\equiv \partial W = \{(x,y) \mid x \in W, \text{and} y \notin W, (x,y) \in E\}, \text{ where } W \subseteq V.$

¹Originally 15-750 notes by Andrew Chung

Figure 1: An illustration of $\overline{\partial B_r}$.



Intuitively, ∂W is the set of outgoing edges from the cluster that connect to vertices in W.

Definition 2.3. The Isoperimetric Number of W
$$\equiv \Phi(W) = \frac{|\partial W|}{Vol(W)}$$

The Isoperimetric Number of W is the fraction of outgoing edges to the double-counted edges remaining within the cluster W.

Definition 2.4. The distance dist(v, w) is the minimal distance between two vertices $v, w \in G$.

3 Low Diameter Decomposition

3.1 Problem Statement

Given G = (V, E), $x \in V$, and $0 < \beta < 1$, want to find:

 $x \in W \subseteq V$ of nearby points such that $\Phi(W) \leq \beta$

3.2 Ball Growing

Definition 3.1. $B(x,r) = \{ y \in V \mid dist(x,y) \le r \}$

We can think of B(x,r) as a "ball" of radius r, centered at x. The cluster (or ball) consists of vertices that are no further than a distance of r from x.

Algorithm 1 Ball Growing

- 1: **function** GrowBall($G = (V, E), x, \beta$)
- $2 \cdot r \leftarrow 1$
- 3: while $\Phi(B(x,r)) > \beta$ do
- 4: $r \leftarrow r + 1$
- 5: end while
- 6: **return** $B_r = B(x, r), R = r$
- 7: end function

Claim 3.2. $R = O(\frac{\log(m)}{\beta})$, where R is the largest radius returned from GrowBall.

Note: If r < R, then $|\partial B_r| \ge \beta \cdot Vol(B_r)$

Definition 3.3. $\overline{\partial B_r} = \{ y \in V \mid (x, y) \in E, x \in B_r, y \notin B_r \}$

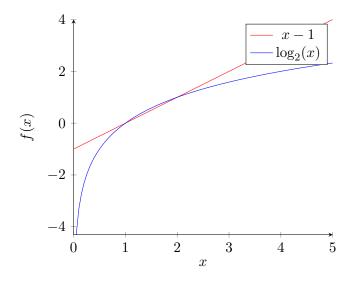


Figure 2: $\log_2(1+\beta) \ge \beta$ for $0 \le \beta \le 1$

Intuitively, $\overline{\partial B_r}$ is the set of vertices that are "neighbors" of the cluster B_r . They are the vertices that are in consideration to be added in at the next increment of r. For an illustration, please refer to Figure 1.

Note: $Vol(\overline{\partial B_r}) \ge \beta \cdot Vol(B_r)$. We trivially get this from $|\partial B_r| \ge \beta \cdot Vol(B_r)$ Thus: $Vol(B_{r+1}) \ge (1+\beta) \cdot Vol(B_r)$

Going back to proving Claim 3.2:

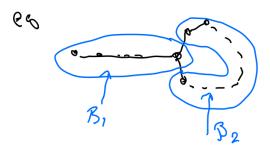
Proof.

$$(1+\beta)^r \leq Vol(B_r) \leq 2m$$
 Taking logs $\implies r \cdot \log_2(1+\beta) \leq \log_2(2m)$ Provided that $\log_2(1+\beta) \geq \beta$ for $0 \leq \beta \leq 1 \implies r \cdot \beta \leq \log_2(m) + 1$
$$\implies r \leq \frac{\log_2(m) + 1}{\beta}$$

3.3 Low Diameter Decomposition Through Ball Decomposition

We now introduce a simple sequential algorithm BallDecomp that uses GrowBall to get a partition of V.

Figure 3: An illustration of distance between balls in a graph.



Algorithm 2 Ball Decomposition

```
1: function BallDecomp(G = (V, E), \beta)
        balls \leftarrow \emptyset
        while V \neq \emptyset do
3:
4:
            Pick x \in V
                                          ▶ Pick a arbitrary vertex as the center for creating a new ball
            B_r \leftarrow GrowBall(G, x, \beta)
                                                                        \triangleright Creates a ball with x as the center
5:
            balls \leftarrow \cup \{B_r\}
                                                                       ▶ Add the new ball to the set of balls
6:
            Remove B_r and \partial B_r from G
7:
                                                         ▶ Remove components of the ball from the graph
        end while
8:
        return balls
9:
10: end function
```

Note: $dist_G(V, W) \ll dist_B(V, W)$ for $V, W \in B \equiv \text{Ball}$. Essentially, the distance between two vertices within a ball may be much greater than their distance in the whole graph. For an illustration, please refer to Figure 3.

3.4 Ball Growing Using Exponential Decay

In this section, we will introduce a ball-growing technique using the properties of exponential distributions.

3.4.1 Algorithm definition

Algorithm 3 Ball Growing Using Exponential Delay

```
1: function Exponential Delay (G = (V, E), \beta)
        for each v \in V draw X_v \sim Exp(\beta)
        X_{max} \leftarrow \max_{v \in V} X_v
 3:
       for each v \in V compute S_v \leftarrow X_{max} - X_v
 4:
 5:
       t \leftarrow 0
        while True do
 6:
            for each v \in V where S_v = t do
 7:
               if v is not owned at time S_v then
 8:
                   v owns v, start BFS from v
 9:
               else
10:
                   v is owned by first arrival vertex, do nothing
11:
               end if
12:
13:
            end for
           if All v \in V are owned then
14:
               break
15:
           end if
16:
           t \leftarrow t + 1
17:
        end while
18:
19: end function
```

Note: At each time step each of the active BFSs move outward a distance of 1.

```
Definition 3.4. u \in cluster(v) if
```

```
1. v = \arg\min_{v} \{ dist(u, v) + S_v \} or
2. v = \arg\max_{v} \{ X_v - dist(u, v) \},
```

where $u, v \in V$ and S_v and X_v are defined as in Algorithm 3.

We can think of S_v as an additional distance that v has to travel to u, and u will belong to the cluster centered at v whose total distance (including S_v) from v to u is the smallest.

3.4.2 What is the maximum cluster radius?

Lemma 3.5. At time X_{max} , all of the nodes will be owned.

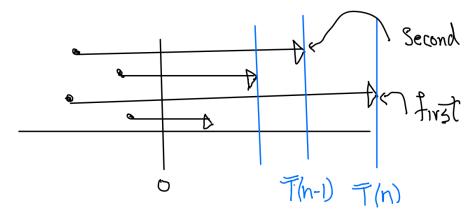
Proof. Intuitively, at time X_{max} each node must have either been owned by another vertex or has started its own BFS.

Corollary 3.6. Max cluster radius $\leq X_{max} \leq \frac{2 \ln n}{\beta}$ with probability $\geq 1 - \frac{1}{n}$, where n = |V|.

This follows from Lemma 3.5 and $X_{max} \sim Exp(\beta)$.

<u>Note</u>: Remember that the max of $n \ Exp(\beta)$'s is at most $\frac{2 \log n}{\beta}$ with high probability.

Figure 4: An illustration of the horse race and photo finish framing of the intercluster edges problem.



3.4.3 What is the probability that an edge is intercluster?

In other words, what is the probability that an edge is cut?

To answer this question, let e be some edge and c be the midpoint of edge e. We think of each vertex doing a BFS of G starting at time $S_{v_i} = S_i$.

Definition 3.7. The arrival time at c will be a random variable

$$T_i = X_{max} - X_i + dist(v_i, c) = S_i + dist(v_i, c)$$
 Early arrival: $\overline{T_i} = X_{max} - T_i = X_i - dist(v_i, c)$

The probability that an edge is intercluster is bounded above by the probability that the difference between two arrival times is less than a unit of time.

A way to frame this problem is to think of it as a horse race and photo finish, where $dist(v_i, c)$ can be thought of as the handicap and X_i can be thought of as the speed. Figure 4 serves as an illustration.

Definition 3.8.
$$Gap_1 = \overline{T}(n) - \overline{T}(n-1)$$

By the memoryless property of exponential distributions, $Gap_1 \sim Exp(\beta)$, and thus $Pr(Gap_1 < 1) = 1 - e^{-\beta}$.

Claim 3.9.
$$1 - e^{-\beta} < \beta$$

Proof.

$$e^{-\beta} = 1 - \beta + \frac{\beta^2}{2!} - \frac{\beta^3}{3!} + \dots$$

$$\implies 1 - e^{-\beta} = \beta - \frac{\beta^2}{2!} + \frac{\beta^3}{3!} - \dots$$

$$\implies 1 - e^{-\beta} < \beta, \text{ by Taylor's Theorem}$$

Hence, we show that the probability that an edge is intercluster is $< \beta$.

4 Exponential Delay

Theorem 4.1. Exponential delay generates a clustering such that

- 1. Max radius in expectation is $\frac{\ln(n)}{\beta}$
- 2. Max radius is $\frac{2\ln(n)}{\beta}$ with probability $1 \frac{1}{n}$
- 3. The expected number of intercluster edges is $m \cdot \beta$
- 4. Run time is O(m+n)
- 5. Strong Diameter Property: If $w \in Cluster_v$, then shortest path from v to w is in cluster v, where v is the center of the cluster and $v, w \in V$